Estimation of Wheat Leaf Water Content Based on UAV Hyper-Spectral Remote Sensing and Machine Learning
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Area and Environment
2.2. Experimental Data Collection
2.3. Hyperspectral Image Transformation
2.4. Extraction of Feature Band
2.5. Machine Learning Modeling
2.6. Machine Evaluation Methods
3. Results and Analysis
3.1. Wheat Hyperspectral Features Analysis
3.1.1. Hyperspectral Transformation Results
3.1.2. Correlation Analysis of Spectral Reflectance and LWC
3.2. Wheat LWC Estimation Models
3.3. Wheat LWC Estimation Models Test
3.4. Model Performance Evaluation
4. Discussion
4.1. The Influence of Spectral Transformation and Feature Selection
4.2. The Influence of Model Hyperparameter Selection
4.3. The Limitations of the Dataset
5. Conclusions
- (1)
- After MSC, SNV, and FD spectral transformation of winter wheat canopy hyperspectral data, the correlation between spectral information and LWC could be significantly improved. Compared with the correlation coefficient of the raw spectral data (−0.14~0.10), the correlation coefficient after MSC, SNV, and FD transformation increased to −0.47~0.34, −0.45~0.34, and −0.63~0.49, respectively.
- (2)
- The CARS and HSICLasso feature extraction methods could effectively remove redundant information from hyperspectral data, improving the prediction accuracy and stability of the model. Notably, based on the test set predictions, the CARS method demonstrated superior performance in enhancing both prediction precision and model stability.
- (3)
- Different models were suited to different data preprocessing methods. The model combinations that performed best on the test set for the three machine learning algorithms were MSC + CARS + SVR, SNV + CARS + PLSR, and FD + CARS + RF. All three models were able to accurately and stably predict winter wheat LWC. Among them, the RF algorithm exhibited superior training data fitting performance and the SVR algorithm showed enhanced robustness and generalization ability.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, H.; Zhang, L.; Kirkham, M.B.; Welch Stephen, M.; Nielsen Gammon John, W.; Bai, G.; Luo, J.; Andresen Daniel, A.; Rice Charles, W.; Wan, N.; et al. U.S. winter wheat yield loss attributed to compound hot-dry-windy events. Nat. Commun. 2022, 131, 7233. [Google Scholar] [CrossRef]
- Wu, Z.; Luo, J.; Rao, K.; Lin, H.; Song, X. Estimation of wheat kernel moisture content based on hyperspectral reflectance and satellite multispectral imagery. Int. J. Appl. Earth Obs. Geoinf. 2024, 126, 103597. [Google Scholar] [CrossRef]
- Zhai, W.; Cheng, Q.; Duan, F.; Huang, X.; Chen, Z. Remote sensing-based analysis of yield and water-fertilizer use efficiency in winter wheat management. Agric. Water Manag. 2025, 311, 109390. [Google Scholar] [CrossRef]
- Guo, F.; Feng, Q.; Yang, S.; Yang, W. Estimation of potato canopy leaf water content in various growth stages using UAV hyperspectral remote sensing and machine learning. Front. Plant Sci. 2024, 15, 1458589. [Google Scholar] [CrossRef]
- Sun, D.; Zhang, L.; Li, H.; Lan, W.; Tu, K.; Liu, J.; Pan, L. Non-destructive prediction of the moisture content of individual wheat kernels combining hyperspectral imaging and WGAN data augmentation algorithm. Food Res. Int. 2025, 212, 116498. [Google Scholar] [CrossRef]
- Katsoulas, N.; Elvanidi, A.; Ferentinos, P.K.; Kacira, M.; Bartzanas, T.; Kittas, C. Crop reflectance monitoring as a tool for water stress detection in greenhouses: A review. Biosyst. Eng. 2016, 151, 374–398. [Google Scholar] [CrossRef]
- Qian, C.; Fan, D.; Honggang, X.; Guo, S.; Li, Z.; Chen, Z. Quantifying corn LAI using machine learning and UAV multispectral imaging. Precis. Agric. 2024, 254, 1777–1799. [Google Scholar] [CrossRef]
- Adak, A.; DeSalvio, J.A.; Murray, C.S. A computational framework for modeling and predicting maize senescence: Integrating UAV phenotyping, logistic growth, and genomics. Comput. Electron. Agric. 2025, 237, 110471. [Google Scholar] [CrossRef]
- Gu, Q.; Huang, F.; Lou, W.; Zhu, Y.; Hu, H.; Zhao, Y. Unmanned aerial vehicle-based assessment of rice leaf chlorophyll content dynamics across genotypes. Comput. Electron. Agric. 2024, 221, 108939. [Google Scholar] [CrossRef]
- Kang, Y.; Wang, Y.; Fan, Y.; Wu, H.; Zhang, Y.; Yuan, B. Wheat Yield Estimation Based on Unmanned Aerial Vehicle Multispectral Images and Texture Feature Indices. Agriculture 2024, 14, 167. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, Z.; Zhang, J.; Yang, X.; Liu, H.; Chen, J. Accurate estimation of winter-wheat leaf water content using continuous wavelet transform-based hyperspectral combined with thermal infrared on a UAV platform. Eur. J. Agron. 2025, 168, 127624. [Google Scholar] [CrossRef]
- Jing, Z.; Hong, L.; Chao, C.; Pang, Y.; Zhu, X. Detection of Water Content in Lettuce Canopies Based on Hyperspectral Imaging Technology under Outdoor Conditions. Agriculture 2022, 12, 1796. [Google Scholar] [CrossRef]
- Gao, C.; Liu, S.; Wu, P.; Wu, P.; Wang, Y.; Wu, K.; Li, L. Estimation of Canopy Water Content by Integrating Hyperspectral and Thermal Imagery in Winter Wheat Fields. Agronomy 2024, 14, 2569. [Google Scholar] [CrossRef]
- Dong, L.; Weiguo, Y.; Hengbiao, Z.; Guo, C.; Xia, Y.; Yan, Z. Towards practical semi-empirical models for the estimation of leaf and canopy water contents from hyperspectral reflectance. Comput. Electron. Agric. 2023, 214, 108309. [Google Scholar] [CrossRef]
- Ji, J.; Lu, X.; Ma, H.; Jin, X.; Jiang, S.; Cui, H. Estimation of plant leaf water content based on spectroscopy. Front. Plant Sci. 2025, 16, 1609650. [Google Scholar] [CrossRef]
- Junttila, S.; Hölttä, T.; Saarinen, N.; Kankare, V.; Yrttimaa, T.; Hyyppä, J.; Vastaranta, M. Close-range hyperspectral spectroscopy reveals leaf water content dynamics. Remote Sens. Environ. 2022, 277, 113071. [Google Scholar] [CrossRef]
- Li, R.; Yao, F.; Xu, Y.; Bai, S.; Jia, Z.; Lin, Q. Optimizing the Charge Carrier Dynamics of Thermal Evaporated TexSe1-x Films for High-Performance Short-Wavelength Infrared Photodetection. Adv. Funct. Mater. 2023, 34, 2307005. [Google Scholar] [CrossRef]
- Raj, R.; Walker, J.P.; Vinod, V.; Pingale, R.; Naik, B.; Jagarlapudi, A. Leaf water content estimation using top-of-canopy airborne hyperspectral data. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102393. [Google Scholar] [CrossRef]
- Kovar, M.; Brestic, M.; Sytar, O.; Barek, V.; Hauptvogel, P.; Zivcak, M. Evaluation of Hyperspectral Reflectance Parameters to Assess the Leaf Water Content in Soybean. Water 2019, 11, 443. [Google Scholar] [CrossRef]
- Clevers, J.G.; Kooistra, L.; Schaepman, M.E. Estimating canopy water content using hyperspectral remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 119–125. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, B.; Dai, M.; Jing, C.; Ma, K.; Tang, B. Accurate irrigation decision-making of winter wheat at the filling stage based on UAV hyperspectral inversion of leaf water content. Agric. Water Manag. 2024, 306, 109171. [Google Scholar] [CrossRef]
- Zhou, L.; Lin, J.; Wu, J.; Du, R.; Chen, M.; Zhao, B.; Yang, R. Assessing the potential of red solar-induced chlorophyll fluorescence for drought monitoring in different growth stages of winter wheat. Ecol. Metr. 2024, 161, 111960. [Google Scholar] [CrossRef]
- Li, Q.; Gao, M.; Li, Z.L. Ground Hyper-Spectral Remote-Sensing Monitoring of Wheat Water Stress during Different Growing Stages. Agronomy 2022, 12, 2267. [Google Scholar] [CrossRef]
- Yang, C.; Xu, J.; Feng, M.; Bai, J.; Sun, H.; Song, L. Evaluation of Hyperspectral Monitoring Model for Aboveground Dry Biomass of Winter Wheat by Using Multiple Factors. Agronomy 2023, 13, 983. [Google Scholar] [CrossRef]
- Ruiyan, C.; JunMeng, L.; Yan, W.; Shiyan, F.; Keqiang, Y.; Yanru, Z. Hyperspectral imaging coupled with Dual-channel convolutional neural network for early detection of apple valsa canker. Comput. Electron. Agric. 2022, 202, 107411. [Google Scholar] [CrossRef]
- Qi, H.; Chen, A.; Yang, X.; Xing, X. Estimation of crude protein content in natural pasture grass using unmanned aerial vehicle hyperspectral data. Comput. Electron. Agric. 2025, 229, 109714. [Google Scholar] [CrossRef]
- Chen, X.; Li, F.; Chang, Q.; Miao, Y.; Yu, K. Improving winter wheat plant nitrogen concentration prediction by combining proximal hyperspectral sensing and weather information with machine learning. Comput. Electron. Agric. 2025, 232, 110072. [Google Scholar] [CrossRef]
- Wang, C.; Fu, X.; Zhou, Y.; Fu, F. Deoxynivalenol Detection beyond the Limit in Wheat Flour Based on the Fluorescence Hyperspectral Imaging Technique. Foods 2024, 13, 897. [Google Scholar] [CrossRef] [PubMed]
- Mingzhu, T.; Yutao, C.; Huawei, W.; Qi, Z.; Wen, L.; Victor, S.; Jiabiao, Y. Cost-Sensitive Extremely Randomized Trees Algorithm for Online Fault Detection of Wind Turbine Generators. Front. Energy Res. 2021, 9, 2307005. [Google Scholar] [CrossRef]
- Adesokan, M.; Alamu, O.E.; Otegbayo, B.; Asfaw, A.; Afolabi, M.O.; Fawole, S. Rapid analysis of starch, sugar, and amylose in fresh yam tubers and boiled yam texture using near-infrared hyperspectral imaging and chemometrics. J. Food Compos. Anal. 2025, 142, 107425. [Google Scholar] [CrossRef]
- Shu, M.; Zhu, J.; Yang, X.; Gu, X.; Li, B.; Ma, Y. A spectral decomposition method for estimating the leaf nitrogen status of maize by UAV-based hyperspectral imaging. Comput. Electron. Agric. 2023, 212, 108100. [Google Scholar] [CrossRef]
- Wali, K.; Khan, A.H.; Sica, P.; Henten, E.; Meers, E.; Brunn, S. Application of fourier transform infrared photoacoustic spectroscopy for quantification of nutrient contents and their plant availability in manure and digestate. Heliyon 2024, 10, e28487. [Google Scholar] [CrossRef]
- Wang, X.; Xu, H.; Zhou, J.; Fang, X.; Shuai, S.; Yang, X. Analysis of Vegetation Canopy Spectral Features and Species Discrimination in Reclamation Mining Area Using In Situ Hyperspectral Data. Remote Sens. 2024, 16, 2372. [Google Scholar] [CrossRef]
- Hou, K.; Bai, T.; Li, X.; Shi, Z.; Li, S. Inversion Study of Nitrogen Content of Hyperspectral Apple Canopy Leaves Using Optimized Least Squares Support Vector Machine Approach. Forests 2024, 15, 268. [Google Scholar] [CrossRef]
- Crusiol, L.G.T.; Nanni, M.R.; Furlanetto, R.H.; Sibaldelli, R.N.R.; Sun, L.; Gonçalves, S.L.; Foloni, J.S.S.; Mertz-Henning, L.M.; Nepomuceno, A.L.; Neumaier, N.; et al. Assessing the sensitive spectral bands for soybean water status monitoring and soil moisture prediction using leaf-based hyperspectral reflectance. Agric. Water Manag. 2023, 277, 108089. [Google Scholar] [CrossRef]
Number | Methods | Hyperparameters for Training |
---|---|---|
1 | PLSR (Partial Least Squares Regression) | n_components: randint (5, 20), max_iter: [100, 200, 500, 1000], tol: [1 × 10−4, 1 × 10−5, 1 × 10−6, 1 × 10−7] |
2 | SVR (Support Vector Regression) | kernel: rbf C: loguniform (1 × 10−2, 1 × 103), gamma: [‘scale’] + list (np.logspace (−4, 1, 6)), epsilon: [0.01, 0.05, 0.1, 0.2, 0.3, 0.5] |
3 | RF (Random Forest) | n_estimators: randint (50, 150), min_depth: randint (10, 20), max_samples_leaf: randint (5, 10), max_samples_split: randint (10, 15), max_features: [1.0, ‘sqrt’, ‘log2’] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Yuan, S.; Zhu, J.; Tang, Y.; Tang, L. Estimation of Wheat Leaf Water Content Based on UAV Hyper-Spectral Remote Sensing and Machine Learning. Agriculture 2025, 15, 1898. https://doi.org/10.3390/agriculture15171898
Wu Y, Yuan S, Zhu J, Tang Y, Tang L. Estimation of Wheat Leaf Water Content Based on UAV Hyper-Spectral Remote Sensing and Machine Learning. Agriculture. 2025; 15(17):1898. https://doi.org/10.3390/agriculture15171898
Chicago/Turabian StyleWu, Yunlong, Shouqi Yuan, Junjie Zhu, Yue Tang, and Lingdi Tang. 2025. "Estimation of Wheat Leaf Water Content Based on UAV Hyper-Spectral Remote Sensing and Machine Learning" Agriculture 15, no. 17: 1898. https://doi.org/10.3390/agriculture15171898
APA StyleWu, Y., Yuan, S., Zhu, J., Tang, Y., & Tang, L. (2025). Estimation of Wheat Leaf Water Content Based on UAV Hyper-Spectral Remote Sensing and Machine Learning. Agriculture, 15(17), 1898. https://doi.org/10.3390/agriculture15171898