Relative Phosphorus Fertilizer Efficiency of Rapeseed and Soybean Cakes Across Different Soils
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Design
2.2.1. Pot Experiment
2.2.2. Decomposition of Cake Fertilizers
2.2.3. Soil Incubation
2.3. Measurement Items and Methods
2.3.1. Cake Fertilizers
2.3.2. Characters and P Fractions of Soils
2.3.3. Phosphorus Fertilizer Efficiency
2.4. Data Processing and Statistical Analysis
3. Results
3.1. Effect of Cake Fertilizers on Ryegrass Phosphorus Uptake
3.2. Relative Phosphorus Efficiency and Phosphorus Use Efficiency
3.3. Phosphorus Fractions and Decomposition Dynamics of Cake Fertilizers
3.4. Correlation Between Soil Phosphatase Activity and rPE
3.5. Effect of Cake Fertilizer Application on Soil Phosphorus Fractions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kahiluoto, H.; Kuisma, M.; Kuokkanen, A.; Mikkilä, M.; Linnanen, L. Local and social facets of planetary boundaries: Right to nutrients. Environ. Res. Lett. 2015, 10, 104013. [Google Scholar] [CrossRef]
- Mayer, N.; Kaltschmitt, M. Closing the phosphorus cycle: Current P balance and future prospects in Germany. J. Clean. Prod. 2022, 347, 12. [Google Scholar] [CrossRef]
- Sica, P.; Sitzmann, T.J.; Mueller-Stoever, D.; Magid, J. Strategic placement of mineral and biobased fertilizers for optimizing phosphorus use efficiency: A comprehensive review. Soil Use Manag. 2025, 41, 25. [Google Scholar] [CrossRef]
- Brod, E.; Ogaard, A.F.; Haraldsen, T.K.; Krogstad, T. Waste products as alternative phosphorus fertilisers part II: Predicting P fertilisation effects by chemical extraction. Nutr. Cycl. Agroecosystems 2015, 103, 187–199. [Google Scholar] [CrossRef]
- Kratz, S.; Bloem, E.; Papendorf, J.; Schick, J.; Schnug, E.; Harborth, P. Agronomic efficiency and heavy metal contamination of phosphorus (P) recycling products from old sewage sludge ash landfills. J. Für Kult. 2017, 69, 373–385. [Google Scholar] [CrossRef]
- Kratz, S.; Vogel, C.; Adam, C. Agronomic performance of P recycling fertilizers and methods to predict it: A review. Nutr. Cycl. Agroecosysystem 2019, 115, 1–39. [Google Scholar] [CrossRef]
- Steckenmesser, D.; Vogel, C.; Herzel, H.; Felix, R.; Adam, C.; Steffens, D. Thermal treatment of sewage sludge for phosphorus fertilizer production: A model experiment. J. Plant Nutr. 2022, 45, 1123–1133. [Google Scholar] [CrossRef]
- Zhou, T.; Chen, L.; Wang, W.; Xu, Y.; Zhang, W.; Zhang, H.; Liu, L.; Wang, Z.; Gu, J.; Yang, J. Effects of application of rapeseed cake as organic fertilizer on rice quality at high yield level. J. Sci. Food Agric. 2022, 102, 1832–1841. [Google Scholar] [CrossRef]
- Christiansen, N.H.; Sorensen, P.; Labouriau, R.; Christensen, B.T.; Rubaek, G.H. Characterizing phosphorus availability in waste products by chemical extractions and plant uptake. J. Plant Nutr. Soil Sci. 2020, 183, 745. [Google Scholar] [CrossRef]
- Moeller, K.; Oberson, A.; Bunemann, E.K.; Cooper, J.; Friedel, J.K.; Glaesner, N.; Hoertenhuber, S.; Loes, A.; Mader, P.; Meyer, G.; et al. Improved phosphorus recycling in organic farming: Navigating between constraints. Adv. Agron. 2018, 147, 159–237. [Google Scholar] [CrossRef]
- Toor, G.S.; Hunger, S.; Peak, J.D.; Sims, J.T.; Sparks, D.L. Advances in the characterization of phosphorus in organic wastes: Environmental and agronomic applications. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2006; Volume 89, pp. 1–72. [Google Scholar]
- Øgaard, A.F.; Brod, E. Efficient Phosphorus cycling in food production: Predicting the phosphorus fertilization effect of sludge from chemical wastewater treatment. J. Agr. Food Chem. 2016, 64, 4821–4829. [Google Scholar] [CrossRef]
- Ylivainio, K.; Lehti, A.; Jermakka, J.; Wikberg, H.; Turtola, E. Predicting relative agronomic efficiency of phosphorus-rich organic residues. Sci. Total Environ. 2021, 773, 9. [Google Scholar] [CrossRef]
- Hauck, D.; Lohr, D.; Meinken, E.; Schmidhalter, U. Phosphorus Availability from german sewage sludge ashes to plants cultivated in soilless growing media of contrasting pH. Agronomy 2022, 12, 2610. [Google Scholar] [CrossRef]
- Lemming, C.; Nielsen, M.T.S.; Jensen, L.S.; Scheutz, C.; Magid, J. Phosphorus availability of sewage sludges and ashes in soils of contrasting pH. J. Plant Nutr. Soil Sci. 2020, 183, 682–694. [Google Scholar] [CrossRef]
- Kratz, S.; Schick, J.; Øgaard, A.F. Phosphorus in Agriculture: 100% Zero; Springer: Dordrecht, Netherlands, 2016; p. 353. [Google Scholar]
- Achat, D.L.; Daumer, M.; Sperandio, M.; Santellani, A.; Morel, C. Solubility and mobility of phosphorus recycled from dairy effluents and pig manures in incubated soils with different characteristics. Nutr. Cycl. Agroecosystems 2014, 99, 1–15. [Google Scholar] [CrossRef]
- Bonvin, C.; Etter, B.; Udert, K.M.; Frossard, E.; Nanzer, S.; Tamburini, F.; Oberson, A. Plant uptake of phosphorus and nitrogen recycled from synthetic source-separated urine. Ambio 2015, 44, S217–S227. [Google Scholar] [CrossRef]
- Wollmann, I.; Gauro, A.; Mueller, T.; Moeller, K. Phosphorus bioavailability of sewage sludge-based recycled fertilizers. J. Plant Nutr. Soil Sci. 2018, 181, 158–166. [Google Scholar] [CrossRef]
- Frossard, E.; Skrabal, P.; Sinaj, S.; Bangerter, F.; Traore, O. Forms and exchangeability of inorganic phosphate in composted solid organic wastes. Nutr. Cycl. Agroecosystems 2002, 62, 103–113. [Google Scholar] [CrossRef]
- Damon, P.M.; Bowden, B.; Rose, T.; Rengel, Z. Crop residue contributions to phosphorus pools in agricultural soils: A review. Soil Biol. Biochem. 2014, 74, 127–137. [Google Scholar] [CrossRef]
- Kwabiah, A.B.; Stoskopf, N.C.; Palm, C.A.; Voroney, R.P. Soil P availability as affected by the chemical composition of plant materials: Implications for P-limiting agriculture in tropical Africa. Agric. Ecosyst. Environ. 2003, 100, 53–61. [Google Scholar] [CrossRef]
- Umrit, G.; Friesen, D.K. The effect of c-p ratio of plant residues added to soils of contrasting phosphate sorption capacities on p uptake by panicum-maximum (jacq). Plant Soil 1994, 158, 275–285. [Google Scholar] [CrossRef]
- Hedley, M.J.; Stewart, J.; Chauhan, B.S. Changes in inorganic and organic soil-phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci. Soc. Am. J. 1982, 46, 970–976. [Google Scholar] [CrossRef]
- Sharpley, A.; Moyer, B. Phosphorus forms in manure and compost and their release during simulated rainfall. J. Environ. Qual. 2000, 29, 1462–1469. [Google Scholar] [CrossRef]
- Tbatabai, M.A.; Bremner, J.M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Rose, T.J.; Schefe, C.; Weng, Z.H.; Rose, M.T.; van Zwieten, L.; Liu, L.; Rose, A.L. Phosphorus speciation and bioavailability in diverse biochars. Plant Soil 2019, 443, 233–244. [Google Scholar] [CrossRef]
- Vaneeckhaute, C.; Janda, J.; Vanrolleghem, P.A.; Tack, F.M.G.; Meers, E. Phosphorus use efficiency of bio-based fertilizers: Bioavailability and fractionation. Pedosphere 2016, 26, 310–325. [Google Scholar] [CrossRef]
- Bogdan, A.; Aguilar, A.A.R.; Nys, O.; Michels, E.; Meers, E. Phosphorus availability in recycled fertilizers: Comparison of 11 chemical extraction methods with plant uptake during a 7-month growth experiment. J. Soil Sci. Plant Nutr. 2023, 23, 693–705. [Google Scholar] [CrossRef]
- Vogel, T.; Nelles, M.; Eichler-Loebermann, B. Phosphorus application with recycled products from municipal waste water to different crop species. Ecol. Eng. 2015, 83, 466–475. [Google Scholar] [CrossRef]
- Kahiluoto, H.; Kuisma, M.; Ketoja, E.; Salo, T.; Heikkinen, J. Phosphorus in manure and sewage sludge more recyclable than in soluble inorganic fertilizer. Environ. Sci. Technol. 2015, 49, 2115–2122. [Google Scholar] [CrossRef]
- Yu, B.; Luo, J.; Xie, H.; Yang, H.; Chen, S.; Liu, J.; Zhang, R.; Li, Y. Species, fractions, and characterization of phosphorus in sewage sludge: A critical review from the perspective of recovery. Sci. Total Environ. 2021, 786, 12. [Google Scholar] [CrossRef]
- Baggie, I.; Rowell, D.L.; Robinson, J.S.; Warren, G.P. Decomposition and phosphorus release from organic residues as affected by residue quality and added inorganic phosphorus. Agrofor. Syst. 2005, 63, 125–131. [Google Scholar] [CrossRef]
- Jalali, M.; Ranjbar, F. Rates of decomposition and phosphorus release from organic residues related to residue composition. J. Plant Nutr. Soil Sci. 2009, 172, 353–359. [Google Scholar] [CrossRef]
- Spohn, M.; Kuzyakov, Y. Phosphorus mineralization can be driven by microbial need for carbon. Soil Biol. Biochem. 2013, 61, 69–75. [Google Scholar] [CrossRef]
- Malik, M.A.; Marschner, P.; Khan, K.S. Addition of organic and inorganic P sources to soil—Effects on P pools and microorganisms. Soil Biol. Biochem. 2012, 49, 106–113. [Google Scholar] [CrossRef]
- Pu, J.; Jiang, N.; Zhang, Y.; Guo, L.; Huang, W.; Chen, L. Effects of various straw incorporation strategies on soil phosphorus fractions and transformations. Gcb Bioenergy 2023, 15, 88–98. [Google Scholar] [CrossRef]
- Alamgir, M.; McNeill, A.; Tang, C.; Marschner, P. Changes in soil P pools during legume residue decomposition. Soil Biol. Biochem. 2012, 49, 70–77. [Google Scholar] [CrossRef]
- Islam, M.; Siddique, K.H.M.; Padhye, L.P.; Pang, J.; Solaiman, Z.M.; Hou, D.; Srinivasarao, C.; Zhang, T.; Chandana, P.; Venu, N.; et al. Chapter Four—A critical review of soil phosphorus dynamics and biogeochemical processes for unlocking soil phosphorus reserves. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2024; Volume 185, pp. 153–249. [Google Scholar]
- Alamgir, M.; Marschner, P. Changes in phosphorus pools in three soils upon addition of legume residues differing in carbon/phosphorus ratio. Soil Res. 2013, 51, 484–493. [Google Scholar] [CrossRef]
- Erinle, K.O.; Doolette, A.; Marschner, P. Changes in phosphorus pools in the detritusphere induced by removal of P or switch of residues with low and high C/P ratio. Biol. Fert. Soils 2020, 56, 1–10. [Google Scholar] [CrossRef]
- Iyamuremye, F.; Dick, R.P.; Baham, J.E. Organic amendments and phosphorus dynamics: II. Distribution of soil phosphorus fractions. Soil Sci. 1996, 161, 436–443. [Google Scholar] [CrossRef]
- Guo, L.; Wang, C.; Feng, T.Y.; Shen, R.F. Short-term application of organic fertilization impacts phosphatase activity and phosphorus-mineralizing bacterial communities of bulk and rhizosphere soils of maize in acidic soil. Plant Soil 2023, 484, 95–113. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, Y.; Turner, B.L.; He, Y.; Chen, X.; Che, R.; Cui, X.; Liu, X.; Jiang, L.; Zhu, J. Organic amendments promote soil phosphorus related functional genes and microbial phosphorus cycling. Geoderma 2025, 456, 117247. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Yuan, J.; Tang, Z.; Wang, J.; Zhang, Y. Long-term organic fertilization strengthens the soil phosphorus cycle and phosphorus availability by regulating the pqqc—and phod-harboring bacterial communities. Microb. Ecol. 2023, 86, 2716–2732. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.M.; Wang, C.; Li, W.X.; Guo, L.; Cai, Z.J.; Wang, B.R.; Chen, J.; Shen, R.F. Changes of acid and alkaline phosphatase activities in long-term chemical fertilization are driven by the similar soil properties and associated microbial community composition in acidic soil. Eur. J. Soil Biol. 2021, 104, 11. [Google Scholar] [CrossRef]
- Luo, G.; Sun, B.; Li, L.; Li, M.; Liu, M.; Zhu, Y.; Guo, S.; Ling, N.; Shen, Q. Understanding how long-term organic amendments increase soil phosphatase activities: Insight into phoD—and phoC -harboring functional microbial populations. Soil Biol. Biochem. 2019, 139, 10. [Google Scholar] [CrossRef]
Chemical Property | Rapeseed Cake | Soybean Cake |
---|---|---|
pH | 5.40 | 6.42 |
C (g/kg) | 494 | 433 |
N (g/kg) | 60.9 | 50.9 |
P (g/kg) | 10.6 | 5.4 |
Fe (mg/kg) | 404 | 158 |
Al (mg/kg) | 364 | 129 |
WS-P (mg/kg) | 3400 | 839 |
Red Soil | Yellow-Brown Soil | Fluvo-Aquic Soil | |
---|---|---|---|
pH | 5.93 | 7.54 | 8.51 |
SOC (g/kg) | 8.74 | 3.65 | 9.30 |
TK (g/kg) | 8.65 | 9.52 | 11.7 |
TN (g/kg) | 0.83 | 0.36 | 0.82 |
TP (g/kg) | 0.37 | 0.14 | 0.79 |
Olsen-P (mg/kg) | 4.44 | 3.39 | 11.2 |
Soil texture | Silty clay loam | Silty clay | loam |
<0.002 mm | 34.3 | 46.4 | 20.6 |
0.002–0.05 mm | 62.9 | 50.1 | 46.4 |
2.00–0.05 mm | 2.77 | 5.61 | 33.1 |
Treatment | YS | RS | FS | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1st Cut | 2nd Cut | 3rd Cut | ∑cuts 1–3 | 1st Cut | 2nd Cut | 3rd Cut | ∑cuts 1–3 | 1st Cut | 2nd Cut | 3rd Cut | ∑cuts 1–3 | |
CK | 0.5 a | 2.5 a | 3.9 a | 6.9 a | 1.5 a | 19.6 a | 8.1 a | 29.3 a | 3.3 a | 18.7 a | 16.4 a | 38.4 a |
RC | 3.6 b | 14.5 b | 13.7 c | 31.9 b | 6.1 b | 31.4 b | 17.9 b | 55.5 c | 3.7 a | 30.4 b | 26.5 d | 60.6 c |
SC | 0.7 a | 3.5 a | 9.5 b | 13.6 a | 4.2 ab | 26.2 bc | 13.4 c | 43.7 b | 1.7 a | 20.8 a | 23.5 bc | 46.0 b |
P30 | 4.2 b | 16.3 b | 11.3 bc | 31.8 b | 9.8 c | 26.5 b | 18.1 c | 54.4 c | 5.8 b | 30.6 b | 21.9 b | 58.3 c |
P60 | 8.1 c | 23.7 c | 15.1 c | 46.9 c | 13.8 d | 33.9 c | 21.1 cd | 68.8 d | 9.1 c | 35.7 c | 24.6 cd | 69.4 d |
P120 | 11.2 d | 39.2 d | 20.9 d | 71.3 d | 16.5 d | 47.7 d | 23.8 d | 88.0 e | 15.7 d | 49.6 d | 27.8 e | 93.1 e |
Treatment | Resin-P | NaHCO3-Pi | NaHCO3-Po | NaOH-Pi | NaOH-Po | HCl-Pi | Residual-P | |
---|---|---|---|---|---|---|---|---|
mg/kg (%) | ||||||||
YS | CK | 2.6 a (1.8) | 5.7 a (4.0) | 6.9 a (4.9) | 32.7 a (23.1) | 15.0 b (10.6) | 1.3 ab (1.0) | 77.4 a (54.6) |
RC | 7.2 c (3.7) | 10.9 c (5.6) | 8.6 a (4.4) | 48.7 b (25.1) | 19.8 c (10.2) | 1.6 b (0.8) | 97.0 b (50.1) | |
SC | 3.8 b (2.3) | 7.8 b (4.6) | 9.6 a (5.7) | 57.9 c (34.3) | 6.9 a (4.1) | 0.4 a (0.3) | 82.4 ab (48.8) | |
RS | CK | 3.7 a (1.0) | 13.4 a (3.7) | 10.1 a (2.8) | 15.1 a (4.1) | 28.7 a (7.9) | 5.6 b (1.5) | 288.9 c (79.0) |
RC | 5.8 b (1.4) | 18.9 b (4.5) | 10.0 a (2.4) | 41.8 b (10.0) | 89.5 c (21.4) | 1.5 a (0.4) | 250.1 b (59.9) | |
SC | 5.3 b (1.3) | 13.7 a (3.5) | 15.1 b (3.8) | 46.1 b (11.7) | 72.0 b (18.3) | 2.5 a (0.6) | 238.1 a (60.6) | |
FS | CK | 19.3 a (2.4) | 15.0 a (1.9) | 14.6 a (1.8) | 23.5 a (3.0) | 36.2 a (4.6) | 513.9 b (65.1) | 167.5 a (21.2) |
RC | 29.9 b (3.5) | 22.7 c (2.7) | 15.2 a (1.8) | 33.5 b (4.0) | 39.2 b (4.7) | 478.0 ab (56.8) | 223.7 b (26.6) | |
SC | 35.0 c (4.3) | 20.4 b (2.5) | 17.7 a (2.2) | 20.9 a (2.6) | 39.7 b (4.9) | 461.0 a (56.4) | 222.5 b (27.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, P.; Fu, Q.; Zhu, J.; Hu, H. Relative Phosphorus Fertilizer Efficiency of Rapeseed and Soybean Cakes Across Different Soils. Agriculture 2025, 15, 1857. https://doi.org/10.3390/agriculture15171857
Li Y, Wang P, Fu Q, Zhu J, Hu H. Relative Phosphorus Fertilizer Efficiency of Rapeseed and Soybean Cakes Across Different Soils. Agriculture. 2025; 15(17):1857. https://doi.org/10.3390/agriculture15171857
Chicago/Turabian StyleLi, Yukun, Pu Wang, Qingling Fu, Jun Zhu, and Hongqing Hu. 2025. "Relative Phosphorus Fertilizer Efficiency of Rapeseed and Soybean Cakes Across Different Soils" Agriculture 15, no. 17: 1857. https://doi.org/10.3390/agriculture15171857
APA StyleLi, Y., Wang, P., Fu, Q., Zhu, J., & Hu, H. (2025). Relative Phosphorus Fertilizer Efficiency of Rapeseed and Soybean Cakes Across Different Soils. Agriculture, 15(17), 1857. https://doi.org/10.3390/agriculture15171857