Carbon Sequestration Under Different Agricultural Land Use in Croatia
Abstract
1. Background
2. Methodology
3. Types of Carbon Sequestration Potential in Croatia
4. Current Practices and Carbon Sequestration Potential Under Annual Croplands
5. Carbon Sequestration Under Perennial Croplands
6. Practices and C Sequestration Possibilities Under Grasslands
7. Possibilities and Recommendations
7.1. Legume Use
7.2. Introducing and Optimizing Fertilization Practice
7.3. Introduction of Integrated Farming and Livestock Management Systems into Practice
7.4. Agroforestry
7.5. Optimizing the Method and Intensity of Grazing
7.6. Application of Conservation Tillage, Diverse Crop Rotations, and Cover Crops
8. Conclusions and Policy Recommendations
- Promote conservation tillage through targeted direct payments, prioritizing fertile soils and supporting transitional periods until a new equilibrium is reached.
- Strengthen organic farming by linking subsidies to active agro-technical measures that improve yields, soil fertility, and carbon storage.
- Adopt climate-positive practices such as agroforestry, legume cultivation, continuous greening of perennial crops, conservation tillage, silvopastoral systems and rotational grazing, and robust protection of permanent grasslands.
- Optimize fertilization by applying organic and mineral fertilizers only after site-specific trials, prioritizing humid areas first.
- Encourage integrated farming systems by connecting crop and livestock production units locally to enhance self-sufficiency.
- Expand perennial forage crops and legume cover into crop rotations, inter-row spaces in perennial croplands, and managed grasslands, starting in humid regions.
- Recognize agroforestry in legislation and incentivize tree planting for biodiversity and multiple ecosystem services.
- Promote rotational grazing in livestock farming. Research is not required, and the measures can be implemented immediately throughout Croatia.
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Summary for Policymakers. In Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 1–34. [Google Scholar] [CrossRef]
- European Environment Agency. Global and European Temperatures. 2023. Available online: https://www.eea.europa.eu/en/analysis/indicators/global-and-european-temperatures?activeAccordion=ecdb3bcf-bbe9-4978-b5cf-0b136399d9f8 (accessed on 29 September 2024).
- Ritchie, H. Food Production Is Responsible for One-Quarter of the World’s Greenhouse Gas Emissions. 2019. Available online: https://ourworldindata.org/food-ghg-emissions (accessed on 10 October 2024).
- Pereira, P.; Muñoz-Rojas, M.; Bogunovic, I.; Zhao, W. Impact of Agriculture on Soil Degradation II: A European Perspective. In The Handbook of Environmental Chemistry; Springer: Dordrecht, The Netherlands, 2023. [Google Scholar] [CrossRef]
- European Commission. Caring for Soil Is Caring for Life–Ensure 75% of Soils Are Healthy by 2030 for Food, People, Nature and Climate; Independent Expert Report; Publications Office of the European Union: Luxembourg, 2020; 82p, Available online: https://data.europa.eu/doi/10.2777/821504 (accessed on 23 February 2025).
- Bachleitner, S.; Ata, Ö.; Mattanovich, D. The potential of CO2-based production cycles in biotechnology to fight the climate crisis. Nat. Commun. 2023, 14, 6978. [Google Scholar] [CrossRef]
- Rumpel, C.; Amiraslani, F.; Bossio, D.; Chenu, C.; Henry, B.; Espinoza, A.F.; Koutika, L.-S.; Ladha, J.; Madari, B.; Minasny, B.; et al. The role of soil carbon sequestration in enhancing human resilience in tackling global crises including pandemics. Soil Secur. 2022, 8, 100069. [Google Scholar] [CrossRef]
- World Bank Group. Green Growth in Croatia’s Agricultural Sector (English); World Bank Group: Washington, DC, USA, 2021; Available online: http://documents.worldbank.org/curated/en/339681624882521026/Green-Growth-in-Croatia-s-Agricultural-Sector (accessed on 23 February 2025).
- Bilandžija, D.; Zgorelec, Ž.; Kisić, I. Influence of tillage practices and crop type on soil CO2 emissions. Sustainability 2016, 8, 90. [Google Scholar] [CrossRef]
- Šestak, I.; Mihaljevski Boltek, L.; Mesić, M.; Zgorelec, Ž.; Perčin, A. Hyperspectral sensing of soil pH, total carbon and total nitrogen content based on linear and non-linear calibration methods. J. Cent. Eur. Agric. 2019, 20, 504–523. [Google Scholar] [CrossRef]
- Dugan, I.; Pereira, P.; Barcelo, D.; Bogunovic, I. Conservation practices reverse soil degradation in Mediterranean fig orchards. Geoderma Reg. 2024, 36, e00750. [Google Scholar] [CrossRef]
- Bogunovic, I.; Pereira, P.; Kisic, I.; Sajko, K.; Sraka, M. Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). Catena 2018, 160, 376–384. [Google Scholar] [CrossRef]
- Bogunovic, I.; Pereira, P.; Galic, M.; Bilandzija, D.; Kisic, I. Tillage system and farmyard manure impact on soil physical properties, CO2 emissions, and crop yield in an organic farm located in a Mediterranean environment (Croatia). Environ. Earth Sci. 2020, 79, 70. [Google Scholar] [CrossRef]
- Telak, L.J.; Pereira, P.; Bogunovic, I. Management and seasonal impacts on vineyard soil properties and the hydrological response in continental Croatia. Catena 2021, 202, 105267. [Google Scholar] [CrossRef]
- Jug, D.; Đurđević, B.; Birkás, M.; Brozović, B.; Lipiec, J.; Vukadinović, V.; Jug, I. Effect of conservation tillage on crop productivity and nitrogen use efficiency. Soil Tillage Res. 2019, 194, 104327. [Google Scholar] [CrossRef]
- Galic, M.; Bilandzija, D.; Zgorelec, Z. Influence of Long-Term Soil Management Practices on Carbon Emissions from Corn (Zea mays L.) Production in Northeast Croatia. Agronomy 2023, 13, 2051. [Google Scholar] [CrossRef]
- Bašić, F. The Soils of Croatia; World Soil Book Series; International Union of Soil Sciences; Hartemink, A.E., Ed.; Springer: Dordrecht, The Netherlands; Berlin/Heidelberg, Germany; New York, NY, USA; London, UK, 2013; p. 179. [Google Scholar]
- Husnjak, S.; Bensa, A.; Mesic, H.; Jungic, D. Soil Organic Carbon Content in the Topsoils of Agricultural Regions in Croatia. In Soil Carbon; Springer: Cham, Switzerland, 2014; pp. 407–417. [Google Scholar]
- Telak, L.J.; Bogunovic, I. Tillage-induced impacts on the soil properties, soil water erosion, and loss of nutrients in the vineyard (Central Croatia). J. Cent. Eur. Agric. 2020, 21, 589–601. [Google Scholar] [CrossRef]
- Bogunovic, I.; Telak, L.J.; Pereira, P.; Filipovic, V.; Filipovic, L.; Percin, A.; Durdevic, B.; Birkás, M.; Dekemati, I.; Comino, J.R. Land management impacts on soil properties and initial soil erosion processes in olives and vegetable crops. J. Hydrol. Hydromech. 2020, 68, 328–337. [Google Scholar] [CrossRef]
- Bogunović, I.; Galić, M.; Vukadinović, V. Application of Gypsum, Sulfur, and Organic Manure on Meliorated Saline-Alkaline Soils in the Raša Valley; Annual Report 2019; Professional Documentation of the Department of General Agronomy; University of Zagreb Faculty of Agriculture: Zagreb, Croatia, 2020. [Google Scholar]
- Kisić, I. Introduction to Organic Agriculture; Faculty of Agriculture, University of Zagreb: Zagreb, Croatia, 2014. (In Croatian) [Google Scholar]
- Telak, L.J.; Pereira, P.; Bogunovic, I. Soil degradation mitigation in continental climate in young vineyards planted in Stagnosols. Int. Agrophysics 2021, 35, 307–317. [Google Scholar] [CrossRef]
- Dugan, I.; Pereira, P.; Barcelo, D.; Bogunovic, I. Vineyard management impact on soil properties, hydrological response and chemical elements transport in a Mediterranean karst environment (Croatia). Catena 2024, 238, 107858. [Google Scholar] [CrossRef]
- Bogunovic, I.; Viduka, A.; Magdic, I.; Telak, L.J.; Francos, M.; Pereira, P. Agricultural and forest land-use impact on soil properties in Zagreb periurban area (Croatia). Agronomy 2020, 10, 1331. [Google Scholar] [CrossRef]
- Bogunovic, I.; Kljak, K.; Dugan, I.; Grbeša, D.; Telak, L.J.; Duvnjak, M.; Kisic, I.; Solomun, M.K.; Pereira, P. Grassland management impact on soil degradation and herbage nutritional value in a temperate humid environment. Agriculture 2022, 12, 921. [Google Scholar] [CrossRef]
- Stipesevic, B.; Samota, D.; Jug, D.; Jug, I.; Kolar, D.; Vrkljan, B.; Birkás, M. Effects of the second crop on maize yield and yield components in organic agriculture. Agron. Glas. 2008, 70, 439–448. [Google Scholar]
- Bošnjak, K.; Knežević, M.; Leto, J.; Vranić, M.; Perčulija, G.; Kutnjak, H. Productivity and sward composition of semi-natural pasture under different N fertilizing regimes. Sustain. Grassl. Product. 2006, 11, 83–86. [Google Scholar]
- Bošnjak, K.; Leto, J.; Perčulija, G.; Vranić, M.; Kutnjak, H. The response of white clover (Trifolium repens L.) to N fertilizing and stocking density in semi-natural grassland. Mljekarstvo: Časopis Za Unaprjeđenje Proizv. I Prerade Mlijeka 2009, 59, 244–253. [Google Scholar]
- Stjepanović, M.; Popović, S.; Grljušić, S.; Bukvić, G.; Čupić, T.; Tucak, M. Influence of NPK nutrients application on natural low grassland yield and quality. Krmiva 2001, 43, 291–299. [Google Scholar]
- Andreata-Koren, M.; Leto, J.; Knežević, M.; Bošnjak, K.; Perčulija, G.; Ivanković, A. Productivity and botanical composition of pasture under grazing and fertilizing. Mljekarstvo: Časopis Za Unaprjeđenje Proizv. I Prerade Mlijeka 2009, 59, 311–318. [Google Scholar]
- Butorac, A.; Butorac, J.; Turšić, I.; Mesic, M.; Bašić, F.; Vuletic, N.; Berdin, M.; Kisić, I. Results of Long-term Experiments with Growing Flue-cured Tobacco (Nicotiana tabacum L.) in Monoculture and Different Types of Crop Rotations. J. Agron. Crop Sci. 1999, 183, 271–285. [Google Scholar] [CrossRef]
- NIR. Croatian Greenhouse Gas Inventory for the Period 1990–2020 (National Inventory Report 2022). Ministry of Economy and Sustainable Development, Republic of Croatia. 2022. Available online: https://www.haop.hr/sites/default/files/uploads/dokumenti/012_klima/dostava_podataka/Izvjesca/Croatian%20NIR%202022.pdf (accessed on 29 September 2024).
- Ministry of Agriculture. Annual Report on the State of Agriculture in 2022; Ministry of Agriculture: Zagreb, Croatia, 2023. Available online: https://poljoprivreda.gov.hr/UserDocsImages/dokumenti/poljoprivredna_politika/zeleno_izvjesce/2023_11_16ZelenoIzvjesce2022konacno1.pdf (accessed on 29 September 2024).
- Eigenbrod, F.; Beckmann, M.; Dunnett, S.; Graham, L.; Holland, R.A.; Meyfroidt, P.; Seppelt, R.; Song, X.-P.; Spake, R.; Václavík, T.; et al. Identifying agricultural frontiers for modeling global cropland expansion. One Earth 2020, 3, 504–514. [Google Scholar] [CrossRef]
- Beyer, R.M.; Hua, F.; Martin, P.A.; Manica, A.; Rademacher, T. Relocating croplands could drastically reduce the environmental impacts of global food production. Commun. Earth Environ. 2022, 3, 49. [Google Scholar] [CrossRef]
- Martinović, J. Soils in Croatia; State Administration for Nature and Environmental Protection: Zagreb, Croatia, 2000; 269p. (In Croatian) [Google Scholar]
- Croatian Bureau of Statistics. Statistical Yearbook of the Republic of Croatia 2024—Table 8.2: Area of Arable Land, by Tillage Methods; Croatian Bureau of Statistics: Zagreb, Croatia, 2024. Available online: https://web.dzs.hr/PxWeb/pxweb/en/Poljoprivreda,%20lov,%20%C5%A1umarstvo%20i%20ribarstvo/Poljoprivreda,%20lov,%20%C5%A1umarstvo%20i%20ribarstvo__Struktura%20poljoprivrednih%20gospodarstava%20i%20metode%20poljoprivredne%20proizvodnje__Metode%20poljoprivredne%20proizvodnje/SPG802.px/ (accessed on 15 August 2025).
- Jug, D.; Krnjaić, S.; Stipešević, B. Yield of winter wheat (Triticum aestivum L.) on different soil tillage variants. Poljoprivreda 2006, 12, 47–52. [Google Scholar]
- Jug, D.; Birkas, M.; Kisić, I. Tillage in Agro-Ecological Frameworks (in Croatian); HDPOT: Osijek, Croatia, 2015; 275p. [Google Scholar]
- Kisic, I.; Basic, F.; Nestroy, O.; Mesic, M.; Butorac, A. Chemical properties of eroded soil material. J. Agron. Crop Sci. 2002, 188, 323–334. [Google Scholar] [CrossRef]
- Li, C.; Aluko, O.O.; Yuan, G.; Li, J.; Liu, H. The responses of soil organic carbon and total nitrogen to chemical nitrogen fertilizers reduction base on a meta-analysis. Sci. Rep. 2022, 12, 16326. [Google Scholar] [CrossRef]
- Bašić, F. Guidelines of sustainable soil tillage system in Croatia (Contribution to sustainable land management in 2015-international year of soils). Adv. Plants Agric. Res. 2015, 2, 00052. [Google Scholar] [CrossRef]
- Birkás, M.; Jug, D.; Kende, Z.; Kisic, I.; Szemők, A. Soil tillage responses to the climate threats–Revaluation of the classic theories. Agric. Conspec. Sci. 2018, 83, 197099. [Google Scholar]
- Croatian Bureau of Statistics. Area of Arable Land According to the Tillage Method, in Hectares, Republic of Croatia; Croatian Bureau of Statistics: Zagreb, Croatia, 2023. Available online: https://web.dzs.hr/ (accessed on 15 November 2024).
- Kniss, A.R.; Savage, S.D.; Jabbour, R. Commercial crop yields reveal strengths and weaknesses for organic agriculture in the United States. PLoS ONE 2016, 11, e0161673. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Francis, C.A.; Galusha, T.D. Does organic farming accumulate carbon in deeper soil profiles in the long term? Geoderma 2017, 288, 213–221. [Google Scholar] [CrossRef]
- Puerta, V.L.; Pereira, E.I.P.; Wittwer, R.; Van Der Heijden, M.; Six, J. Improvement of soil structure through organic crop management, conservation tillage and grass-clover ley. Soil Tillage Res. 2018, 180, 1–9. [Google Scholar] [CrossRef]
- Crystal-Ornelas, R.; Thapa, R.; Tully, K.L. Soil organic carbon is affected by organic amendments, conservation tillage, and cover cropping in organic farming systems: A meta-analysis. Agric. Ecosyst. Environ. 2021, 312, 107356. [Google Scholar] [CrossRef]
- European Commission Regulation (EU). 2018/848 of the European Parliament and of the Council of 30 May 2018 on Organic Production and Labelling of Organic Products and Repealing Council Regulation (EC) No 834/2007. Off. J. Eur. Union. 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018R0848 (accessed on 15 November 2024).
- Ondrasek, G.; Horvatinec, J.; Kovačić, M.B.; Reljić, M.; Vinceković, M.; Rathod, S.; Bandumula, N.; Dharavath, R.; Rashid, M.I.; Panfilova, O.; et al. Land Resources in Organic Agriculture: Trends and Challenges in the Twenty-First Century from Global to Croatian Contexts. Agronomy 2023, 13, 1544. [Google Scholar] [CrossRef]
- Bogunovic, I.; Filipovic, L.; Filipovic, V.; Kisic, I. Agricultural Land Degradation in Croatia. In Impact of Agriculture on Soil Degradation I—A European Perspective; Pereira, P., Muñoz-Rojas, M., Bogunovic, I., Zhao, W., Eds.; The Handbook of Environmental Chemistry; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Kisić, I. Anthropogenic Soil Erosion; Faculty of Agriculture, University of Zagreb: Zagreb, Croatia, 2016. (In Croatian) [Google Scholar]
- Telak, L.J.; Pereira, P.; Ferreira, C.S.; Filipovic, V.; Filipovic, L.; Bogunovic, I. Short-term impact of tillage on soil and the hydrological response within a fig (Ficus Carica) orchard in Croatia. Water 2020, 12, 3295. [Google Scholar] [CrossRef]
- Croatian Bureau of Statistics. Statistical Yearbook of the Republic of Croatia 2018; Croatian Bureau of Statistics: Zagreb, Croatia, 2018. Available online: https://podaci.dzs.hr/media/wsdkedwa/sljh2018.pdf (accessed on 11 September 2024).
- Croatian Bureau of Statistics. Statistical Yearbook of the Republic of Croatia 2005; Croatian Bureau of Statistics: Zagreb, Croatia, 2005. Available online: https://web.dzs.hr/Hrv_Eng/ljetopis/2005/00-sadrzaj.pdf (accessed on 10 October 2024).
- Rogošić, J. Management of Mediterranean Natural Resources; Školska Naklada: Zagreb, Croatia, 2000. (In Croatian) [Google Scholar]
- Vitasović Kosić, I.; Britvec, M. Floristic and vegetation characteristic of forest edges and grasslands of Ćićarija (Croatia). Šumarski List. 2014, 138, 183–184. [Google Scholar]
- Alegro, A.; Šegota, V. Biospeleological investigations of the caves and pits of the Northern Velebit National Park in 2018. Senj. Zb. 2019, 46, 61–80. [Google Scholar] [CrossRef]
- Šoštarić, J.; Dadić, M.; Bukvić, G.; Josipović, M.; Petošić, D.; Turšić, I. Soil preparation for grassland and pasture. Krmiva 2006, 48, 221–225. [Google Scholar]
- Cvitanović, M.; Lučev, I.; Fürst-Bjeliš, B.; Borčić, L.S.; Horvat, S.; Valožić, L. Analyzing post-socialist grassland conversion in a traditional agricultural landscape–Case study Croatia. J. Rural. Stud. 2017, 51, 53–63. [Google Scholar] [CrossRef]
- Shek-Vugrovečki, A.; Radin, L.; Pejaković, J.; Sinković, K.; Šimpraga, M. Current aspects and recommendations in health management of organic sheep and goat farming in karst areas of Croatia. In Animal Farming and Environmental Interactions in the Mediterranean Region; Wageningen Academic: Wageningen, The Netherlands, 2011; pp. 121–125. [Google Scholar] [CrossRef]
- Rogošić, J. Principles and recommendations of sustainable management of renewable pasture resources in the karst area of the Republic of Croatia. In Regulation, Status, and Role in the Common Agricultural Policy of the European Union in the Program Period 2020–2027; Hrvatski Krski Pasnjaci: Drniš, Croatia, 2019; 24p, Available online: https://hrvatskikrskipasnjaci.com/wp-content/uploads/2019/10/00_Elaborat-Kra%C5%A1ki-pa%C5%A1njaci-1.pdf (accessed on 10 October 2024).
- Kumar, S.; Meena, R.S.; Lal, R.; Yadav, G.S.; Mitran, T.; Meena, B.L.; Dotaniya, M.L.; El-Sabagh, A. Role of legumes in soil carbon sequestration. In Legumes for Soil Health and Sustainable Management; Springer: Singapore, 2018; pp. 109–138. [Google Scholar] [CrossRef]
- Barneze, A.S.; Whitaker, J.; McNamara, N.P.; Ostle, N.J. Legumes increase grassland productivity with no effect on nitrous oxide emissions. Plant Soil 2020, 446, 163–177. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Wallenstein, M.D.; Boot, C.M.; Denef, K.; Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Glob. Change Biol. 2013, 19, 988–995. [Google Scholar] [CrossRef] [PubMed]
- Kosic, I.V.; Kljak, K.; Britvec, M.; Grbesa, D. Chemical composition and nutritional value of some dominant plant species on dry Mediterranean grasslands (Croatia). J. Cent. Eur. Agric. 2020, 21, 398–409. [Google Scholar] [CrossRef]
- Skadell, L.E.; Schneider, F.; Gocke, M.I.; Guigue, J.; Amelung, W.; Bauke, S.L.; Hobley, E.U.; Barkusky, D.; Honermeier, B.; Kögel-Knabner, I.; et al. Twenty percent of agricultural management effects on organic carbon stocks occur in subsoils–Results of ten long-term experiments. Agric. Ecosyst. Environ. 2023, 356, 108619. [Google Scholar] [CrossRef]
- Zhang, J.; Sayer, E.J.; Zhou, J.; Li, Y.; Li, Y.; Li, Z.; Wang, F. Long-term fertilization modifies the mineralization of soil organic matter in response to added substrate. Sci. Total Environ. 2021, 798, 149341. [Google Scholar] [CrossRef]
- Poeplau, C. Grassland soil organic carbon stocks along management intensity and warming gradients. Grass Forage Sci. 2021, 76, 186–195. [Google Scholar] [CrossRef]
- Soussana, J.F.; Lemaire, G. Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop-livestock systems. Agric. Ecosyst. Environ. 2014, 190, 9–17. [Google Scholar] [CrossRef]
- Žalac, H.; Burgess, P.; Graves, A.; Giannitsopoulos, M.; Paponja, I.; Popović, B.; Ivezić, V. Modelling the yield and profitability of intercropped walnut systems in Croatia. Agrofor. Syst. 2021, 97, 279–290. [Google Scholar] [CrossRef]
- Molnár, Z.; Szabados, K.; Kiš, A.; Marinkov, J.; Demeter, L.; Biró, M.; Öllerer, K.; Katona, K.; Đapić, M.; Perić, R.; et al. Preserving for the future the—Once widespread but now vanishing—Knowledge on traditional pig grazing in forests and marshes (Sava-Bosut floodplain, Serbia). J. Ethnobiol. Ethnomed. 2021, 17, 1–30. [Google Scholar] [CrossRef]
- Chatterjee, N.; Nair, P.R.; Chakraborty, S.; Nair, V.D. Changes in soil carbon stocks across the Forest-Agroforest-Agriculture/Pasture continuum in various agroecological regions: A meta-analysis. Agric. Ecosyst. Environ. 2018, 266, 55–67. [Google Scholar] [CrossRef]
- Adewopo, J.B.; Silveira, M.L.; Xu, S.; Gerber, S.; Sollenberger, L.E.; Martin, T.A. Management intensification impacts on soil and ecosystem carbon stocks in subtropical grasslands. Soil Sci. Soc. Am. J. 2014, 78, 977–986. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, H.Y.; Bork, E.W.; Carlyle, C.N.; Chang, S.X. Carbon accumulation in agroforestry systems is affected by tree species diversity, age and regional climate: A global meta-analysis. Glob. Ecol. Biogeogr. 2020, 29, 1817–1828. [Google Scholar] [CrossRef]
- Byrnes, R.C.; Eastburn, D.J.; Tate, K.W.; Roche, L.M. A global meta-analysis of grazing impacts on soil health indicators. J. Environ. Qual. 2018, 47, 758–765. [Google Scholar] [CrossRef]
- de Otálora, X.D.; Epelde, L.; Arranz, J.; Garbisu, C.; Ruiz, R.; Mandaluniz, N. Regenerative rotational grazing management of dairy sheep increases springtime grass production and topsoil carbon storage. Ecol. Indic. 2021, 125, 107484. [Google Scholar] [CrossRef]
- Government of the Republic of Croatia. Rulebook on Agro-Technical Measures; Ministry of Agriculture: Zagreb, Croatia, 2019. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/2019_03_22_452.html (accessed on 8 September 2024).
- Basic, F.; Kisic, I.; Mesic, M.; Nestroy, O.; Butorac, A. Tillage and crop management effects on soil erosion in central Croatia. Soil Tillage Res. 2004, 78, 197–206. [Google Scholar] [CrossRef]
- Jug, I.; Brozović, B.; Đurđević, B.; Wilczewski, E.; Vukadinović, V.; Stipešević, B.; Jug, D. Response of crops to conservation tillage and nitrogen fertilization under different agroecological conditions. Agronomy 2021, 11, 2156. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Cover crops and carbon sequestration: Lessons from US studies. Soil Sci. Soc. Am. J. 2022, 86, 501–519. [Google Scholar] [CrossRef]
Practice | Land Use | Region | Impact on C Sequestration | Reference |
---|---|---|---|---|
Conventional tillage | Annual Cropland | Pannonian | Increases CO2 emission and reduces soil C | [15,19] |
Conventional tillage | Annual Cropland | Adriatic | Increases CO2 emission and reduces soil C | [13,20] |
No—tillage | Annual Cropland | Pannonian | Reduces CO2 emission by 5% | [9] |
Mineral N fertilization | Annual Cropland | Pannonian | Improved soil organic C by 93% | [10] |
Organic Fertilization | Annual Cropland | Adriatic | Improved soil organic C by 19% | [21] |
Diverse Crop rotation | Annual Cropland | Pannonian | Enhanced soil organic C | [22] |
Grass cover | Perennial Cropland | Pannonian | Increase C content by 33% | [23] |
Grass cover | Perennial Cropland | Adriatic | Increase C content by 35% | [20] |
Grass cover | Perennial Cropland | Adriatic | Increase C content by 51% | [11] |
Grass cover | Perennial Cropland | Adriatic | Increase C content by 24% | [24] |
Herbicide | Perennial Cropland | Adriatic | Decrease C content by 9% | [24] |
Mineral fertilization | Perennial Cropland | Pannonian | 44% higher C stocks | [25] |
Moderate grazing | Grassland | Pannonian | Enhanced soil organic C by 41% | [26] |
Legume use | Annual Cropland | Pannonian | Increase biomass C | [27] |
Mineral N fertilization | Grassland | Pannonian | Increase biomass C | [28,29] |
Mineral NPK fertilization | Grassland | Pannonian | Increase biomass C | [30] |
Reduced stocking density | Grassland | Pannonian | Increase biomass C | [29,31] |
Grass cover | Perennial Cropland | Pannonian | Increase C content by 85% | [14] |
Wide crop rotation | Annual Cropland | Pannonian | Increase biomass C | [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogunovic, I. Carbon Sequestration Under Different Agricultural Land Use in Croatia. Agriculture 2025, 15, 1821. https://doi.org/10.3390/agriculture15171821
Bogunovic I. Carbon Sequestration Under Different Agricultural Land Use in Croatia. Agriculture. 2025; 15(17):1821. https://doi.org/10.3390/agriculture15171821
Chicago/Turabian StyleBogunovic, Igor. 2025. "Carbon Sequestration Under Different Agricultural Land Use in Croatia" Agriculture 15, no. 17: 1821. https://doi.org/10.3390/agriculture15171821
APA StyleBogunovic, I. (2025). Carbon Sequestration Under Different Agricultural Land Use in Croatia. Agriculture, 15(17), 1821. https://doi.org/10.3390/agriculture15171821