Comprehensive Analysis of Soil Physicochemical Properties and Optimization Strategies for “Yantai Fuji 3” Apple Orchards
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sample Collection
2.3. Soil Physicochemical Property Determination
2.4. Soil Quality Classification Standard for Apple Orchards
2.5. Data Processing
3. Results
3.1. Descriptive Statistics Analysis of Soil Physicochemical Properties in Yantai Apple Orchards
3.2. Frequency Distribution Analysis of Soil Quality Classification Indexes in the Yantai Apple Orchard Region
3.3. Canonical Correlation Analysis of Soil Physicochemical Properties in Yantai Apple Orchards
3.4. Establishment of the Stepwise Regression Equation for Soil Physicochemical Properties in the Yantai Apple Orchard Region
3.5. Analysis of Regression Fit Model for Soil Physicochemical Properties in Yantai Apple Orchards
4. Discussion
4.1. Current Status and Quality Assessment of Soil Physicochemical Properties in Yantai Apple Orchards
4.2. Multivariate Statistical Analysis and Regression Fit Model Analysis of Soil Physicochemical Properties in the Yantai Apple Orchard Region
4.3. Soil Quality Improvement Program for Yantai Apple Orchards: Research Summary and Future Research Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ke, B.; Zhang, Q.Q.; Georgiev, G. Assessing the Efficiency and Potential of China’s Apple Exports. Complexity 2024, 2024, 7816792. [Google Scholar] [CrossRef]
- Yantai Apple Brand Value of 15.837 Billion, for 15 Consecutive Years Ranked First in China’s Fruit Regional Public Brand Value! Available online: https://www.yantai.gov.cn/art/2024/8/26/art_11800_3209600.html (accessed on 26 August 2024).
- Kai, T.; Adhikari, D. Effect of Organic and Chemical Fertilizer Application on Apple Nutrient Content and Orchard Soil Condition. Agriculture 2021, 11, 340. [Google Scholar] [CrossRef]
- Zhuang, L.P.; Wang, P.L.; Hu, W.; Yang, R.Y.; Zhang, Q.Q.; Jian, Y.Y.; Zou, Y.J. A Comprehensive Study on the Impact of Chemical Fertilizer Reduction and Organic Manure Application on Soil Fertility and Apple Orchard Productivity. Agronomy 2024, 14, 1398. [Google Scholar] [CrossRef]
- Wienhold, B.J.; Andrews, S.S.; Karlen, D.L. Soil Quality: A Review of the Science and Experiences in the USA. Environ. Geochem. Health 2004, 26, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Castellini, M.; Stellacci, A.; Barca, E.; Iovino, M. Application of Multivariate Analysis Techniques for Selecting Soil Physical Quality Indicators: A Case Study in Long-Term Field Experiments in Apulia (Southern Italy). Soil Sci. Soc. Am. J. 2019, 83, 707–720. [Google Scholar] [CrossRef]
- Gao, Z.L.; Wang, W.Q.; Wang, H.J.; Li, R.Y. Selection of Spectral Parameters and Optimization of Estimation Models for Soil Total Nitrogen Content during Fertilization Period in Apple Orchards. Horticulturae 2024, 10, 358. [Google Scholar] [CrossRef]
- Lu, C.; Xue, X.M.; Wang, C.L.; An, G.N.; Wang, J.Z. Correlation Analysis on Fruit Quality and Leaves Nutrition and Soil Nutrient in Apple Orchard of Shandong Province. Chin. Agric. Sci. Bull. 2011, 27, 168–172. (In Chinese) [Google Scholar]
- Zhang, Q.; Li, M.J.; Zhou, B.B.; Li, X.L.; Sun, J.; Zhang, J.K.; Wei, Q.P. Multivariate Analysis of Relationship between Soil Nutrient Factors and Fruit Quality Characteristic of ‘Fuji’ Apple in Two Dominant Production Regions of China. Ying Yong Sheng Tai Xue Bao 2017, 28, 105–114. [Google Scholar] [CrossRef]
- Jivan, C.; Sala, F. Relationship between Tree Nutritional Status and Apple Quality. Hortic. Sci. 2014, 41, 1–9. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Chen, Y.Q.; Dai, H.C.; Cui, J.X.; Wang, L.; Sui, P. Effects of Organic Amendments on the Improvement of Soil Nutrients and Crop Yield in Sandy Soils during a 4-Year Field Experiment in Huang-Huai-Hai Plain, Northern China. Agronomy 2021, 11, 157. [Google Scholar] [CrossRef]
- Cavael, U.; Diehl, K.; Lentzsch, P. Assessment of Growth Suppression in Apple Production with Replant Soils. Ecol. Indic. 2020, 109, 105846. [Google Scholar] [CrossRef]
- Bray, R.H. Soil-Plant Relations: II. Balanced fertilizer Use Through Soil TestsFor Potassium and Phosphorus. Soil Sci. 1945, 60, 463–474. [Google Scholar] [CrossRef]
- Ahamad, A.; Gupta, A.; Kumar, D. Soil Fertility Evaluation Using Nutrient Index Approach. J. Krishi Vigyan 2021, 10, 276–282. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.J.; Wu, L.; Ren, Y.; Sun, J.; Zhang, J.D.; Xu, M.G. Advance in Indicator Screening and Methodologies of Soil Quality Evaluation. Sci. Agric. Sin. 2021, 54, 3043–3056. [Google Scholar] [CrossRef]
- Juhos, K.; Szabó, S.; Ladányi, M. Explore the Influence of Soil Quality on Crop Yield Using Statistically-Derived Pedological Indicators. Ecol. Indic. 2016, 63, 366–373. [Google Scholar] [CrossRef]
- Dai, W.; Li, Y.H.; Fu, W.J.; Jiang, P.K.; Zhao, K.L.; Li, Y.F.; Penttinen, P. Spatial Variability of Soil Nutrients in Forest Areas: A Case Study from Subtropical China. J. Plant Nutr. Soil Sci. 2018, 181, 827–835. [Google Scholar] [CrossRef]
- Ge, S.; Zhu, Z.; Jiang, Y. Long-Term Impact of Fertilization on Soil pH and Fertility in an Apple Production System. J. Soil Sci. Plant Nutr. 2018, 18, 282–293. [Google Scholar] [CrossRef]
- Gulbagca, F.; Burhan, H.; Elmusa, F.; Sen, F. Calcium Nutrition in Fruit Crops: Agronomic and Physiological Implications. In Fruit Crops; Elsevier: Amsterdam, The Netherlands, 2020; pp. 173–190. [Google Scholar] [CrossRef]
- Torres, E.; Kalcsits, L.; González Nieto, L. Is Calcium Deficiency the Real Cause of Bitter Pit? A Review. Front. Plant Sci. 2024, 15, 1383645. [Google Scholar] [CrossRef]
- Wang, S.J.; Chen, Q.; Li, Y.; Zhuo, Y.Q.; Xu, L.Z. Research on Saline-alkali soil Amelioration with FGD Gypsum. Resour. Conserv. Recycl. 2017, 121, 82–92. [Google Scholar] [CrossRef]
- Lu, R.K. Soil Agrochemical Analysis Method, 1st ed.; Zhu, H.Z., He, P.A., Eds.; China Agricultural Science and Technology Press: Beijing, China, 2000; pp. 13–14, 87–89, 150–152, 181–182, 193–195. ISBN 7-80119-925-1. [Google Scholar]
- Yu, J.; Miao, S.J.; Qiao, Y.F. The Stabilization Mechanism of Different Types of Soil Aggregates. Chin. Agric. Sci. Bull. 2022, 38, 89–95. (In Chinese) [Google Scholar] [CrossRef]
- Rengasamy, P. Irrigation Water Quality and Soil Structural Stability: A Perspective with Some New Insights. Preprints 2018, 8, 72. [Google Scholar] [CrossRef]
- Farahani, E.M.A.M.I.; Emami, H.; Fotovat, A.; Khorassani, R. Effect of Different K:Na Ratios in Soil on Dispersive Charge, Cation Exchange, and Zeta Potential. Eur. J. Soil Sci. 2019, 70, 311–320. [Google Scholar] [CrossRef]
- Curtin, D.; Steppuhn, H.; Selles, F. Structural Stability of Chernozemic Soils as Affected by Exchangeable Sodium and Electrolyte Concentration. Can. J. Soil Sci. 1994, 74, 157–164. [Google Scholar] [CrossRef]
- Buvaneshwari, S.; Riotte, J.; Sekhar, M.; Sharma, A.K.; Helliwell, R.; Kumar, M.S.M.; Braun, J.J.; Ruiz, L. Potash Fertilizer Promotes Incipient Salinization in Groundwater Irrigated Semi-arid Agriculture. Sci. Rep. 2020, 10, 3691. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.B.; Wang, L.X.; Li, H.T.; Zhang, S.Y.; Yang, J.F.; Liu, N.; Han, X.R. Effects of Long-Term Application of Cl-Containing Fertilizers on Chloride Content and Acidification in Brown Soil. Sustainability 2023, 15, 8801. [Google Scholar] [CrossRef]
- Heiniger, R.; McBride, R.; Clay, D. Using Soil Electrical Conductivity to Improve Nutrient Management. Agron. J. 2003, 95, 508–519. [Google Scholar] [CrossRef]
- Fox, G.; Metla, R. Soil Property Analysis Using Principal Components Analysis, Soil Line, and Regression Models. Soil Sci. Soc. Am. J. 2005, 69, 1782–1788. [Google Scholar] [CrossRef]
- Zhang, Q.; Wei, Q.P.; Liu, H.P.; Jiang, R.S.; Liu, X.D.; Wang, X.W. Multivariate Analysis and Optimum Proposals of the Relationship Between Soil Nutrients and Fruit Qualities in Apple Orchard. Sci. Agric. Sin. 2011, 44, 1654–1661. (In Chinese) [Google Scholar]
- Zhang, Y.; Xie, Y.S.; He, M.D. Limiting Ecological Factors Evaluation of High-Quality Apple at Wangdonggou Watershed in Loess Gully Region. Sci. Agric. Sin. 2022, 38, 89–95. (In Chinese) [Google Scholar] [CrossRef]
- Mota, M.; Martins, M.J.; Policarpo, G.; Sprey, L.; Pastaneira, M.; Almeida, P.; Maurício, A.; Rosa, C.; Faria, J.; Martins, M.B.; et al. Nutrient Content with Different Fertilizer Management and Influence on Yield and Fruit Quality in Apple cv. Gala. Horticulturae 2022, 8, 713. [Google Scholar] [CrossRef]
- Zheng, X.C.; Che, J.X.; Lu, H.J.; Zhai, B.N.; Zhao, Z.Y. Analysis on Soil Nutrient Availability of Fuji Apple Demonstration Orchards in Baishui County in Weibei Area of Shaanxi. Sci. Acta Agric. Boreali-Occident. Sin. 2011, 20, 97–101. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, L.N.; Li, J.; Fan, P.; Cao, Y.; Ju, K. Distribution of Soil NPK Nutrient Content in Deep Soil Profile of Typical Apple Orchards on the Loess Plateau. Acta Ecol. Sin. 2013, 33, 1907–1915. (In Chinese) [Google Scholar] [CrossRef]
- Cao, S.; Ouyang, M.Y.; Zhou, W.J.; Cui, H.J.; Liu, P.; Tan, J.; Huang, L.; Liu, S. Multivariate Analysis and Modeling of Fruit Mineral Nutrient, Soil Nutrient and pH in Satsuma Mandarin Citrus Orchards in Hunan Province. J. Fruit Sci. 2019, 36, 1029–1039. (In Chinese) [Google Scholar] [CrossRef]
- Yildiz, E.; Yaman, M.; Sümbül, A. Relationships Between Physical and Chemical Properties of Soils and Plant Nutrient Content of Leaves in the Apple Orchards. Curr. Trends Nat. Sci. 2022, 11, 139–144. [Google Scholar] [CrossRef]
- Ganai, A.Q.; Dar, M.A.; Chesti, M.H.; Dar, N.A. Correlation of Physico-Chemical Characteristic with Available Nutrients and Leaf Nutrient Content in Apple (Cv. Red Delicious) Orchard of Jammu and Kashmir (India). Curr. J. Appl. Sci. Technol. 2020, 39, 42–52. [Google Scholar] [CrossRef]
- Faria, M.; Bertocco, T.; Barroso, A.; Carvalho, M.; Fonseca, F.; Delerue Matos, C.; Figueiredo, T.; Sequeira Braga, A.; Valente, T.; Jiménez-Ballesta, R. A Comparison of Analytical Methods for the Determination of Soil pH: Case Study on Burned Soils in Northern Portugal. Fire 2023, 6, 227. [Google Scholar] [CrossRef]
- Leksungnoen, N.; Andriyas, T.; Andriyas, S. ECe Prediction from EC1:5 in Inland Salt-Affected Soils Collected from Khorat and Sakhon Nakhon Basins, Thailand. Commun. Soil Sci. Plant Anal. 2018, 49, 2627–2637. [Google Scholar] [CrossRef]
- Khan, S.A.; Mulvaney, R.L.; Hoeft, R.G. Direct-Diffusion Methods for Inorganic-Nitrogen Analysis of Soil. Soil Sci. Soc. Am. J. 2000, 64, 1083–1089. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, J.; Chen, H.; Han, L. Determination of Available Phosphorus in Alkaline Soil by Molybdenum Blue Spectrophotometry. IOP Conf. Ser. Earth Environ. Sci. 2021, 781, 052003. [Google Scholar] [CrossRef]
- David, D.J. The Tetermination of Exchangeable Sodium, Potassium, Calcium and Magnesium in Soils by Atomic-Absorption Spectrophotometry. Analyst 1960, 85, 495–503. [Google Scholar] [CrossRef]
- Best, R.J. A Rapid Electrometric Method for Determining the Chloride Content of Soils. J. Agric. Sci. 1929, 19, 533–540. [Google Scholar] [CrossRef]
- He, W.S.; Liu, Y.C.; He, J.Y. Relationships Between Soluble Salt Content and Electrical Conductivity for Different Types of Salt-Affected Soils in Ningxia. Agric. Res. Arid Areas 2010, 28, 111–116. (In Chinese) [Google Scholar]
- Sonmez, S.; Buyuktas, D.; Okturen Asri, F.; Citak, S. Assessment of Different Soil to Water Ratios (1:1, 1:2.5, 1:5) in Soil Salinity Studies. Geoderma 2008, 144, 361–369. [Google Scholar] [CrossRef]
- Wang, Q.H.; Ren, Y.F.; Meng, L.; Li, H.; Fu, H.M.; Wang, H.F. Simultaneous Determination of Total Nitrogen and Organic Carbon in Soil with an Elemental Analyzer. Chin. J. Anal. Lab. 2013, 32, 41–45. (In Chinese) [Google Scholar]
- National Soil Survey Office. Soil of China; China Agricultural Publishing House: Beijing, China, 1998; pp. 534–549. ISBN 7-10904-354-1. [Google Scholar]
- Chen, X.N.; Wang, L.X.; Pang, L.H.; Shao, L. Analysis of Soil pH, Organic Matter and Available Nutrient Contents in Applegrowing Areas of Yantai in Shandong. China Fruits 2019, 2019, 25–28+40. (In Chinese) [Google Scholar] [CrossRef]
- Ge, S.F.; Hao, W.Q.; Jiang, H.; Wei, S.C.; Jiang, Y.M. Distribution Characteristics of Soil Organic Matter and pH and the Correlation to Soil Nutrients in Apple Orchards of Yantai. Chin. Agric. Sci. Bull. 2014, 30, 274–278. (In Chinese) [Google Scholar]
- Jiang, Y.M.; Zhang, H.Y.; Zhang, F.S. Theory and Practice of Integrated Nutrient Resource Management for Deciduous Fruit Trees in Northern Regions; China Agricultural Publishing House: Beijing, China, 1994; ISBN 9-78703-067-4937. [Google Scholar]
- Zhang, Z.T.; Xu, W.H.; Jiang, X.L.; Su, X.; Zhang, G.H.; Jiang, Z.W.; Chen, H.N.; Tan, D.S.; Liu, Z.Y.; Yang, J.C. Effects of Organic Fertilizer Instead of Chemical Fertilizer on Maize Growth, Nutrient Absorption and Soil Fertility. Mol. Plant Breed. 2025, 31, 1531–1540. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Z.T.; Yang, J.C.; Sun, X.; Zhang, G.H.; Chen, H.N.; Chen, X.M.; Jiang, X.L. Effect of Base Fertilizer Optimization Treatment on Growth Quality and Economic Benefit of Apple. Yantai Fruits 2021, 2021, 22–25. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Z.T.; Jiang, X.L.; Sun, X.; Zhang, G.H.; Chen, X.M.; Liu, Z.Y.; Zhang, A.R.; Jiang, Z.W.; Yang, J.C. Effects of Chemical Fertilizers Reduction and OrganicFertilizers Increase on Fuji Apple Yield and Quality. Mod. Agric. Sci. Technol. 2021, 2021, 68–72+84. (In Chinese) [Google Scholar] [CrossRef]
- Chen, H.N.; Gao, W.S.; Zheng, L.; Fan, Z.B.; Liu, B.Y.; Liu, H.B. Effects of Silicon-Calcium-Potassium-Magnesium Fertilizer Combined with Fulvic Acid Potassium on Soil Chemical Properties, Yield and Quality of Fruit in Apple Orchard with Acidified Soils. Soil Fertil. Sci. China 2023, 2023, 82–87. (In Chinese) [Google Scholar]
- Zhang, Z.T.; Fan, Z.B.; Leng, W.F.; Yao, J.; Yang, T.J.; Zhang, Z.H.; Chen, H.N.; Liu, B.Y. Effects of Silicon Calcium Potassium Magnesium Fertilizer on Wheat Soil and Yield, Nutrient Utilization. Soil Fertil. Sci. China 2024. accepted (In Chinese) [Google Scholar]
- Liu, Y.N.; Tong, Y.A.; Ma, C.; Wang, B.M.; Zhang, X.Y. Present Situation and Adjustment Measures of Orchard Soil pH in Shaanxi area. Shaanxi J. Agric. Sci. 2019, 65, 58–61. (In Chinese) [Google Scholar]
- Li, Y.N.; Zhong, P.F. Multivariate Analysis and Optimum Proposals of Fruit Quality and Soil Nutrients of Jiuquan Zaosu Red Pear. Non-Wood For. Res. 2024, 42, 99–106+149. (In Chinese) [Google Scholar]
- Zhang, D.; Zheng, L.W.; Han, M.Y.; Gao, C.X.; Luo, W.W.; Ma, J.J. Studies of the Standard Range of the Soil Nutrients in Apple Orchard in Loess Plateau. Acta Hortic. Sin. 2016, 43, 121–131. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Q.; Li, M.J.; Zhou, B.B.; Zhang, J.K.; Wei, Q.P. Quantitative Analysis of Relationship Between Fruit Quality of ‘Fuji’ Apple and Environmental Factors: A Case Study of the Loess Plateau Production Region. Erwerbs-Obstbau 2023, 65, 423–434. [Google Scholar] [CrossRef]
- Zheng, Z.X.; Wang, Y.; Shi, L.; Gong, Q.L.; Zhen, W.; Zhao, Z.Y.; Zhai, B.N. Contents and Distribution of Soil Organic Matter and Nitrogen, Phosphate, Potassium in the Main Apple Production Regions of Shaanxi Province. J. Plant Nutr. Fertil. 2017, 23, 1191–1198. (In Chinese) [Google Scholar] [CrossRef]
- Luo, Y.Z.; Zhang, W.W.; Li, Y.Y.; Yao, H.Y.; Wang, Y.J.; Han, J.G. Analysis and Comprehensive Evaluation of Soil Fertility Characteristics for the UrbanPark in Shanghai. Soil Fertil. Sci. China 2019, 2019, 86–93. (In Chinese) [Google Scholar]
- Acceptance Specification for Planting Soil Quality of Landscaping Project. Available online: http://www.csres.com/detail/285634.html (accessed on 26 August 2024).
- Cheng, M.F.; Jing, J.Y.; Li, C.H.; Wang, Y.J.; Wang, H. Research Progress on the Effects of Chloride Ion on Crop Growth and Soil Properties. J. Zhejiang Agric. Sci. 2010, 2010, 12–14. (In Chinese) [Google Scholar] [CrossRef]
- Ma, R.; Wang, X.N.; Tian, L.; Yu, S.B.; Wei, Z.Q.; Yang, Z.K.; Tan, J.L. Effects of Chlorine Application on Growth, Yield and Quality of Watermelon Planting in Gravel-Sand-Mulched Field. J. Northeast. Agric. Univ. 2022, 53, 58–66. (In Chinese) [Google Scholar] [CrossRef]
- Chen, P.; He, W.S. A Study of Soil Physicochemical Properties for Different Levels of Salinization. J. Agric. Sci. 2016, 37, 36–39. (In Chinese) [Google Scholar]
- Bao, S.D. Soil Agrochemical Analysis, 3rd ed.; Jiang, R.F., Yang, C.G., Eds.; China Agriculture Press: Beijing, China, 2000; pp. 534–549. ISBN 978-7-109-06644-1. [Google Scholar]
- Jiang, Z.B.; Ning, S.R.; Wang, Q.J. A Comprehensive Evaluation of the Effect of Desulfurized Gypsum for Improving Saline-alkali Soil. Acta Pedol. Sin. 2024, 61, 699–713. (In Chinese) [Google Scholar]
- Hartemink, A.E.; Barrow, N.J. Soil pH—Nutrient Relationships: The Diagram. Plant Soil 2023, 486, 209–215. [Google Scholar] [CrossRef]
- Ghafoor, I.; Habib-ur-Rahman, M.; Ali, M.; Afzal, M.; Ahmed, W.; Gaiser, T.; Ghaffar, A. Slow-Release Nitrogen Fertilizers Enhance Growth, Yield, NUE in Wheat Crop and Reduce Nitrogen Losses under an Arid Environment. Environ. Sci. Pollut. Res. 2021, 28, 43528–43543. [Google Scholar] [CrossRef]
- Kulkarni, D.-S.J.; Goswami, A. Effect of Excess Fertilizers and Nutrients: A Review on Impact on Plants and Human Population. In Proceedings of the International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Jaipur, India, 26–28 February 2019. [Google Scholar] [CrossRef]
- Yu, Z.F.; Jiang, X.L.; Yu, B.; Kou, Y.; Zhao, X. Soil Nutrient Status and Fertilization Countermeasures of Orchard in Yantai City. Yantai Fruits 1999, 1999, 12–14. (In Chinese) [Google Scholar]
- Feng, X.J.; Lin, M.; Zhang, W.Q.; Wang, T.Y.; Ping, X.L.; Xu, C.N. Evaluation of Soil Nutritional Status in Satsuma mandarin and Red Beauty orchards. J. Zhejiang Agric. Sci. 2022, 63, 318–321. (In Chinese) [Google Scholar] [CrossRef]
- Cao, S.; Zhou, W.J.; Liu, P.; Tan, J.; Song, B. Multivariate Analysis and Optimization of Relationship Between Soil Nutrients and Fruit Quality in C. sinensis (L.) Osbeck Orchard. Soils 2021, 53, 97–104. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Y.S.; Luo, K.N.; Li, Y.X.; Gu, Q.Y.; Fu, Z.F.; Zhang, X.X.; Feng, H.W. Canonical Correlation Analysis and Optimum Proposals of Soil Nutrients and Fruit Quality of Ningxian Yellow-Flesh Peach. Non-Wood For. Res. 2023, 41, 38–48. (In Chinese) [Google Scholar] [CrossRef]
- Wang, S.Y.; Tan, X.H. Multivariate Analysis of Fruit Qualities and Soil Nutrients in Apple Orchard. J. Shandong Agric. Univ. (Nat. Sci. Ed.) 2022, 53, 24–28. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, J.W.; Yue, C.Y.; Liu, A.H.; Kong, T.T. Multivariate Analysis of Relationship between Soil Nutrients and Grape Qualities for Grapery in Xinjiang Manasi. Southwest China J. Agric. Sci. 2017, 30, 1606–1611. (In Chinese) [Google Scholar] [CrossRef]
- He, B.B.; Jin, G.Q.; Li, Y.J. Correlation of Nitrogen, Phosphorus and Potassium Contents in soil, Spring Shoots and Fruits of Satsuma mandarin. J. Zhejiang Agric. Sci. 2022, 63, 2311–2313+2319. (In Chinese) [Google Scholar] [CrossRef]
- Lu, J.L. Plant Nutrition, 2nd ed.; Zhang, F.S., Li, C.J., Eds.; China Agriculture Press: Beijing, China, 2000; Volume 1, pp. 28–34. ISBN 978-7-81066-512-4. [Google Scholar]
- Li, H.; Yu, M.; Du, X.-Q.; Wang, Z.-F.; Wu, W.-H.; Quintero, F.J.; Jin, X.-H.; Li, H.-D.; Wang, Y. NRT1.5/NPF7.3 Functions as a Proton-Coupled H+/K+ Antiporter for K+ Loading into the Xylem in Arabidopsis. Plant Cell 2017, 29, 2016–2026. [Google Scholar] [CrossRef]
- Wu, Q.J.; Xiao, W.M.; Zhao, X.D.; Zhao, X.D.; Xie, Z.J.; Peng, J.F.; Zhou, C.H. Status, Spatial Distribution, and Fertility of Soil in Pomelo Orchards in Jinggang, Jiangxi Province. J. Agric. Resour. Environ. 2022, 39, 1025–1032. (In Chinese) [Google Scholar] [CrossRef]
- Xing, Y.; Zhu, Z.-L.; Wang, F.; Zhang, X.; Li, B.-Y.; Liu, Z.-X.; Wu, X.-X.; Ge, S.-F.; Jiang, Y.-M. Role of Calcium as a Possible Regulator of Growth and Nitrate Nitrogen Metabolism in Apple Dwarf Rootstock Seedlings. Sci. Hortic. 2021, 276, 109740. [Google Scholar] [CrossRef]
- Mazur, P.; Gozdowski, D.; Wójcik-Gront, E. Soil Electrical Conductivity and Satellite-Derived Vegetation Indices for Evaluation of Phosphorus, Potassium and Magnesium Content, pH, and Delineation of Within-Field Management Zones. Agriculture 2022, 12, 883. [Google Scholar] [CrossRef]
- Chaudhary, S.K. Physico-Chemical Properties, Available Nutrient Content and Their Inter-Relationship in Soils under Rain Fed Maize-Wheat Cropping System, District Reasi (J&K). Ann. Plant Soil Res. 2024, 26, 82–88. [Google Scholar] [CrossRef]
- Singh, A.; Prasad, V. Assessment of Salinity in the Field Soils of Azamgarh and Its Relation to Their Physico-Chemical Properties. Int. J. Plant Environ. 2020, 6, 137–145. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Z.C.; Wang, B.H. Soil Composition and Correlation Analysis of Three Typical Land Use Types in Xinjiang. J. Green Sci. Technol. 2023, 25, 121–126. (In Chinese) [Google Scholar] [CrossRef]
- Han, S.; An, J.Y.; Hwang, J.; Kim, S.B.; Park, B.B. The Effects of Organic Manure and Chemical Fertilizer on the Growth and Nutrient Concentrations of Yellow Poplar (Liriodendron tulipifera Lin.) in a Nursery System. Environ. Sci. Pollut. Res. 2016, 12, 137–143. [Google Scholar] [CrossRef]
- Wang, P.; Guo, J.; Xu, X.; Yan, X.; Zhang, K.; Qiu, Y.; Zhao, Q.; Huang, K.; Luo, X.; Yang, F.; et al. Soil Acidification Alters Root Morphology, Increases Root Biomass but Reduces Root Decomposition in an Alpine Grassland. Environ. Pollut. 2020, 265, 115016. [Google Scholar] [CrossRef]
- Rubio, G.; Zhu, J.; Lynch, J.P. A Critical Test of the Two Prevailing Theories of Plant Response to Nutrient Availability. Am. J. Bot. 2003, 90, 143–152. [Google Scholar] [CrossRef]
- Zhang, Z.T.; Shi, J.Q.; Chen, H.N.; Fan, Z.B.; Leng, W.F.; Liu, D.L.; Liu, B.Y. Effects of Calcium on the Growth and Development of Fruit Trees and Application Research. Deciduous Fruits 2023, 55, 43–47. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Z.T.; Chen, H.N.; Fan, Z.B.; Leng, W.F.; Yao, J.; Liu, B.Y. Effects of Silicon on the Growth and Development of Plant and Application Research. Yantai Fruits 2023, 4, 28–30. (In Chinese) [Google Scholar]
- Zhang, H.; Hartge, K.; Ringe, H. Effectiveness of Organic Matter Incorporation in Reducing Soil Compactibility. Soil Sci. Soc. Am. J. 1997, 61, 239–245. [Google Scholar] [CrossRef]
Index Description * | OM g/kg | AN mg/kg | OP mg/kg | EK mg/kg | Ca mg/kg | EC µs/cm | Index Description | Na mg/kg | SS g/kg | Cl mg/kg |
---|---|---|---|---|---|---|---|---|---|---|
Lowest | <10 | <60 | <10 | <100 | <1000 | <120 | Low | <120 | <3 | <180 |
Low | 10–20 | 60–90 | 10–20 | 100–150 | 1000–2000 | 120–350 | ||||
Middle | 20–30 | 90–120 | 20–30 | 150–200 | 2000–3000 | 350–1000 | ||||
High | 30–40 | 120–150 | 30–40 | 200–250 | 3000–4000 | 1000–2000 | High | ≥120 | ≥3 | ≥180 |
Highest | ≥40 | ≥150 | ≥40 | ≥250 | ≥4000 | ≥2000 |
Index * | pH | OM g/kg | AN mg/kg | OP mg/kg | EK mg/kg | Ca mg/kg | EC µs/cm | Na mg/kg | SS g/kg | Cl mg/kg |
---|---|---|---|---|---|---|---|---|---|---|
Mean ± SE | 6.45 ±0.21 | 22.42 ±3.36 | 142.21 ±21.25 | 106.91 ±17.81 | 371.78 ±63.37 | 1650.63 ±202.09 | 550.22 ±137.83 | 204.55 ±19.83 | 2.94 ±0.3 | 22.5 ±7.72 |
CV % | 14.04 | 65.40 | 65.14 | 72.63 | 74.30 | 53.37 | 109.19 | 42.26 | 44.32 | 149.64 |
AV | 4.73–7.69 | 3.81–50.19 | 20.98– 312.46 | 31.05–284.84 | 41.41–844.59 | 376.68– 3465.70 | 59.6–2260 | 83.16– 421.30 | 0.83–5.1 | 7.13– 142.37 |
Soil Qualities (y) | Soil Physicochemical Properties (x) | Regression Equations 1 | F 2 | RMSE 3 | AIC 4 | AICc 5 |
---|---|---|---|---|---|---|
pH | OM, Ca | y = 0.02445x2 + 0.0004366x6 + 5.18536 | 5.864 * | 0.847236 | 53.62019 | 55.22019 |
OM | y = 0.03118x2 + 5.75525 | 5.806 * | 1.010764 | 58.3265 | 59.0765 | |
Ca | y = 0.000541x6 + 5.56124 | 6.504 * | 0.962426 | 56.46435 | 57.21435 | |
OM | pH, OP, EK, EC, Na, SS, Cl | y = 3.10842x1 + 0.04746x4 + 0.02802x5 + 0.00119x7 − 0.00772x8 + 1.49338x9 − 0.01977x10 − 16.15609 | 10.026 *** | 54.71341 | 221.9998 | 236.3998 |
pH, OP, EK | y = 2.96924x1 + 0.05151x4 + 0.0317x5 − 14.03545 | 29.821 **** | 56.66747 | 215.3333 | 218.1904 | |
OP, EK | y = 0.05486x4 + 0.0346x5 + 3.69217 | 38.425 **** | 54.22059 | 211.656 | 213.256 | |
pH, EK | y = 3.11539x1 + 0.04369x5 − 13.93099 | 40.393 **** | 66.20909 | 219.2467 | 220.8467 | |
pH, OP | y = 3.92747x1 + 0.14244x4 − 18.15811 | 24.661 **** | 89.71605 | 230.7924 | 232.3924 | |
pH | y = 8.16583x1 − 30.28457 | 5.806 * | 286.5772 | 272.924 | 273.674 | |
OP | y = 0.15835x4 + 5.48982 | 40.290 **** | 88.7981 | 228.4015 | 229.1515 | |
EK | y = 0.04756x5 + 4.73612 | 69.276 **** | 59.14407 | 212.9588 | 213.7088 | |
AN | EK, EC, Cl | y = −0.06334x3 + 0.16938x7 − 0.70903x10 + 88.51688 | 6.123 ** | 5784.364 | 391.1104 | 393.9675 |
EK | y = 0.16535x5 + 80.73892 | 5.460 * | 12,268.21 | 415.6808 | 416.4308 | |
OP | OM, EK, EC, SS | y = 2.15557x2 + 0.16751x5 − 0.02201x7 + 0.85025x9 + 5.91856 | 10.789 *** | 3167.341 | 370.2243 | 374.8397 |
OM, EK | y = 2.28702x2 + 0.12761x5 + 8.19773 | 23.234 *** | 3123.858 | 365.699 | 367.299 | |
OM | y = 4.44127x2 + 7.34313 | 40.290 **** | 2897.308 | 360.8381 | 361.5881 | |
EK | y = 0.23639x5 + 19.02934 | 41.045 *** | 4086.369 | 373.9053 | 374.6553 | |
EK | OM, AN, OP, EC, Na, SS, Cl | y = 7.02255x2 + 0.51911x3 + 1.73416x4 − 0.13412x7 − 0.13803x8 + 18.54982x9 + 3.43519x10 − 74.69012 | 15.424 **** | 12,337.42 | 427.8946 | 442.2946 |
OM, AN, OP | y = 10.23906x2 + 0.63917x3 + 1.17234x4 − 74.01117 | 33.409 **** | 16,399.39 | 430.7096 | 433.5668 | |
AN, OP | y = 0.87921x3 + 2.71944x4 − 43.99942 | 29.774 **** | 28,719.76 | 450.0026 | 451.6026 | |
OM, OP | y = 12.11929x2 + 1.0723x4 − 14.57107 | 39.037 **** | 22,969.26 | 441.5123 | 443.1123 | |
OM, AN | y = 15.54414x2 + 0.59538x3 − 61.38013 | 41.317 **** | 17,524.59 | 431.2314 | 432.8314 | |
OM | y = 16.88168x2 − 6.69701 | 69.276 **** | 23,047.28 | 439.6412 | 440.3912 | |
AN | y = 1.47021x3 + 162.69976 | 5.460 * | 110,188.5 | 499.0977 | 499.8477 | |
OP | y = 2.99137x4 + 51.96166 | 41.045 **** | 43,038.65 | 463.3741 | 464.1241 | |
Ca | pH | y = 511.47475x1 − 1650.53851 | 6.503 * | 988,446.8 | 582.4675 | 583.2175 |
EC | OM, AN, OP, EK, Na, SS, Cl | y = 1.33274x2 + 1.82796x3 + 2.92141x4 − 0.42446x5 − 0.48058x8 + 60.87424x9 + 11.9421x10 − 243.51569 | 23.832 **** | 30,621.06 | 462.4385 | 476.8385 |
OM, AN, OP, EK | y = 3.95122x2 + 2.98755x3 − 0.39564x4 + 1.07747x5 − 321.51118 | 10.426 **** | 160,923.1 | 519.4896 | 524.105 | |
AN, OP, EK | y = 2.94944x3 − 0.20299x4 + 1.22617x5 − 303.38725 | 14.770 **** | 159,205.1 | 517.0817 | 519.9389 | |
OM, OP, EK | y = −0.55038x2 − 2.03912x4 + 2.17407x5 − 27.70535 | 7.743 *** | 216,098.1 | 528.6922 | 531.5493 | |
OM, AN, EK | y = 3.19697x2 + 3.04201x3 + 1.01082x5 − 329.86525 | 14.845 **** | 166,134.6 | 518.7007 | 521.5578 | |
OM, AN, OP | y = 14.98354x2 + 3.67624x3 − 0.86753x4 − 401.25628 | 12.650 *** | 361,255.1 | 548.2186 | 551.0757 | |
OM, AN | y = 18.90927x2 + 3.64383x3 − 391.9094 | 19.876 **** | 225,973.8 | 528.3903 | 529.9903 | |
OM, OP | y = 25.79778x2 + 0.29214x4 − 59.38383 | 6.227 ** | 444,310.2 | 554.0822 | 555.6822 | |
OM, EK | y = -5.2139x2 + 1.91386x5 − 44.42151 | 11.504 *** | 252,359.4 | 532.5868 | 534.1868 | |
AN, OP | y = 4.02751x3 + 3.1315x4 − 357.33798 | 16.983 *** | 264,345.8 | 534.3502 | 535.9502 | |
AN, EK | y = 2.98437x3 + 1.17241x5 − 310.06965 | 23.609 **** | 162,224.6 | 515.7957 | 517.3957 | |
OP, EK | y = -2.06932x4 + 2.15503x5 − 29.73744 | 12.387 *** | 363,322.2 | 546.4354 | 548.0354 | |
OM | y = 27.09524x2 − 57.23863 | 13.209 ** | 442,144.4 | 551.8966 | 552.6466 | |
AN | y = 4.70805x3 − 119.31884 | 18.939 *** | 333,987.1 | 541.2363 | 541.9863 | |
OP | y = 4.37717x4 + 82.2413 | 8.002 * | 568,552.2 | 561.4519 | 562.2019 | |
EK | y = 1.66587x5 − 69.11515 | 24.126 *** | 257,703.9 | 531.3832 | 532.1332 | |
Na | EK, SS, Cl | y = 0.04139x4 + 18.39293x9 + 0.85299x10 + 115.89144 | 3.682 * | 7144.524 | 399.1355 | 401.9927 |
EK | y = 0.17083x4 + 141.03401 | 7.214 * | 7757.603 | 398.264 | 399.014 | |
SS | OM, OP, EK, EC, Na, Cl | y = 0.02458x2 − 0.00165x4 + 0.001061x5 + 0.00106x7 + 0.00281x8 − 0.00727x10 + 1.18 | 3.860 * | 0.94854 | 65.91208 | 76.0939 |
OM, OP, EK | y = 0.02292x2 − 0.00143x4 + 0.00279x5 + 1.54253 | 6.752 ** | 1.094979 | 65.36759 | 68.22474 | |
OM, OP | y = 0.05669x2 + 0.00156x4 + 1.50193 | 8.501 ** | 1.205665 | 67.02684 | 68.62684 | |
OM, EK | y = 0.01966x2 + 0.0026x5 + 1.53084 | 10.722 ** | 1.091904 | 63.26074 | 64.86074 | |
OP, EK | y = -0.0001687x4 + 0.00358x5 + 1.62715 | 10.310 ** | 1.088537 | 63.1434 | 64.7434 | |
OM | y = 0.06363x2 + 1.5134 | 17.880 *** | 1.228649 | 65.74443 | 66.49443 | |
OP | y = 0.01054x4 + 1.81315 | 11.073 ** | 1.358076 | 69.55028 | 70.30028 | |
EK | y = 0.00354x5 + 1.62394 | 21.907 *** | 1.088511 | 61.14248 | 61.89248 | |
Cl | OM, AN, EK, EC, Na, SS | y = −0.57947x2 − 0.05806x3 + 0.01001x5 + 0.06129x7 + 0.04744x8 − 2.15476x9 + 2.93581 | 9.170 *** | 336.9845 | 289.0811 | 299.2629 |
OM, AN, EK | y = -0.44025x2 + 0.13221x3 + 0.0745x5 − 14.13053 | 5.045 * | 1310.039 | 334.6765 | 337.5337 | |
OM, AN | y = 0.71785x2 + 0.17657x3 − 18.70358 | 6.328 ** | 1739.418 | 343.4493 | 345.0493 | |
OM, EK | y = −0.80581x2 + 0.11375x5 − 1.7245 | 5.045 * | 1516.646 | 338.2414 | 339.8414 | |
AN, EK | y = 0.14015x3 + 0.05225x5 − 16.85656 | 7.854 ** | 1398.37 | 335.1560 | 336.756 | |
OM | y = 1.11452x2 − 2.4863 | 5.238 * | 2554.424 | 356.0518 | 356.8018 | |
AN | y = 0.21697x3 − 8.35532 | 9.410 ** | 1993.585 | 346.6319 | 347.3819 | |
EK | y = 0.07542x5 − 5.54089 | 10.546 ** | 1754.151 | 341.7698 | 342.5198 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Zhang, Z.; Fan, Z.; Leng, W.; Yang, T.; Yao, J.; Chen, H.; Liu, B. Comprehensive Analysis of Soil Physicochemical Properties and Optimization Strategies for “Yantai Fuji 3” Apple Orchards. Agriculture 2025, 15, 1520. https://doi.org/10.3390/agriculture15141520
Zhang Z, Zhang Z, Fan Z, Leng W, Yang T, Yao J, Chen H, Liu B. Comprehensive Analysis of Soil Physicochemical Properties and Optimization Strategies for “Yantai Fuji 3” Apple Orchards. Agriculture. 2025; 15(14):1520. https://doi.org/10.3390/agriculture15141520
Chicago/Turabian StyleZhang, Zhantian, Zhihan Zhang, Zhaobo Fan, Weifeng Leng, Tianjing Yang, Jie Yao, Haining Chen, and Baoyou Liu. 2025. "Comprehensive Analysis of Soil Physicochemical Properties and Optimization Strategies for “Yantai Fuji 3” Apple Orchards" Agriculture 15, no. 14: 1520. https://doi.org/10.3390/agriculture15141520
APA StyleZhang, Z., Zhang, Z., Fan, Z., Leng, W., Yang, T., Yao, J., Chen, H., & Liu, B. (2025). Comprehensive Analysis of Soil Physicochemical Properties and Optimization Strategies for “Yantai Fuji 3” Apple Orchards. Agriculture, 15(14), 1520. https://doi.org/10.3390/agriculture15141520