Computational, AI and IT Solutions Helping Agriculture
Acknowledgments
Conflicts of Interest
References
- Chen, J.; Hu, X.; Lu, J.; Chen, Y.; Huang, X. Efficient and Lightweight Automatic Wheat Counting Method with Observation-Centric SORT for Real-Time Unmanned Aerial Vehicle Surveillance. Agriculture 2023, 13, 2110. [Google Scholar] [CrossRef]
- Maican, E.; Iosif, A.; Maican, S. Precision Corn Pest Detection: Two-Step Transfer Learning for Beetles (Coleoptera) with MobileNet-SSD. Agriculture 2023, 13, 2287. [Google Scholar] [CrossRef]
- Xie, F.; Wang, Y.; Wang, G.; Sun, E.; Fan, Q.; Song, M. Fault Diagnosis of Rolling Bearings in Agricultural Machines Using SVD-EDS-GST and ResViT. Agriculture 2024, 14, 1286. [Google Scholar] [CrossRef]
- Wang, M.; Lai, W.; Zhang, H.; Liu, Y.; Song, Q. Intelligent Fault Diagnosis of Inter-Turn Short Circuit Faults in PMSMs for Agricultural Machinery Based on Data Fusion and Bayesian Optimization. Agriculture 2024, 14, 2139. [Google Scholar] [CrossRef]
- Son, G.; Lee, S.; Choi, Y. FRESH: Fusion-Based 3D Apple Recognition via Estimating Stem Direction Heading. Agriculture 2024, 14, 2161. [Google Scholar] [CrossRef]
- Rangel, J.C.; Boniche, K. AI-Based Monitoring for Enhanced Poultry Flock Management. Agriculture 2024, 14, 2187. [Google Scholar] [CrossRef]
- Matadamas, I.; Zamora, E.; Aquino-Bolanos, T. Detection and Classification of Agave angustifolia Haw Using Deep Learning Models. Agriculture 2024, 14, 2199. [Google Scholar] [CrossRef]
- Yang, K.; Zhou, Y.; Shi, H.; Yao, R.; Yu, Z.; Zhang, Y.; Peng, B.; Fan, J.; Hu, Z. GrapeNet: Research and Experiments on Adaptive Root Cutting Using a Garlic Harvester Based on a Convolutional Neural Network. Agriculture 2024, 14, 2236. [Google Scholar] [CrossRef]
- Chai, S.; Wen, M.; Li, P.; Zeng, Z.; Tian, Y. DCFA-YOLO: A Dual-Channel Cross-Feature-Fusion Attention YOLO Network for Cherry Tomato Bunch Detection. Agriculture 2025, 15, 271. [Google Scholar] [CrossRef]
- Tang, W.; Hu, Z. Potato Disease and Pest Question Classification Based on Prompt Engineering and Gated Convolution. Agriculture 2025, 15, 493. [Google Scholar] [CrossRef]
- Dong, X.; Pan, J. DHS-YOLO: Enhanced Detection of Slender Wheat Seedlings Under Dynamic Illumination Conditions. Agriculture 2025, 15, 510. [Google Scholar] [CrossRef]
- Zhao, C.; Li, C.; Wang, X.; Wu, X.; Du, Y.; Chai, H.; Cai, T.; Xiang, H.; Jiao, Y. Plant Disease Segmentation Networks for Fast Automatic Severity Estimation Under Natural Field Scenarios. Agriculture 2025, 15, 583. [Google Scholar] [CrossRef]
- Li, F.; Meng, X.; Zhu, K.; Yan, J.; Liu, L.; Liu, P. Research on Ginger Price Prediction Model Based on Deep Learning. Agriculture 2025, 15, 596. [Google Scholar] [CrossRef]
- Lyu, Y.; Wang, Y.; Shen, X. The Extraction of Torreya grandis Growing Areas Using a Spatial–Spectral Fused Attention Network and Multitemporal Sentinel-2 Images: A Case Study of the Kuaiji Mountain Region. Agriculture 2025, 15, 829. [Google Scholar] [CrossRef]
- Batistatos, M.C.; de Cola, T.; Kourtis, M.A.; Apostolopoukou, V.; Xilouris, G.K.; Sagias, N.C. AGRARIAN: A Hybrid AI-Driven Architecture for Smart Agriculture. Agriculture 2025, 15, 904. [Google Scholar] [CrossRef]
- Albahli, S. AgriFusionNet: A Lightweight Deep Learning Model for Multisource Plant Disease Diagnosis. Agriculture 2025, 15, 1523. [Google Scholar] [CrossRef]
- Taha, M.F.; Mao, H.; Zhang, Z.; Elmasri, G.; Awad, M.A.; Abdalla, A.; Mousa, S.; Elwakeel, A.E.; Elsherbiny, O. Emerging Technologies for Precision Crop Management Towards Agriculture 5.0: A Comprehensive Overview. Agriculture 2025, 15, 582. [Google Scholar] [CrossRef]
- Chen, J.; Kao, S.-h.; He, H.; Zhuo, W.; Wen, S.; Lee, C.-H.; Chan, S.-H.G. Run, Do not Walk: Chasing Higher FLOPS for Faster Neural Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023; pp. 12021–12031. [Google Scholar]
- Gevorgyan, Z. SIoU loss: More powerful learning for bounding box regression. arXiv 2022, arXiv:2205.12740. [Google Scholar] [CrossRef]
- Yu, J.; Jiang, Y.; Wang, Z.; Cao, Z.; Huang, T. Unitbox: An advanced object detection network. In Proceedings of the 24th ACM International Conference on Multimedia, Amsterdam, The Netherlands, 15–19 October 2016; pp. 516–520. [Google Scholar]
- Zhu, X.; Hu, H.; Lin, S.; Dai, J. Deformable convnets v2: More deformable, better results. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 9308–9316. [Google Scholar]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. Yolox: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar] [CrossRef]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023; pp. 7464–7475. [Google Scholar]
- Gulzar, Y. Fruit Image Classification Model Based on MobileNetV2 with Deep Transfer Learning Technique. Sustainability 2023, 15, 1906. [Google Scholar] [CrossRef]
- Salamai, A.A.; Ajabnoor, N.; Khalid, W.E.; Ali, M.M.; Murayr, A.A. Lesion-aware visual transformer network for Paddy diseases detection in precision agriculture. Eur. J. Agron. 2023, 148, 126884. [Google Scholar] [CrossRef]
- Wen, L.; Li, X.Y.; Gao, L. A transfer convolutional neural network for fault diagnosis based on ResNet-50. Neural Comput. Appl. 2020, 32, 6111–6124. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Ma, J. Fault Diagnosis of Motor Bearings Based on a Convolutional Long Short-Term Memory Network of Bayesian Optimization. IEEE Access 2021, 9, 97546–97556. [Google Scholar] [CrossRef]
- Bai, S.; Kolter, J.Z.; Koltun, V. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling. arXiv 2018. [Google Scholar] [CrossRef]
- Ferrer-Ferrer, M.; Ruiz-Hidalgo, J.; Gregorio, E.; Vilaplana, V.; Morros, J.R.; Gené-Mola, J. Simultaneous fruit detection and size estimation using multitask deep neural networks. Biosyst. Eng. 2023, 233, 63–75. [Google Scholar] [CrossRef]
- Choy, C.; Gwak, J.; Savarese, S. 4d spatio-temporal convnets: Minkowski convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2019), Long Beach, CA, USA, 15–20 June 2019; pp. 3075–3084. [Google Scholar]
- Yang, X.; Bist, R.; Paneru, B.; Chai, L. Monitoring Activity Index and Behaviors of Cage-Free Hens with Advanced Deep Learning Technologies. Poult. Sci. 2024, 103, 104193. [Google Scholar] [CrossRef]
- Ultralytics. Train Settings—Ultralytics Documentation; Ultralytics: Ballenger Creek, MD, USA, 2024. [Google Scholar]
- Sohan, M.; Sai Ram, T.; Rami Reddy, C.V. A Review on YOLOv8 and Its Advancements. In Data Intelligence and Cognitive Informatics; ICDICI 2023. Algorithms for Intelligent Systems; Springer: Singapore, 2024. [Google Scholar] [CrossRef]
- de Almeida, G.P.S.; dos Santos, L.N.S.; da Silva Souza, L.R.; da Costa Gontijo, P.; de Oliveira, R.; Teixeira, M.C.; De Oliveira, M.; Teixeira, M.B.; do Carmo França, H.F. Performance Analysis of YOLO and Detectron2 Models for Detecting Corn and Soybean Pests Employing Customized Dataset. Agronomy 2024, 14, 2194. [Google Scholar] [CrossRef]
- Yang, K.; Yu, Z.; Gu, F.; Zhang, Y.; Wang, S.; Peng, B.; Hu, Z. Experimental Study of Garlic Root Cutting Based on Deep Learning Application in Food Primary Processing. Foods 2022, 11, 3268. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, J.; Chen, Y.; Yang, W.; Zhang, W.; He, Y. Real-time Strawberry Detection Using Deep Neural Networks on Embedded System (rtsd-net): An edge AI application. Comput. Electron. Agric. 2023, 215, 108445. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, Y.; Xiong, Z.; Wang, S.; Li, Y.; Lan, Y. Fast and precise detection of litchi fruits for yield estimation based on the improved YOLOv5 model. Front. Plant Sci. 2022, 13, 965425. [Google Scholar] [CrossRef]
- Xiao, L.; Li, W.; Yao, S.; Liu, H.; Ren, D. High-precision and lightweight small-target detection algorithm for low-cost edge intelligence. Sci. Rep. 2024, 14, 23542. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Li, L.; Diao, L.; Tang, Z.; Bai, Z.; Zhou, H.; Guo, X. Question classification method of agricultural diseases and pests based on BERT_Stacked LSTM. Trans. Chin. Soc. Agric. Mach. 2021, 52, 172–177. [Google Scholar]
- Guo, X.; Wang, J.; Gao, G.; Zhou, J.; Li, Y.; Cheng, Z.; Miao, G. Efficient Agricultural Question Classification with a BERT-Enhanced DPCNN Model. IEEE Access 2024, 12, 109255–109268. [Google Scholar] [CrossRef]
- YOLOv11. Available online: https://github.com/ultralytics/ultralytics/tree/main?tab=readme-ov-file (accessed on 20 August 2025).
- Chaurasia, A.; Culurciello, E. LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation. arXiv 2017, arXiv:1707.03718. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar] [CrossRef]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the Computer Vision—ECCV 2018, Munich, Germany, 8–14 September 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 833–851. [Google Scholar] [CrossRef]
- Zhi, L.; Zuo, Y. Collaborative Path Planning of Multiple AUVs Based on Adaptive MultiPopulation PSO. J. Mar. Sci. Eng. 2024, 12, 223. [Google Scholar] [CrossRef]
- Sothe, C.; De Almeida, C.M.; Schimalski, M.B.; La Rosa, L.E.C.; Castro, J.D.B.; Feitosa, R.Q.; Dalponte, M.; Lima, C.L.; Liesenberg, V.; Miyoshi, G.T.; et al. Comparative performance of convolutional neural network, weighted and conventional support vector machine and random forest for classifying tree species using hyperspectral and photogrammetric data. GISci. Remote Sens. 2020, 57, 369–394. [Google Scholar] [CrossRef]
- Mura, M.; Bottalico, F.; Giannetti, F.; Bertani, R.; Giannini, R.; Mancini, M.; Orlandini, S.; Travaglini, D.; Chirici, G. Exploiting the capabilities of the Sentinel-2 multi spectral instrument for predicting growing stock volume in forest ecosystems. Int. J. Appl. Earth Obs. Geoinf. 2018, 66, 126–134. [Google Scholar] [CrossRef]
- McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J.; Shenker, S.; Turner, J. OpenFlow: Enabling Innovation in Campus Networks. ACM SIGCOMM Comput. Commun. Rev. 2008, 38, 69–74. [Google Scholar] [CrossRef]
- He, Q.; Zhao, H.; Feng, Y.; Wang, Z.; Ning, Z.; Luo, T. Edge Computing-Oriented Smart Agricultural Supply Chain Mechanism with Auction and Fuzzy Neural Networks. J. Cloud Comput. 2024, 13, 66. [Google Scholar] [CrossRef]
- Dimitrov, D.D.; Lafleur, P.M. Modelling Peatland Productivity by Water Table Depth or Near-Surafce Water Contents via the DIMONA Online Platform. Water 2025, 17, 134. [Google Scholar] [CrossRef]
- Dimitrov, D.D.; Lafleur, P.; Sonnentag, O.; Talbot, J.; Quinton, W.L. Hydrology of peat estimated from near-surface water contents. Hydrol. Sci. J. 2022, 67, 1702–1721. [Google Scholar] [CrossRef]
- Dimitrov, D.D.; Lafleur, P.M. Revisiting water retention curves for simple hydrological modelling of peat. Hydrol. Sci. J. 2020, 66, 252–267. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q.V. EfficientNetV2: Smaller models and faster training. arXiv 2021, arXiv:2104.00298v3. [Google Scholar]
- Hughes, D.; Salathé, M. An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv 2015, arXiv:1511.08060. [Google Scholar]
- Liu, Y.; Ma, X.; Shu, L.; Hancke, G.P.; Abu-Mahfouz, A.M. From Industry 4.0 to Agriculture 4.0: Current Status, Enabling Technologies, and Research Challenges. IEEE Trans. Ind. Inform. 2021, 17, 4322–4334. [Google Scholar] [CrossRef]
- Zambon, I.; Cecchini, M.; Egidi, G.; Saporito, M.G.; Colantoni, A. Revolution4.0: Industryvs. Agriculture in a Future Development for SMEs. Processes 2019, 7, 36. [Google Scholar] [CrossRef]
- Sarker, I.H. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN Comput. Sci. 2021, 2, 420. [Google Scholar] [CrossRef] [PubMed]
- Mourtzis, D.; Angelopoulos, J.; Panopoulos, N. A Literature Review of the Challenges and Opportunities of the Transition from Industry 4.0 to Society 5.0. Energies 2022, 15, 6276. [Google Scholar] [CrossRef]
- Saiz-Rubio, V.; Rovira-Más, F. From Smart Farming towards Agriculture 5.0: A Review on Crop Data Management. Agronomy 2020, 10, 207. [Google Scholar] [CrossRef]
- Polymeni, S.; Plastras, S.; Skoutas, D.N.; Kormentzas, G.; Skianis, C. The Impact of 6G-IoT Technologies on the Development of Agriculture 5.0: A Review. Electronics 2023, 12, 2651. [Google Scholar] [CrossRef]
Item | Application Types | Agricultural Activities | Outcomes |
---|---|---|---|
[1] | YOLO-based computer application | Real-time tracking and counting of wheat ears | Object detection model |
[2] | SSD-based mobile application | Pest beetle detection on corn crops | Object detection model |
[3] | CNN-based vision transformer architecture | Diagnosis of rolling bearings in agricultural machines | Machinery fault diagnostics system |
[4] | Multi-stream feature fusion architecture | Diagnosis of short circuit faults in permanent magnet synchronous motors in agricultural machinery | Machinery fault diagnostics system |
[5] | 3D object detection framework for agricultural robotics | Automated apple harvesting | 3D object detection model |
[6] | YOLO-based monitoring framework | Poultry monitoring | Object detection model within a web application |
[7] | YOLO and Detectron2 -based computer applications | Agave plants classification and detection | Object detection models, comparative study |
[8] | YOLO-based application for agriculture machines | Automated garlic harvesting | Machine vision device for automated harvesters |
[9] | YOLO-based computer application for agricultural robotics | Cherry tomato fruits and bunch detection. | Object detection model |
[10] | CNN-based computer application | Potato pests and disease classification | Dataset and classification model |
[11] | YOLO-based framework for UAV | Detecting wheat seedlings | Object detection model |
[12] | LinkNet-based computer application | Plant disease estimation | Three datasets and segmentation networks |
[13] | LSTM-based computer application | Ginger price prediction | DL model |
[14] | Data structure and image processing CNN | Torreya grandis area prediction | Area mapping tool |
[15] | Hybrid AI-driven architecture | Crops, irrigation and disease management and control, livestock monitoring | Smart farming services |
[16] | CNN-based computer application | Plant disease diagnosis | Dataset and classification and prediction model |
[17] | Review | Agriculture 4.0 and 5.0 crop management technologies in monitoring | Summary |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitrov, D.D. Computational, AI and IT Solutions Helping Agriculture. Agriculture 2025, 15, 1820. https://doi.org/10.3390/agriculture15171820
Dimitrov DD. Computational, AI and IT Solutions Helping Agriculture. Agriculture. 2025; 15(17):1820. https://doi.org/10.3390/agriculture15171820
Chicago/Turabian StyleDimitrov, Dimitre D. 2025. "Computational, AI and IT Solutions Helping Agriculture" Agriculture 15, no. 17: 1820. https://doi.org/10.3390/agriculture15171820
APA StyleDimitrov, D. D. (2025). Computational, AI and IT Solutions Helping Agriculture. Agriculture, 15(17), 1820. https://doi.org/10.3390/agriculture15171820