The Impact of Cultivars and Biostimulants on the Compounds Contained in Glycine max (L.) Merr. Seeds
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of the Experiment
2.2. Weather Conditions
2.3. Research Material and Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kozak, M.; Malarz, W.; Kotecki, A.; Černý, I.; Serafin-Andrzejewska, M. The effect of different sowing rate and Asahi SL biostimulator on chemical composition of soybean seeds and postharvest residues. Oilseed Crops 2008, 29, 217–230. [Google Scholar]
- Thrane, M.; Paulsen, P.V.; Orcutt, M.W.; Krieger, T.M. Chapter 2—Soy protein: Impacts, production, and applications. In Sustainable Protein Sources; Nadathur, S.R., Wanasundara, J.P.D., Scanlin, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 23–45. [Google Scholar] [CrossRef]
- Księżak, J.; Bojarszczuk, J. The evaluation of productivity effects of soybean cultivation [Glycine max (L.) Merr.] depending on soil tillage method. Agron. Sci. 2023, 78, 99–112. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, G. Biofortification of pulses and legumes to enhance nutrition. Heliyon 2020, 6, e03682. [Google Scholar] [CrossRef]
- Karolkowski, A.; Guichard, E.; Briand, L.; Salles, C. Volatile compounds in pulses: A review. Foods 2021, 10, 3140. [Google Scholar] [CrossRef]
- Pedrosa, M.M.; Guillamón, E.; Arribas, C. Autoclaved and extruded legumes as a source of bioactive phytochemicals: A review. Foods 2021, 10, 379. [Google Scholar] [CrossRef]
- Shevkani, K.; Singh, N.; Chen, Y.; Kaur, A.; Yu, L. Pulse proteins: Secondary structure, functionality and applications. J. Food Sci. Technol. 2019, 56, 2787–2798. [Google Scholar] [CrossRef]
- Patil, G.; Mian, R.; Vuong, T.; Pantalone, V.; Song, Q.; Chen, P.; Shannon, J.; Carter, T.C.; Nguyen, H.T. Molecular mapping and genomics of soybean seed protein: A review and perspective for the future. Theor. Appl. Genet. 2017, 130, 1975–1991. [Google Scholar] [CrossRef] [PubMed]
- Kotecki, A.; Lewandowska, S. Studia nad Uprawą soi Zwyczajnej (Glycine max (L.) Merrill) w Południowo-Zachodniej Polsce; Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu: Wrocław, Poland, 2020. [Google Scholar]
- Fallen, B.D.; Hatcher, C.N.; Allen, F.L.; Kopsell, D.A.; Saxton, A.M.; Chen, P.; Kantartzi, S.K.; Cregan, P.B.; Hyten, D.L.; Pantalone, V.R. Amino acid content in soybean seeds QTL detected using the universal soybean linkage panel 1.0 with 1536 SNPs. Plant Genet. Genom. Biotechnol. 2017, 1, 68–79. [Google Scholar] [CrossRef]
- Niwińska, B.; Witaszek, K.; Niedbała, G.; Pilarski, K. Seeds of n-GM soybean varieties cultivated in Poland and their processing products as high-protein feeds in cattle nutrition. Agriculture 2020, 10, 174. [Google Scholar] [CrossRef]
- Olszewski, J.; Dzienis, G.; Okorski, A.; Goś, W.; Pszczółkowska, A. Fungal colonization of the anatomical parts of soybean seeds supplied with different nitrogen rates and inoculated with Bradyrhizobium japonicum. Agriculture 2025, 15, 857. [Google Scholar] [CrossRef]
- Van Eys, J.; Offner, A.; Bach, A. Manual of quality analyses for soybean products in the feed industry. Am. Soybean Assoc. 2005, 18, 47. [Google Scholar]
- Galben, R.D.; Urdă, C.; Rezi, R.; Gheorghieş, V.; Negrea, A.; Russu, F.; Balaş, S.; Varga, A.I.; Duda, M.M. Seed composition of soybean and its significance for human health. Hop. Med. Plants 2021, 29, 157–163. [Google Scholar] [CrossRef]
- Wijewardana, C.; Reddy, K.; Bellaloui, N. Soybean seed physiology, quality, and chemical composition under soil moisture stress. Food Chem. 2019, 278, 92–100. [Google Scholar] [CrossRef] [PubMed]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef]
- Baud, S.; Dubreucq, B.; Miquel, M.; Rochat, C.; Lepiniec, L. Storage reserve accumulation in Arabidopsis: Metabolic and developmental control of seed filling. Arab. Book 2008, 6, e0113. [Google Scholar] [CrossRef]
- Capelin, M.A.; Madella, L.A.; Panho, M.C.; Meira, D.; Barrionuevo, F.; Rodrigues, A.P.D.C.; Benin, G. Physiological quality and seed chemical composition of soybean seeds under different altitudes. Bragantia 2022, 81, e1022. [Google Scholar] [CrossRef]
- Jimenez-Lopez, J.C. Seed Biology Updates; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Rotundo, J.L.; Westgate, M.E. Meta-analysis of environmental effects on soybean seed composition. Field Crops Res. 2009, 110, 147–156. [Google Scholar] [CrossRef]
- Phengsouvana, V.; Attanandana, T.; Yost, R.S. Lime application to two acidic upland soils for soybean production in Champasak Province, Lao PDR. Agric. Nat. Resour. 2009, 43, 19–27. [Google Scholar]
- Timilsina, A.P.; Baigorria, G.A.; Wilhite, D.; Shulski, M.; Heeren, D.; Romero, C.; Fensterseifer, C.A. Soybean response under climatic scenarios with changed mean and variability under rainfed and irrigated conditions in major soybean-growing states of the USA. J. Agric. Sci. 2023, 161, 157–174. [Google Scholar] [CrossRef]
- Staniak, M.; Szpunar-Krok, E.; Kocira, A. Responses of soybean to selected abiotic stresses—Photoperiod, temperature and water. Agriculture 2023, 13, 146. [Google Scholar] [CrossRef]
- Puthur, J.T.; Dhankher, O.P. Bioenergy Crops, 1st ed.; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Chlapecka, J. Soybean Irrigation Initiation Timing Using Evapotranspiration and Soil Moisture Sensor Cues. Master’s Thesis, Arkansas State University, Jonesboro, AR, USA, 2015. Available online: https://arch.astate.edu/all-etd/693 (accessed on 10 May 2021).
- Singh, R.J.; Nelson, R.L.; Chung, G. Soybean (Glycine max (L.) Merr.). In Genetic Resources, Chromosome Engineering, and Crop Improvement; Singh, R.J., Ed.; Oilseed Crops; CRC Press: Boca Raton, FL, USA, 2006; Volume 4, pp. 13–50. [Google Scholar]
- Księżak, J.; Bojarszczuk, J. The productivity of selected soybean cultivars grown using various cultivation methods. J. Water Land. Dev. 2024, 62, 88–96. [Google Scholar] [CrossRef]
- Hungria, M.; Mendes, I.C. Nitrogen fixation with soybean: The perfect symbiosis? In Biological Nitrogen Fixation; de Bruijin, F., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 1009–1024. [Google Scholar]
- Bender, R.R.; Haegele, J.W.; Below, F.E. Nutrient uptake, partitioning, and remobilization in modern soybean varieties. Agron. J. 2015, 107, 563–573. [Google Scholar] [CrossRef]
- Mangena, P. Water stress: Morphological and anatomical changes in soybean (Glycine max L.) plants. In Plant, Abiotic Stress and Responses to Climate Change; IntechOpen: London, UK, 2018; pp. 9–31. [Google Scholar]
- Parađiković, N.; Vinković, T.; Vinković Vrček, I.; Žuntar, I.; Bojić, M.; Medić-Šarić, M. Effect of natural biostimulants on yield and nutritional quality: An example of sweet yellow pepper (Capsicum annuum L.) plants. J. Sci. Food Agric. 2011, 91, 2146–2152. [Google Scholar] [CrossRef]
- Kocira, S.; Szparaga, A.; Kocira, A.; Czerwińska, E.; Wójtowicz, A.; Bronowicka-Mielniczuk, U.; Koszel, M.; Findura, P. Modeling biometric traits, yield and nutritional and antioxidant properties of seeds of three soybean cultivars through the application of biostimulant containing seaweed and amino acids. Front. Plant Sci. 2018, 9, 388. [Google Scholar] [CrossRef] [PubMed]
- Szparaga, A.; Kocira, S.; Kocira, A.; Czerwińska, E.; Świeca, M.; Lorencowicz, E.; Kornas, R.; Koszel, M.; Oniszczuk, T. Modification of growth, yield, and the nutraceutical and antioxidative potential of soybean through the use of synthetic biostimulants. Front. Plant Sci. 2018, 9, 1401. [Google Scholar] [CrossRef] [PubMed]
- Rymuza, K.; Radzka, E.; Cała, J. The effect of applied biostimulants on the yielding of three non-genetically modified soybean cultivars. Agriculture 2023, 13, 900. [Google Scholar] [CrossRef]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil. 2014, 383, 3–41. [Google Scholar] [CrossRef]
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- Van Oosten, M.J.; Pepe, O.; De Pascale, S.; Silletti, S.; Maggio, A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Technol. Agric. 2017, 4, 5. [Google Scholar] [CrossRef]
- Łangowski, Ł.; Goñi, O.; Marques, F.S.; Hamawaki, O.T.; da Silva, C.O.; Nogueira, A.P.O.; Teixeira, M.A.J.; Glasenapp, J.S.; Pereira, M.; O’Connell, S. Ascophyllum nodosum extract (Sealicit™) boosts soybean yield through reduction of pod shattering-related seed loss and enhanced seed production. Front. Plant Sci. 2021, 12, 631768. [Google Scholar] [CrossRef]
- Franzoni, G.; Bulgari, R.; Florio, F.E.; Gozio, E.; Villa, D.; Cocetta, G.; Ferrante, A. Effect of biostimulant raw materials on soybean (Glycine max) crop, when applied alone or in combination with herbicides. Front. Agron. 2023, 5, 1238273. [Google Scholar] [CrossRef]
- Liu, K.; Harrison, M.T.; Yan, H.; Liu, D.L.; Meinke, H.; Hoogenboom, G.; Zhou, M. Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates. Nat. Commun. 2023, 14, 765. [Google Scholar] [CrossRef] [PubMed]
- Kocira, S.; Szparaga, A.; Kuboń, M.; Czerwińska, E.; Piskier, T. Morphological and biochemical responses of Glycine max (L.) Merr. to the use of seaweed extract. Agronomy 2019, 9, 93. [Google Scholar] [CrossRef]
- Karges, K.; Bellingrath-Kimura, S.D.; Watson, C.A.; Stoddard, F.L.; Halwani, M.; Reckling, M. Agro-economic prospects for expanding soybean production beyond its current northerly limit in Europe. Eur. J. Agron. 2022, 133, 126415. [Google Scholar] [CrossRef]
- Szpunar-Krok, E.; Bobrecka-Jamro, D.; Pikuła, W.; Jańczak-Pieniążek, M. Effect of nitrogen fertilization and inoculation with Bradyrhizobium japonicum on nodulation and yielding of soybean. Agronomy 2023, 13, 1341. [Google Scholar] [CrossRef]
- World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil. In World Soil Resources Report; FAO: Rome, Italy, 2014; Volume 106. [Google Scholar]
- Instytut Uprawy Nawożenia i Gleboznawstwa—Państwowy Instytut Badawczy. Karta Glebowa. Available online: https://www.iung.pl/o-instytucie/struktura/dzialy-wspomagania/karta-glach/ (accessed on 14 April 2024).
- TIBCO Software Inc. Statistica (Data Analysis Software System), version 13; TIBCO Software Inc.: Palo Alto, CA, USA, 2017. Available online: https://www.statsoft.pl/ (accessed on 12 January 2025).
- Pörtner, H.-O.; Roberts, D.C.; Poloczanska, E.S.; Mintenbeck, K.; Tignor, M.; Alegría, A.; Craig, M.; Langsdorf, S.; Löschke, S.; Möller, V.; et al. Intergovernmental Panel on Climate Change (IPCC). In Climate Change 2022: Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK, 2023; pp. 8–21. [Google Scholar] [CrossRef]
- Nendel, C.; Reckling, M.; Debaeke, P.; Schulz, S.; Berg-Mohnicke, M.; Constantin, J.; Fronzek, S.; Hoffmann, M.; Jakšić, S.; Kersebaum, K.; et al. Future area expansion outweighs increasing drought risk for soybean in Europe. Glob. Change Biol. 2023, 29, 1340–1358. [Google Scholar] [CrossRef]
- Ouédraogo, E.R.; Konaté, K.; Sanou, A.; Sama, H.; Compaoré, E.W.R.; Sytar, O.; Hilou, A.; Brestic, M.; Dicko, M.H. Assessing the quality of Burkina Faso soybeans based on fatty acid composition and pesticide residue contamination. Molecules 2022, 27, 6260. [Google Scholar] [CrossRef]
- Szpunar-Krok, E.; Wondołowska-Grabowska, A. Quality evaluation indices for soybean oil in relation to cultivar, application of N fertiliser and seed inoculation with Bradyrhizobium japonicum. Foods 2022, 11, 762. [Google Scholar] [CrossRef]
- Yaklich, R.W.; Vinyard, B.T. A method to estimate soybean seed protein and oil concentration before harvest. J. Am. Oil Chem. Soc. 2004, 81, 1021–1027. [Google Scholar] [CrossRef]
- Staniak, M.; Czopek, K.; Stępień-Warda, A.; Kocira, A.; Przybyś, M. Cold stress during flowering alters plant structure, yield and seed quality of different soybean genotypes. Agronomy 2021, 11, 2059. [Google Scholar] [CrossRef]
- Thomas, J.M.G.; Boote, K.J.; Allen, L.H.; Gallo-Meagher, M.; Davis, J.M. Elevated temperature and carbon dioxide effects on soybean seed composition and transcript abundance. Crop Sci. 2003, 43, 1548–1557. [Google Scholar] [CrossRef]
- Ody, L.P.; Baisch, J.S.; Ugalde, G.; Grohs, M.; Dorneles, A.B.; Neu, G.R.F.; Santos, M.S.N.; Ferreira, P.A.A.; Tres, M.V.; Zabot, G.L. Early sowing and soil scarification improve protein and oil contents in soybean grains cultivated in lowlands. J. Soil. Sci. Plant Nutr. 2024, 24, 1015–1029. [Google Scholar] [CrossRef]
- Wilson, R.F. Seed composition. In Soybeans: Improvement, Production, and Uses; Boerma, H.R., Specht, J.E., Eds.; The American Society of Agronomy, Inc.: Madison, WI, USA, 2004; pp. 621–677. [Google Scholar]
- Lanna, A.; José, I.C.; Oliveira, M.G.; Barros, E.; Alves, M. Effect of temperature on polyunsaturated fatty acid accumulation in soybean seeds. Braz. J. Plant Physiol. 2005, 17, 213–222. [Google Scholar] [CrossRef]
- Bellaloui, N.; Mengistu, A.; Walker, E.R.; Young, L.D. Soybean seed composition as affected by seeding rates and row spacing. Crop Sci. 2014, 54, 1782–1795. [Google Scholar] [CrossRef]
- Bellaloui, N.; McClure, A.M.; Mengistu, A.; Abbas, H.K. The influence of agricultural practices, the environment, and cultivar differences on soybean seed protein, oil, sugars, and amino acids. Plants 2020, 9, 378. [Google Scholar] [CrossRef]
- Mourtzinis, S.; Gaspar, A.; Naeve, S.; Conley, S. Planting date, maturity, and temperature effects on soybean seed yield and composition. Agron. J. 2017, 109, 2040–2049. [Google Scholar] [CrossRef]
- Bellaloui, N.; Smith, J.R.; Ray, J.D.; Gillen, A.M. Effect of maturity on seed composition in the early soybean production system as measured on near-isogenic soybean lines. Crop Sci. 2009, 49, 608–620. [Google Scholar] [CrossRef]
- Alsajri, F.A.; Wijewardana, C.; Irby, J.T.; Bellaloui, N.; Krutz, L.J.; Golden, B.; Gao, W.; Reddy, K.R. Developing functional relationships between temperature and soybean yield and seed quality. Agron. J. 2020, 112, 194–204. [Google Scholar] [CrossRef]
- Piper, E.; Boote, K. Temperature and cultivar effects on soybean seed oil and protein concentrations. J. Am. Oil Chem. Soc. 1999, 76, 1233–1241. [Google Scholar] [CrossRef]
- Carrera, C.; Martínez, M.J.; Dardanelli, J.; Balzarini, M. Environmental variation and correlation of seed components in nontransgenic soybeans: Protein, oil, unsaturated fatty acids, tocopherols, and isoflavones. Crop Sci. 2011, 51, 800–809. [Google Scholar] [CrossRef]
- Carrera, C.; Martínez, M.J.; Dardanelli, J.; Balzarini, M. Water deficit effect on the relationship between temperature during the seed fill period and soybean seed oil and protein concentrations. Crop Sci. 2009, 49, 990–998. [Google Scholar] [CrossRef]
- Gawęda, D.; Haliniarz, M.; Andruszczak, S.; Wacławowicz, R. The effect of herbicides and biostimulant application on the seed yield and seed quality of soybean (Glycine max (L.) Merr.). Agronomy 2024, 14, 2174. [Google Scholar] [CrossRef]
- Vollmann, J.; Fritz, C.N.; Wagentristl, H.; Ruckenbauer, P. Environmental and genetic variation of soybean seed protein content under Central European growing conditions. J. Sci. Food Agric. 2000, 80, 1300–1306. [Google Scholar] [CrossRef]
- Kocira, S.; Szparaga, A.; Hara, P.; Treder, K.; Findura, P.; Bartoš, P.; Filip, M. Biochemical and economical efect of application biostimulants containing seaweed extracts and amino acids as an element of agroecological management of bean cultivation. Sci. Rep. 2020, 10, 17759. [Google Scholar] [CrossRef]
- Dornbos, D.L.; Mullen, R.E. Soybean seed protein and oil contents and fatty acid composition adjustments by drought and temperature. J. Am. Oil Chem. Soc. 1992, 69, 228–231. [Google Scholar] [CrossRef]
- Mourtzinis, S.; Conley, S.P. Delineating soybean maturity groups across the United States. Agron. J. 2017, 109, 1397–1403. [Google Scholar] [CrossRef]
- Pipolo, A.; Sinclair, T.; Camara, G. Protein and oil concentration of soybean seed cultured in vitro using nutrient solutions of differing glutamine concentration. Ann. Appl. Biol. 2004, 144, 223–227. [Google Scholar] [CrossRef]
- Whaley, R.; Eskandari, M. Genotypic main effect and genotype-by-environment interaction effect on seed protein concentration and yield in food-grade soybeans (Glycine max (L.) Merrill). Euphytica 2019, 215, 33. [Google Scholar] [CrossRef]
- Ding, W.; Lin, J.; Li, C.; Zhu, Z.; Wu, C.; Cao, J.; Liu, D.; Zhang, Y.; Yang, Q.; Xing, A.; et al. Development of a comprehensive evaluation system and models to determine soybean seed vigor. Ind. Crops Prod. 2025, 224, 120329. [Google Scholar] [CrossRef]
Soil Properties | Year | ||
---|---|---|---|
2017 | 2018 | 2019 | |
pH (in KCl) | 6.9 | 7.1 | 7.2 |
Corg (gkg−1) | 9.0 | 8.9 | 9.3 |
Nt (gkg−1) | 0.75 | 0.77 | 0.81 |
Fet (gkg−1) | 995 | 990 | 997 |
Bt (gkg−1) | 0.70 | 0.68 | 0.74 |
Pav (mgkg−1) | 55.8 | 57.1 | 56.2 |
Kav (mgkg−1) | 132.8 | 130.3 | 131.6 |
Mgav (mgkg−1) | 26.5 | 25.9 | 26.4 |
Month | Precipitation | Humidity | GDD | ||||||
---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2019 | 2017 | 2018 | 2019 | 2017 | 2018 | 2019 | |
April | 82 | 52 | 9 | 70.6 | 63.3 | 53.7 | 17.5 | 108.2 | 42.9 |
May | 46 | 26 | 114 | 68.3 | 63.7 | 70.9 | 126.6 | 185.0 | 116.9 |
June | 56 | 75 | 29 | 66.2 | 64.5 | 65.1 | 224.2 | 243.3 | 332.2 |
July | 76 | 96 | 40 | 72.7 | 74.2 | 67.5 | 250.7 | 314.3 | 257.4 |
August | 53 | 29 | 72 | 71.8 | 71.0 | 68.0 | 282.5 | 312.1 | 290.5 |
September | 112 | 42 | 42 | 83.9 | 72.6 | 74.9 | 124.6 | 171.2 | 132.6 |
Sum/Average (Apr–Sept) | 425 | 320 | 306 | 72.3 | 68.2 | 66.7 | 1026.1 | 1334.1 | 1172.5 |
Means for Year × Cultivar Interaction | |||||
---|---|---|---|---|---|
Year | Cultivar | Fat (%) | Dry Matter (%) | Crude Fibre (%) | Ash (%) |
2017 | Abelina | 20.38 B | 94.08 | 8.79 A | 5.03 A |
2017 | SG Anser | 21.23 B | 93.77 | 8.86 A | 5.23 A |
2017 | Merlin | 22.15 A | 93.98 | 9.59 A | 4.88 B |
Means for 2017 | 21.25 B | 93.94 B | 9.08 B | 5.05 C | |
2018 | Abelina | 23.26 A | 95.17 | 8.99 B | 5.13 B |
2018 | SG Anser | 23.20 A | 94.80 | 9.18 AB | 5.37 A |
2018 | Merlin | 23.09 A | 95.03 | 9.41 A | 5.47 A |
Means for 2018 | 23.18 A | 95.00 A | 9.19 A | 5.32 B | |
2019 | Abelina | 21.82 A | 94.01 | 9.03 A | 5.10 A |
2019 | SG Anser | 22.11 A | 93.75 | 8.33 B | 5.30 A |
2019 | Merlin | 22.72 A | 93.98 | 9.00 A | 5.17 A |
Mean for 2019 | 22.22 B | 93.91 B | 8.79 C | 5.19 B | |
Means for year × biostimulant interaction | |||||
Year | Biostimulant | Fat (%) | Dry matter (%) | Crude fibre (%) | Ash (%) |
2017 | Control | 20.48 B | 93.68 B | 9.28 A | 4.96 A |
2017 | Asahi SL | 21.12 B | 94.11 A | 8.79 A | 5.14 A |
2017 | Improver | 22.16 A | 94.05 A | 9.17 A | 5.04 A |
2018 | Control | 23.20 AB | 95.00 A | 9.24 A | 5.17 A |
2018 | Asahi SL | 23.77 A | 95.03 A | 9.10 A | 5.43 A |
2018 | Improver | 22.58 B | 94.97 A | 9.23 A | 5.37 A |
2019 | Control | 21.73 B | 93.95 A | 9.00 A | 5.07 A |
2019 | Asahi SL | 22.59 A | 93.98 A | 8.67 A | 5.30 A |
2019 | Improver | 22.32 AB | 93.82 A | 8.70 A | 5.20 A |
Means for cultivar x biostimulant interaction | |||||
Cultivar | Biostimulant | Fat (%) | Dry matter (%) | Crude fibre (%) | Ash (%) |
Abelina | Control | 21.20 B | 94.35 A | 8.91 B | 5.05 B |
Asahi SL | 22.56 A | 94.48 A | 8.60 B | 5.20 A | |
Improver | 21.71 B | 94.43 A | 9.30 A | 5.02 B | |
Means for Abelina | 21.82 B | 94.42 A | 8.94 B | 5.09 B | |
SG Anser | Control | 21.56 B | 93.87 B | 9.28 A | 5.07 B |
Asahi SL | 22.06 B | 94.34 A | 8.56 B | 5.47 A | |
Improver | 22.92 A | 94.11 A | 8.53 B | 5.36 B | |
Means for SG Anser | 22.18 AB | 94.11 B | 8.79 B | 5.30 AB | |
Merlin | Control | 22.62 A | 94.40 A | 9.33 A | 5.08 B |
Asahi SL | 22.86 A | 94.30 A | 8.40 A | 5.21 A | |
Improver | 22.43 A | 94.30 A | 9.27 A | 5.23 A | |
Means for Merlin | 22.65 A | 94.33 A | 9.33 A | 5.17 A | |
Means for the biostimulants | Fat (%) | Dry matter (%) | Crude fibre (%) | Ash (%) | |
Control | 21.80 B | 94.21 B | 8.94 B | 5.07 C | |
Asahi SL | 22.49 A | 94.37 A | 8.79 B | 5.29 A | |
Improver | 22.35 AB | 94.28 A | 9.33 A | 5.20 B |
Means for Year × Cultivar Interaction | |||||
---|---|---|---|---|---|
Year | Biostimulant | Protein (%) | Nitrogen (%) | Phosphorus (%) | Potassium (%) |
2017 | Control | 35.21 C | 4.61 C | 0.65 B | 1.62 C |
2017 | Asahi SL | 36.19 B | 4.82 A | 0.69 A | 1.69 B |
2017 | Improver | 36.38 A | 4.77 B | 0.67 AB | 1.79 A |
Means for 2017 | 35.93 B | 4.73 C | 0.67 A | 1.7 A | |
2018 | Control | 36.21 C | 5.57 C | 0.59 C | 1.42 C |
2018 | Asahi SL | 37.59 A | 5.89 A | 0.63 B | 1.59 B |
2018 | Improver | 37.06 B | 5.77 B | 0.66 A | 1.62 A |
Means for 2018 | 36.95 A | 5.75 A | 0.62 B | 1.54 B | |
2019 | Control | 34.72 C | 5.13 C | 0.62 C | 1.54 B |
2019 | Asahi SL | 36.89 A | 5.29 B | 0.66 B | 1.77 A |
2019 | Improver | 36.12 B | 5.42 A | 0.68 A | 1.71 A |
Means for 2019 | 35.91 B | 5.41 B | 0.65 AB | 1.67 AB | |
Means for cultivar × biostimulant interaction | |||||
Cultivar | Biostimulant | Protein (%) | Nitrogen (%) | Phosphorus (%) | Potassium (%) |
Abelina | Control | 35.71 C | 5.14 B | 0.57 C | 1.57 C |
Asahi SL | 37.97 A | 5.46 A | 0.69 B | 1.84 A | |
Improver | 37.49 B | 5.22 B | 0.71 A | 1.75 B | |
Means for Abelina | 37.06 A | 5.27 A | 0.66 A | 1.72 A | |
SG Anser | Control | 35.45 C | 5.08 C | 0.67 A | 1.45 B |
Asahi SL | 36.24 B | 5.33 A | 0.66 A | 1.58 A | |
Improver | 35.75 A | 5.26 B | 0.67 A | 1.65 A | |
Means for SG Anser | 35.82 B | 5.22 A | 0.65 A | 1.56 B | |
Merlin | Control | 34.98 C | 5.09 B | 0.71 A | 1.56 B |
Asahi SL | 36.45 A | 5.20 B | 0.67 A | 1.64 A | |
Improver | 36.31 B | 5.56 A | 0.64 A | 1.73 A | |
Means for Merlin | 35.91 B | 5.28 A | 0.63 B | 1.64 AB | |
Means for biostimulants | Protein (%) | Nitrogen (%) | Phosphorus (%) | Potassium (%) | |
Control | 35.38 C | 5.10 B | 0.62 C | 1.53 B | |
Asahi SL | 36.89 A | 5.33 A | 0.66 B | 1.68 A | |
Improver | 36.52 B | 5.34 A | 0.67 A | 1.71 A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rymuza, K.; Radzka, E.; Cała, J. The Impact of Cultivars and Biostimulants on the Compounds Contained in Glycine max (L.) Merr. Seeds. Agriculture 2025, 15, 1796. https://doi.org/10.3390/agriculture15171796
Rymuza K, Radzka E, Cała J. The Impact of Cultivars and Biostimulants on the Compounds Contained in Glycine max (L.) Merr. Seeds. Agriculture. 2025; 15(17):1796. https://doi.org/10.3390/agriculture15171796
Chicago/Turabian StyleRymuza, Katarzyna, Elżbieta Radzka, and Joanna Cała. 2025. "The Impact of Cultivars and Biostimulants on the Compounds Contained in Glycine max (L.) Merr. Seeds" Agriculture 15, no. 17: 1796. https://doi.org/10.3390/agriculture15171796
APA StyleRymuza, K., Radzka, E., & Cała, J. (2025). The Impact of Cultivars and Biostimulants on the Compounds Contained in Glycine max (L.) Merr. Seeds. Agriculture, 15(17), 1796. https://doi.org/10.3390/agriculture15171796