Effect of Phytoregulatory Substances on Adventitious Rooting of Grapevine Rootstock Paulsen 1103 Cuttings Under Hydroponic Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Cuttings Preparation
- Control with zero concentration of any substance;
- 250 ppm indolebutyric acid (IBA);
- 250 ppm dopamine (L-DOPA);
- 250 ppm indolebutyric acid (IBA) and 250 ppm dopamine (L-DOPA).
2.2. Growth Chamber Conditions
2.3. Preparation of Solutions
2.3.1. Preparation of Solution of Indolebutyric Acid (IBA)
2.3.2. Preparation of Solution of Dopamine (L-DOPA)
2.3.3. Preparation of Solution of IBA + L-DOPA
2.4. Measurements
2.4.1. Measurements of Roots
2.4.2. Moisture Content Determination
2.4.3. Extraction of Phenolic Compounds
2.4.4. Determination of Phenolic Compounds and Antioxidant Activity
2.4.5. Extraction and Determination of Individual Soluble Sugars
- Fructose: y = 11,225.8 · x, R2 = 0.996;
- Glucose: y = 922.07 · x, R2 = 0.9801;
- Sucrose: y = 1489.4 · x, R2 = 0.9954.
2.4.6. Extraction and Determination of Starch
2.5. Statistical Analysis
3. Results
3.1. Results on the Various Measurements
3.2. Principal Component Analysis (PCA)
3.3. Effect and Interaction of Variability Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
IBA | Indolebutyric acid |
L-DOPA | L-3,4-dihydroxyphenylalanine (Dopamine) |
FRAP | Ferric Reducing Antioxidant Power |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
POD | Peroxidase |
PAL | Phenylalanine Ammonia-Lyase |
TAL | Tyrosine Ammonia-Lyase |
GOD-POD | Glucose Oxidase–Peroxidase |
HPLC | High-Performance Liquid Chromatography |
RI | Refractive Index (detector |
Na2CO3 | Sodium Carbonate |
NaNO2 | Sodium Nitrite |
AlCl3 | Aluminum Chloride |
NaOH | Sodium Hydroxide |
CH3COOH | Acetic Acid |
RPM | Revolutions Per Minute |
References
- Keller, M. The Science of Grapevines: Anatomy and Physiology, 3rd ed.; Academic Press: London, UK, 2020. [Google Scholar] [CrossRef]
- Tsipouridis, C.; Thomidis, T.; Bladenopoulou, S. Rhizogenesis of GF677, Early Crest, May Crest and Arm King stem cuttings during the year in relation to carbohydrate and natural hormone content. Sci. Hort. 2006, 108, 200–204. [Google Scholar] [CrossRef]
- Rajaseger, G.; Chan, K.L.; Tan, K.Y.; Ramasamy, S.; Khin, M.C.; Amaladoss, A.; Patel, K.H. Hydroponics: Current trends in sustainable crop production. Bioinformation 2023, 19, 925–938. [Google Scholar] [CrossRef]
- Pacurar, D.I.; Perrone, I.; Bellini, C. Auxin is a central player in the hormone cross-talks that control adventitious rooting. Physiol. Plant. 2014, 151, 83–96. [Google Scholar] [CrossRef]
- Yen, G.-C.; Hsieh, C.-L. Antioxidant Effects of Dopamine and Related Compounds. Biosci. Biotechnol. Biochem. 1997, 61, 1646–1649. [Google Scholar] [CrossRef]
- Soares, A.R.; de Cássia Siqueira-Soares, R.; Salvador, V.H.; de Lourdes Lucio Ferrarese, M.; Ferrarese-Filho, O. The effects of l-DOPA on root growth, lignification and enzyme activity in soybean seedlings. Acta Physiol. Plant. 2012, 34, 1811–1817. [Google Scholar] [CrossRef]
- Matsumoto, H.; Mushtaq, M.N.; Sunohara, Y. L-DOPA inhibited the root growth of lettuce by inducing reactive oxygen species generation. Weed Biol. Manag. 2013, 13, 93–99. [Google Scholar] [CrossRef]
- Daskalakis, I.; Biniari, K.; Bouza, D.; Stavrakaki, M. The effect that indolebutyric acid (IBA) and position of cane segment have on the rooting of cuttings from grapevine rootstocks and from Cabernet franc (Vitis vinifera L.) under conditions of a hydroponic culture system. Sci. Hortic. 2018, 227, 79–84. [Google Scholar] [CrossRef]
- Roussos, P.A.; Pontikis, C.A. Phenolic compounds in olive explants and their contribution to browning during the establish-ment stage in vitro. Gartenbauwissenschaft 2001, 66, 298–303. [Google Scholar]
- Biniari, K.; Xenaki, M.; Daskalakis, I.; Rusjan, D.; Bouza, D.; Stavrakaki, M. Polyphenolic compounds and antioxidants of skin and berry grapes of Greek Vitis vinifera cultivars in relation to climate conditions. Food Chem. 2020, 307, 125518. [Google Scholar] [CrossRef]
- Vemmos, S.N. Carbohydrate content of inflorescent buds of defruited and fruiting pistachio (Pistachia vera L.) branches in relation to biennial bearing. J. Hortic. Sci. Biotechnol. 1999, 74, 94–100. [Google Scholar] [CrossRef]
- Kefeli, V.I.; Kutacek, M. Phenolic substances and their possible role in plant growth regulation. In Plant Growth Regulation; Proceedings in Life Sciences, Series; Pilet, P.E., Ed.; Springer: Berlin/Heidelberg, Germany, 1976; pp. 13–20. [Google Scholar] [CrossRef]
- Trobec, M.; Stampar, F.; Veberic, R.; Osterc, G. Fluctuations of different endogenous phenolic compounds and cinnamic acid in the first days of the rooting process of cherry rootstock ‘GiSelA 5’ leafy cuttings. J. Plant Physiol. 2005, 162, 589–597. [Google Scholar] [CrossRef]
- De Klerk, G.-J.; van der Krieken, W.; De Jong, J.C. Review the formation of adventitious roots: New concepts, new possibilities. In Vitro Cell. Dev. Biol. Plant 1999, 35, 189–199. [Google Scholar] [CrossRef]
- Nag, S.; Saha, K.; Choudhuri, M.A. Role of auxin and polyamines in adventitious root formation in relation to changes in compounds involved in rooting. J. Plant Growth Regul. 2001, 20, 182–194. [Google Scholar] [CrossRef]
- Alley, C.J. Grapevine propagation. XI. Rooting of cuttings: Effects of indolobutyric acid (IBA) and refrigeration on rooting. Am. J. Enol. Vitic. 1979, 30, 28–32. [Google Scholar] [CrossRef]
- Al-Sagri, F.; Alderson, P.G. Effect of IBA, cutting type and rooting media on rooting of Rosa centifolia. J. Hort. Sci. 1996, 71, 729–737. [Google Scholar] [CrossRef]
- Singh, A.K.; Tomar, Y.K. Effect of plant growth regulators and nutrients on rooting of phalsa (Grewia asiatica L.) cuttings. Int. J. Plant Sci. 2015, 10, 1–6. [Google Scholar]
- Galavi, M.; Karimian, M.A.; Mousavi, S.R. Effects of different auxin (IBA) concentrations and planting-beds on rooting grape cuttings (Vitis vinifera). Annu. Rev. Res. Biol. 2013, 3, 517–523. Available online: https://journalarrb.com/index.php/ARRB/article/view/659 (accessed on 7 May 2025).
- Satisha, J.; Adsule, P.G. Rooting behavior of grape rootstocks in relation to IBA concentration and biochemical constituents of mother vines. Acta Hortic. 2008, 785, 121–126. [Google Scholar] [CrossRef]
- Kasim, N.E.; Rayya, A. Effect of different collection times and some treatments on rooting and chemical constituents of bitter almond hardwood cuttings. J. Agric. Biol. Sci. 2009, 5, 116–122. [Google Scholar]
- Singh, A.K.; Singh, R.; Ashutosh, M.K.; Singh, Y.P.; Jahuri, S. Effect of plant growth regulators on survival, rooting and growth characters in long pepper (Piper longum L.). Progressive Hort. 2003, 35, 208–211. [Google Scholar]
- Nishihara, E.; Parvez, M.M.; Araya, H.; Fujii, Y. Germination growth response of different plant species to the allelochemical L-3,4-dihydroxyphenylalanine (L-DOPA). Plant Growth Regul. 2004, 42, 181–189. [Google Scholar] [CrossRef]
- Auderset, G.; Gavillet, S.; O’Rourke, M.J.; Ribaux, M.; Moncousin, C. Histological analysis and the evolution of biochemical markers during the in vitro rooting of Malus domestica Borkh. ‘Jork 9’. Adv. Hortic. Sci. 1994, 8, 5–10. [Google Scholar]
- Moncousin, C. Peroxidase as a marker for rooting improvement of clones of Vitis cultured in vitro. In Molecular and Physiological Aspects of Plant Peroxidases; Greppin, H., Penel, C., Gaspar, T., Eds.; Universite de Genève, Centre de Botanique: Geneva, Switzerland, 1986; pp. 379–385. [Google Scholar]
- Roussos, P.A. Propagation of olive (Olea europaea L.) cultivars by rooting cuttings: Effects of phenolic compounds and anatomical structure. Sci. Hortic. 2008, 118, 252–257. [Google Scholar] [CrossRef]
- Spencer, J.P.; Jenner, A.; Butler, J.; Aruoma, O.I.; Dexter, D.T.; Jenner, P.; Halliwell, B. Evaluation of the prooxidant and antioxidant actions of L-DOPA and dopamine in vitro: Implications for Parkinson’s disease. Free Radic. Res. 1996, 24, 95–105. [Google Scholar] [CrossRef]
- Gülçin, I. Comparison of in vitro antioxidant and antiradical activities of L-tyrosine and L-Dopa. Amino Acids 2007, 32, 431–438. [Google Scholar] [CrossRef]
- Aslmoshtaghi, E.; Shahsavar, A.R. Endogenous soluble sugars, starch contents and phenolic compounds in easy- and difficult-to-root olive cuttings. J. Biol. Environ. Sci. 2010, 49, 83–86. [Google Scholar]
- Yoo, Y.K.; Kim, K.S. Seasonal variation in rooting ability, plant hormones, carbohydrate, nitrogen, starch and soluble sugar contents in cuttings of White Forsythia (Abeliophyllum distichum Nakai). J. Kor. Soc. Hort. Sci. 1996, 37, 554–560. [Google Scholar]
- Agulló-Antón, M.; Sánchez-Bravo, J.; Acosta, M.; Druege, U. Auxins or sugars: What makes the difference in the adventitious rooting of stored carnation cuttings? J. Plant Growth Regul. 2011, 30, 100–113. [Google Scholar] [CrossRef]
- Sun, H.; Li, L.; Lou, Y.; Zhao, H.; Gao, Z. Carbohydrate metabolism in basal stems of cuttings during adventitious root formation in Populus tomentosa. For. Stud. China 2011, 13, 102–109. [Google Scholar]
- Husen, A. Clonal propagation of Dalbergia sissoo Roxb. and associated metabolic changes during adventitious root primordium development. New For. 2008, 36, 13–27. [Google Scholar] [CrossRef]
- Altman, A.; Wareing, P.F. The effect of IAA on sugar accumulation and basipetal transport of 14C-labelled assimilates in relation to root formation in Phaseolus vulgaris cuttings. Physiol. Plant. 1975, 33, 32–38. [Google Scholar] [CrossRef]
- Skirycz, A.; Widrych, A.; Szopa, J. Expression of human dopamine receptor in potato (Solanum tuberosum) results in altered tuber carbon metabolism. BMC Plant Biol. 2005, 5, 1. [Google Scholar] [CrossRef]
Treatments | Percentage of Rooting (%) | Number of Roots | Root Surface (mm2) | Mean Diameter of Roots (mm) | Root Length (mm) |
---|---|---|---|---|---|
Control | 33 ± 2.5 b | 9.8 ± 0.25 d | 3075.65 ± 137.42 d | 0.735 ± 0.018 b | 3465.8 ± 32.1 c |
ΙΒA | 30 ± 2.7 b | 19.6 ± 0.46 c | 5299.86 ± 164.05 c | 1.139 ± 0.051 a | 4698.16 ± 207.18 b |
L-DOPA | 73 ± 3.1 a | 44.8 ± 1.13 a | 15,554.4 ± 116.20 a | 1.150 ± 0.037 a | 13,364.9 ± 1699.4 a |
IBA + L-DOPA | 76 ± 2.6 a | 29.4 ± 1.59 b | 9955.50 ± 341.76 b | 0.844 ± 0.019 b | 11,604.6 ± 288.34 a |
Days After Treatment | Control | IBA | L-DOPA | IBA + L-DOPA | |
node | 1 | 95.9 ± 0.4 a | 93.9 ± 0.6 a | 87.5 ± 1.1 b | 94.5 ± 0.2 a |
5 | 96.5 ± 0.6 a | 93.1 ± 0.2 b | 94.0 ± 0.3 a | 88.6 ± 0.7 c | |
10 | 95.2 ± 0.4 a | 91.3 ± 0.5 b | 92.9 ± 0.5 ab | 92.8 ± 0.6 b | |
15 | 95.1 ± 0.1 a | 94.7 ± 0.4 a | 88.6 ± 0.5 b | 91.2 ± 0.9 b | |
30 | 95.1 ± 0.2 a | 94.4 ± 0.4 a | 91.3 ± 0.7 b | 92.3 ± 0.4 b | |
Days After Treatment | Control | IBA | L-DOPA | IBA + L-DOPA | |
internode | 1 | 94.1 ± 0.7 a | 94.7 ± 0.4 a | 88.0 ± 0.1 c | 90.0 ± 0.2 a |
5 | 94.6 ± 0.1 a | 90.1 ± 0.9 b | 92.1 ± 0.3 a | 84.1 ± 0.2 b | |
10 | 95.5 ± 0.3 a | 89.7 ± 0.7 c | 90.3 ± 0.2 b | 92.9 ± 0.5 a | |
15 | 92.1 ± 0.3 b | 94.9 ± 0.6 a | 85.6 ± 1.0 c | 83.8 ± 0.4 b | |
30 | 92.8 ± 0.0 b | 90.6 ± 0.7 ab | 89.2 ± 0.7 b | 85.6 ± 0.5 b |
Treatments | 1 | 5 | 10 | 15 | 30 | |
node | Control | 10.59 ± 0.24 bA | 11.59 ± 0.68 aA | 10.90 ± 0.12 aA | 12.26 ± 0.23 aA | 11.61 ± 0.51 aA |
ΙΒA | 13.37 ± 0.71 aA | 12.37 ± 0.33 aAB | 11.82 ± 0.33 aAB | 11.11 ± 0.12 bBC | 9.98 ± 0.14 aC | |
L-DOPA | 11.79 ± 0.08 abA | 12.23 ± 0.41 aA | 11.96 ± 0.20 aA | 11.34 ± 0.10 bA | 10.03 ± 0.40 aA | |
IBA + L-DOPA | 11.44 ± 0.44 abA | 11.01 ± 0.38 aA | 12.70 ± 0.69 aA | 11.38 ± 0.26 bA | 10.64 ± 0.64 aA | |
Treatments | 1 | 5 | 10 | 15 | 30 | |
internode | Control | 10.25 ± 0.42 aB | 11.37 ± 0.80 aAB | 10.45 ± 0.57 aB | 10.17 ± 0.16 aB | 17.23 ± 2.80 aA |
ΙΒA | 10.56 ± 0.43 aA | 10.44 ± 0.22 aA | 10.55 ± 0.31 aA | 10.96 ± 1.00 aA | 9.28 ± 0.29 bA | |
L-DOPA | 10.10 ± 0.17 aA | 11.14 ± 0.28 aA | 11.90 ± 0.22 aA | 11.11 ± 0.58 aA | 10.32 ± 0.94 bA | |
IBA + L-DOPA | 10.43 ± 0.33 aA | 11.72 ± 0.54 aA | 11.29 ± 0.16 aA | 11.15 ± 0.15 aA | 10.86 ± 0.28 abA |
Treatments | 1 | 5 | 10 | 15 | 30 | |
node | Control | 19.96 ± 0.34 bB | 20.70 ± 0.87 abB | 23.05 ± 0.19 aA | 23.60 ± 0.28 aA | 21.96 ± 0.16 abAB |
ΙΒA | 21.44 ± 0.85 abB | 22.56 ± 0.75 aA | 18.00 ± 0.35 cC | 19.19 ± 0.34 cBC | 18.71 ± 0.60 bBC | |
L-DOPA | 19.70 ± 0.37 bB | 20.24 ± 0.47 abB | 23.33 ± 0.60 aA | 21.46 ± 0.17 bAB | 20.13 ± 0.67 abB | |
IBA + L-DOPA | 23.60 ± 0.73 aA | 17.82 ± 1.68 bB | 20.80 ± 0.27 bAB | 23.76 ± 0.11 aA | 22.54 ± 1.29 aA | |
Treatments | 1 | 5 | 10 | 15 | 30 | |
internode | Control | 18.90 ± 0.81 aA | 16.12 ± 0.73 bB | 15.42 ± 0.50 bB | 19.22 ± 0.56 abA | 20.28 ± 0.05 aA |
ΙΒA | 15.87 ± 0.48 aBC | 19.58 ± 0.89 aAB | 16.38 ± 1.70 bABC | 20.40 ± 0.50 abA | 15.04 ± 0.37 cC | |
L-DOPA | 18.65 ± 1.02 aAB | 18.88 ± 0.38 abAB | 20.71 ± 0.27 aA | 20.80 ± 1.07 aA | 17.11 ± 0.18 bB | |
IBA + L-DOPA | 17.84 ± 0.69 aA | 17.48 ± 0.40 abA | 19.48 ± 0.48 abA | 17.46 ± 0.43 bA | 18.20 ± 0.41 bA |
Treatments | 1 | 5 | 10 | 15 | 30 | |
node | Control | 0.29 ± 0.01 bA | 0.46 ± 0.09 bA | 0.28 ± 0.02 bA | 0.40 ± 0.01 bA | 0.47 ± 0.05 bA |
ΙΒA | 0.17 ± 0.01 cC | 0.20 ± 0.03 cC | 0.61 ± 0.08 aB | 0.55 ± 0.02 aB | 1.10 ± 0.14 aA | |
L-DOPA | 0.47 ± 0.03 aA | 0.33 ± 0.01 bcB | 0.38 ± 0.03 bAB | 0.35 ± 0.03 bAB | 0.36 ± 0.04 bAB | |
IBA + L-DOPA | 0.26 ± 0.01 bB | 0.72 ± 0.05 aA | 0.31 ± 0.02 bB | 0.24 ± 0.01 cB | 0.32 ± 0.03 bB | |
Treatments | 1 | 5 | 10 | 15 | 30 | |
internode | Control | 0.21 ± 0.02 bC | 0.43 ± 0.03 aAB | 0.53 ± 0.04 aA | 0.33 ± 0.03 bBC | 0.46 ± 0.01 bAB |
ΙΒA | 0.64 ± 0.05 aA | 0.27 ± 0.03 bB | 0.65 ± 0.01 aA | 0.32 ± 0.002 bB | 0.69 ± 0.05 aA | |
L-DOPA | 0.24 ± 0.04 bB | 0.36 ± 0.02 abAB | 0.36 ± 0.02 bAB | 0.31 ± 0.04 bAB | 0.39 ± 0.02 bA | |
IBA + L-DOPA | 0.20 ± 0.09 bB | 0.47 ± 0.05 aA | 0.34 ± 0.03 bAB | 0.53 ± 0.01 aA | 0.41 ± 0.02 bAB |
Treatments | 1 | 5 | 10 | 15 | 30 | |
node | Control | 15.45 ± 0.83 aAB | 13.70 ± 0.60 aB | 17.62 ± 1.02 aA | 14.79 ± 0.49 aAB | 13.61 ± 0.48 aB |
ΙΒA | 15.40 ± 0.78 aA | 12.54 ± 0.19 aB | 11.56 ± 0.19 bB | 12.99 ± 0.81 abAB | 8.61 ± 0.49 cC | |
L-DOPA | 10.47 ± 0.72 baA | 12.18 ± 0.83 aA | 12.82 ± 0.69 bA | 11.09 ± 0.13 bA | 11.87 ± 0.21 bA | |
IBA + L-DOPA | 12.84 ± 0.92 abA | 12.85 ± 0.44 aA | 10.84 ± 0.54 bA | 12.63 ± 1.25 abA | 11.33 ± 0.26 bA | |
Treatments | 1 | 5 | 10 | 15 | 30 | |
internode | Control | 13.07 ± 0.46 aA | 9.44 ± 0.92 aB | 12.64 ± 0.95 aAB | 13.64 ± 0.94 aA | 10.85 ± 0.24 bAB |
ΙΒA | 11.68 ± 0.57 abA | 10.45 ± 1.18 aA | 11.36 ± 0.56 aA | 12.46 ± 0.71 abA | 7.09 ± 0.20 dB | |
L-DOPA | 9.17 ± 0.37 cB | 10.11 ± 0.28 aAB | 11.79 ± 0.51 aAB | 11.36 ± 1.11 abAB | 12.20 ± 0.35 aA | |
IBA + L-DOPA | 10.70 ± 0.62 bcA | 10.15 ± 0.18 aA | 10.56 ± 0.45 aA | 8.71 ± 0.79 bB | 9.15 ± 0.05 cA |
Treatments | 1 | 5 | 10 | 15 | 30 | |
node | Control | 43.82 ± 0.81 dD | 59.31 ± 0.42 aB | 69.79 ± 0.48 aA | 54.69 ± 0.49 aC | 54.01 ± 0.32 bC |
ΙΒA | 59.94 ± 1.90 bA | 47.55 ± 0.68 cB | 58.55 ± 1.33 bA | 47.65 ± 1.50 bB | 49.61 ± 0.38 cB | |
L-DOPA | 50.15 ± 0.91 cAB | 49.92 ± 0.79 bcAB | 53.61 ± 0.48 bA | 52.34 ± 0.58 abA | 47.65 ± 1.20 cB | |
IBA + L-DOPA | 75.13 ± 0.64 aB | 52.26 ± 1.32 bC | 45.21 ± 1.91 cD | 50.65 ± 1.62 abCD | 94.31 ± 0.51 aA | |
Treatments | 1 | 5 | 10 | 15 | 30 | |
internode | Control | 72.56 ± 2.66 aD | 42.29 ± 0.31 cB | 55.02 ± 0.31 bA | 47.15 ± 7.00 bC | 71.00 ± 2.62 aC |
ΙΒA | 52.60 ± 0.46 bB | 49.26 ± 0.48 bC | 53.66 ± 0.17 bB | 75.13 ± 1.12 aA | 43.16 ± 0.52 cD | |
L-DOPA | 56.11 ± 2.02 bBC | 59.85 ± 1.53 aAB | 66.50 ± 1.10 aA | 52.82 ± 1.43 bC | 44.23 ± 1.22 cD | |
IBA + L-DOPA | 60.44 ± 0.90 bAB | 52.23 ± 1.75 bBC | 66.32 ± 1.06 aA | 46.58 ± 3.51 bC | 52.82 ± 1.27 bBC |
Treatments | 1 | 5 | 10 | 15 | 30 | |
node | Control | 11.82 ± 0.29 bC | 15.97 ± 0.19 aB | 17.90 ± 0.10 aA | 15.00 ± 0.35 aB | 19.00 ± 0.44 aA |
ΙΒA | 15.44 ± 0.17 aA | 12.68 ± 0.41 bC | 14.41 ± 0.19 cAB | 13.92 ± 0.46 bBC | 15.10 ± 0.19 cAB | |
L-DOPA | 15.32 ± 0.05 aB | 15.62 ± 0.12 aB | 13.26 ± 0.23 dC | 14.13 ± 0.32 bC | 17.42 ± 0.24 bA | |
IBA + L-DOPA | 15.60 ± 0.004 aB | 15.76 ± 0.19 aB | 15.35 ± 0.19 bB | 17.59 ± 0.27 aA | 15.38 ± 0.22 cB | |
Treatments | 1 | 5 | 10 | 15 | 30 | |
internode | Control | 14.92 ± 0.66 aA | 16.23 ± 0.11 bA | 15.98 ± 0.19 aA | 14.73 ± 0.07 cA | 11.94 ± 0.22 bB |
ΙΒA | 15.94 ± 0.08 aAB | 14.03 ± 0.41 cC | 16.43 ± 0.25 aA | 15.54 ± 0.36 bcAB | 14.76 ± 0.33 aBC | |
L-DOPA | 14.51 ± 0.08 aB | 19.00 ± 0.30 aA | 13.15 ± 0.60 bB | 19.00 ± 0.16 aA | 14.19 ± 0.08 aB | |
IBA + L-DOPA | 14.95 ± 0.49 aB | 15.31 ± 0.14 bAB | 13.60 ± 0.08 bC | 16.31 ± 0.13 bA | 8.39 ± 0.10 cD |
Treatments | 1 | 5 | 10 | 15 | 30 | |
node | Control | 5.69 ± 0.22 bAB | 6.33 ± 0.18 bA | 4.93 ± 0.06 bB | 5.47 ± 0.21 cB | 5.25 ± 0.08 bB |
ΙΒA | 7.35 ± 0.12 aA | 5.59 ± 0.19 cB | 3.68 ± 0.04 cC | 5.93 ± 0.12 bcB | 6.04 ± 0.09 aB | |
L-DOPA | 6.81 ± 0.08 aA | 6.31 ± 0.09 bB | 5.78 ± 0.13 aC | 6.34 ± 0.03 abB | 5.36 ± 0.03 bD | |
IBA + L-DOPA | 6.12 ± 0.03 bBC | 7.35 ± 0.08 aA | 5.55 ± 0.19 aC | 6.66 ± 0.12 aAB | 5.57 ± 0.25 abC | |
Treatments | 1 | 5 | 10 | 15 | 30 | |
internode | Control | 6.45 ± 0.13 abA | 6.23 ± 0.08 aAB | 5.83 ± 0.12 aB | 5.72 ± 0.14 bB | 4.61 ± 0.13 bC |
ΙΒA | 6.56 ± 0.11 aA | 4.91 ± 0.09 bC | 5.93 ± 0.04 aB | 6.57 ± 0.21 aA | 5.83 ± 0.15 aB | |
L-DOPA | 5.86 ± 0.08 bA | 4.81 ± 0.10 bC | 4.35 ± 0.05 cD | 5.26 ± 0.07 bB | 4.09 ± 0.08 bD | |
IBA + L-DOPA | 6.36 ± 0.24 abA | 6.47 ± 0.11 aA | 5.12 ± 0.12 bB | 5.18 ± 0.09 bB | 6.37 ± 0.22 aA |
Treatments | 1 | 5 | 10 | 15 | 30 | |||||||||||
Fructose | Glucose | Sucrose | Fructose | Glucose | Sucrose | Fructose | Glucose | Sucrose | Fructose | Glucose | Sucrose | Fructose | Glucose | Sucrose | ||
node | Control | 13.52 ± 0.10 bA | 15.51 ± 0.86 aA | 33.26 ± 1.15 aA | 8.28 ± 0.13 aC | 8.18 ± 0.12 aB | 14.41 ± 0.22 aB | 10.40 ± 0.37 aB | 7.45 ± 0.13 aB | 13.72 ± 0.55 aBC | 5.66 ± 0.09 aD | 6.26 ± 0.44 aB | 11.03 ± 0.05 aC | 3.45 ± 0.07 bE | 2.93 ± 0.08 aC | 5.98 ± 0.30 bD |
ΙΒA | 9.40 ± 0.05 cA | 9.43 ± 0.24 bA | 22.29 ± 1.05 bA | 7.60 ± 0.11 abB | 5.66 ± 0.19 bcB | 7.29 ± 0.11 cC | 5.60 ± 0.11 bC | 4.93 ± 0.10 bB | 11.04 ± 0.28 bB | 4.37 ± 0.09 bcD | 4.76 ± 0.14 bC | 6.91 ± 0.07 dC | 2.77 ± 0.10 cE | 3.14 ± 0.24 aD | 4.01 ± 0.16 cD | |
L-DOPA | 8.57 ± 0.11 cA | 9.26 ± 0.12 bA | 17.99 ± 0.56 cA | 7.22 ± 0.28 bB | 6.26 ± 0.14 bB | 14.59 ± 0.14 aB | 4.86 ± 0.27 bC | 3.50 ± 0.28 cC | 8.64 ± 030 cD | 4.77 ± 0.24 bC | 3.89 ± 0.17 bcC | 9.51 ± 0.35 bD | 7.15 ± 0.24 aB | 2.16 ± 0.09 bD | 11.82 ± 0.23 aC | |
IBA + L-DOPA | 15.31 ± 0.45 aA | 9.73 ± 0.23 bA | 25.50 ± 0.87 bA | 4.94 ± 0.04 cB | 5.52 ± 0.17 cB | 9.74 ± 0.15 bB | 5.51 ± 0.09 bB | 5.03 ± 0.04 bB | 8.87 ± 0.19 cB | 3.82 ± 0.12 cC | 2.78 ± 0.17 cC | 8.12 ± 0.29 cB | 2.37 ± 0.08 cD | 3.04 ± 0.11 aC | 5.82 ± 0.24 bC | |
Treatments | 1 | 5 | 10 | 15 | 30 | |||||||||||
Fructose | Glucose | Sucrose | Fructose | Glucose | Sucrose | Fructose | Glucose | Sucrose | Fructose | Glucose | Sucrose | Fructose | Glucose | Sucrose | ||
internode | Control | 20.40 ± 0.34 aA | 15.64 ± 0.09 aA | 42.48 ± 0.26 aA | 11.07 ± 0.11 aC | 11.42 ± 0.26 aB | 19.85 ± 0.55 aC | 13.11 ± 0.09 aB | 10.24 ± 0.13 aC | 21.36 ± 0.52 aC | 8.87 ± 0.08 aD | 9.37 ± 0.40 aC | 34.57 ± 0.22 aB | 5.04 ± 0.11 aE | 4.07 ± 0.29 bD | 11.09 ± 0.51 bD |
ΙΒA | 8.72 ± 0.11 cΒ | 7.82 ± 0.27 cA | 29.48 ± 0.41 cA | 10.03 ± 0.23 bA | 8.13 ± 0.27 bA | 19.14 ± 0.79 aB | 4.30 ± 0.11 cD | 5.08 ± 0.05 bB | 9.79 ± 0.14 cD | 5.13 ± 0.07 bC | 4.38 ± 0.17 cBC | 13.29 ± 0.27 bC | 4.03 ± 0.10 cD | 3.86 ± 0.02 bC | 13.60 ± 0.03 aC | |
L-DOPA | 7.94 ± 0.19 cΒ | 7.67 ± 0.30 cA | 29.56 ± 0.68 cA | 6.83 ± 0.15 cC | 6.85 ± 0.13 cB | 13.89 ± 0.25 bB | 8.58 ± 0.18 bAB | 5.40 ± 0.01 bC | 13.62 ± 0.13 bB | 9.10 ± 0.22 aA | 7.55 ± 0.05 bAB | 14.09 ± 0.16 bB | 4.60 ± 0.15 abA | 5.16 ± 0.20 aC | 10.24 ± 0.25 bC | |
IBA + L-DOPA | 14.50 ± 0.31 bA | 11.50 ± 0.08 bA | 36.61 ± 0.16 bA | 9.69 ± 0.23 bB | 6.65 ± 0.26 cB | 15.75 ± 0.13 bB | 2.53 ± 0.12 dD | 2.17 ± 0.12 cD | 8.22 ± 0.27 dE | 3.92 ± 0.14 cC | 4.56 ± 0.24 cC | 13.87 ± 0.40 bC | 4.46 ± 0.04 bcC | 4.11 ± 0.04 bC | 11.58 ± 0.45 bD |
Principal Components | |||
1 | 2 | 3 | 4 |
%Contribution to variability | |||
29.52 | 21.57 | 12.88 | 8.16 |
Eigenvalue | |||
4.42 | 3.33 | 1.93 | 1.23 |
Related measurements | |||
Rooting percentage | Fructose | Total flavonoids | Total Flavanols |
Root number | Glucose | Total phenols | DPPH |
Root surface | Sucrose | FRAP | Starch |
Mean diameter of roots | Total Flavones and Flavonols |
Total Flavonoids | Total Flavones and Flavonols | Total Phenols | Total Flavanols | DPPH | FRAP | Starch | Fructose | Glucose | Sucrose | |
---|---|---|---|---|---|---|---|---|---|---|
Factors of Variability | Significance level | Significance level | Significance level | Significance level | Significance level | Significance level | Significance level | Significance level | Significance level | Significance level |
A | *** | *** | ** | *** | *** | *** | *** | *** | *** | *** |
B | *** | ns | ** | *** | *** | *** | *** | *** | *** | *** |
C | *** | *** | ns | *** | *** | *** | *** | *** | *** | *** |
Interactions | ||||||||||
AB | ns | ** | *** | *** | *** | *** | *** | *** | *** | *** |
AC | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** |
BC | ** | ns | * | ** | *** | *** | *** | *** | *** | *** |
ABC | *** | *** | ** | * | *** | *** | *** | *** | *** | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daskalakis, I.; Kanellopoulou, A.; Bouza, D.; Biniari, K.; Stavrakaki, M. Effect of Phytoregulatory Substances on Adventitious Rooting of Grapevine Rootstock Paulsen 1103 Cuttings Under Hydroponic Conditions. Agriculture 2025, 15, 1819. https://doi.org/10.3390/agriculture15171819
Daskalakis I, Kanellopoulou A, Bouza D, Biniari K, Stavrakaki M. Effect of Phytoregulatory Substances on Adventitious Rooting of Grapevine Rootstock Paulsen 1103 Cuttings Under Hydroponic Conditions. Agriculture. 2025; 15(17):1819. https://doi.org/10.3390/agriculture15171819
Chicago/Turabian StyleDaskalakis, Ioannis, Argiro Kanellopoulou, Despoina Bouza, Katerina Biniari, and Maritina Stavrakaki. 2025. "Effect of Phytoregulatory Substances on Adventitious Rooting of Grapevine Rootstock Paulsen 1103 Cuttings Under Hydroponic Conditions" Agriculture 15, no. 17: 1819. https://doi.org/10.3390/agriculture15171819
APA StyleDaskalakis, I., Kanellopoulou, A., Bouza, D., Biniari, K., & Stavrakaki, M. (2025). Effect of Phytoregulatory Substances on Adventitious Rooting of Grapevine Rootstock Paulsen 1103 Cuttings Under Hydroponic Conditions. Agriculture, 15(17), 1819. https://doi.org/10.3390/agriculture15171819