A Substrate–Product Switch Mathematical Model for the Growth Kinetics of Ethanol Metabolism from Longan Solid Waste Using Candida tropicalis
Abstract
1. Introduction
2. Materials and Methods
2.1. Microorganism, Inoculum Preparation, and Cultivation
2.2. Longan Solid Waste Hydrolysate Preparation
2.3. Ethanol Production from Longan Solid Waste Hydrolysate
2.4. Analytical Techniques
2.5. Model Construction
2.6. Parameter Estimation, Optimization, and Estimation of Statistical Parameters
3. Results and Discussion
3.1. Ethanol Production Kinetics
3.2. Effect of Phenolics
3.3. Model Validation
3.4. Proposed Model
3.5. Kinetic Characteristics
3.5.1. Substrates and Product Consumptions
3.5.2. Three-Step Metabolism
3.5.3. Correlation Between Xylose Consumption and Ethanol Production
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
α | Contributing factors for glucose (no unit) |
ε | Coefficient value for the third-order polynomial equation of S2,a |
φ | Coefficient value for the third-order polynomial equation of S2,b |
γ | Coefficient value for the third-order polynomial equation of fx(CF) |
µmax | Maximum specific growth rate (per h) |
CF | Concentration factor (no unit) |
fx(CF) | Growth corrective factor—a third polynomial function of the CF (no unit) |
Ki | Substrate inhibition constant associated with a specific rate equation (g/L) |
Kip | Ki for ethanol production rate equation (g/L) |
Kis | Ki for substrate utilization rate equation (g/L) |
Kix | Ki for growth rate equation (g/L) |
Ks | Substrate limitation constant associated with a specific rate equation (g/L) |
Ksp | Ks for ethanol production rate equation (g/L) |
Kss | Ks for substrate utilization rate equation (g/L) |
Ksx | Ks for growth rate equation (g/L) |
MS | Mean square (no unit) |
P | Ethanol concentration (g/L) |
Pi | Threshold ethanol concentration causing inhibition for a specific rate equation (g/L) |
Pip | Pi for ethanol production rate equation (g/L) |
Pis | Pi for substrate utilization rate equation (g/L) |
Pix | Pi for growth rate equation (g/L) |
Pm | Maximum inhibitory ethanol concentration for a specific rate equation (g/L) |
Pmax | Maximum ethanol concentration in each cultivation condition (g/L) |
Pmp | Pm for ethanol production rate equation (g/L) |
Pms | Pm for substrate utilization rate equation (g/L) |
Pmx | Pm for growth rate equation (g/L) |
QP | Ethanol productivity (g/L/h) |
qs,max | Maximum specific substrate utilization rate (g/g/h) |
qp,max | Maximum specific ethanol production rate (g/g/h) |
R2 | Correlation coefficient (no unit) |
RSS | Residual sum of squares (g/L)2 |
S1 | Glucose concentration (g/L) |
S2 | Xylose concentration (g/L) |
S2,a | Critical xylose concentration initiating the consumption of ethanol for cell growth (g/L) |
S2,b | Critical xylose concentration causing the cessation of cell growth from xylose (g/L) |
S3 | Ethanol concentration as an alternative substrate (g/L) |
x | Biomass concentration (g/L) |
YP/S | Mass yield of produced ethanol over the consumed xylose and glucose (g/g) |
References
- Green, Y. The Application of Ethanol Fuel: Taking the United States as An Example. Biol. Evid. 2024, 14, 1–9. [Google Scholar] [CrossRef]
- Feng, J.; Techapun, C.; Phimolsiripol, Y.; Phongthai, S.; Khemacheewakul, J.; Taesuwan, S.; Mahakuntha, C.; Porninta, K.; Htike, S.L.; Kumar, A. Utilization of agricultural wastes for co-production of xylitol, ethanol, and phenylacetylcarbinol: A review. Bioresour. Technol. 2023, 392, 129926. [Google Scholar] [CrossRef]
- Rajeswari, S.; Baskaran, D.; Saravanan, P.; Rajasimman, M.; Rajamohan, N.; Vasseghian, Y. Production of ethanol from biomass–Recent research, scientometric review and future perspectives. Fuel 2022, 317, 123448. [Google Scholar] [CrossRef]
- Maduzzi, J.; Thomas, H.Y.; Fidelis, J.D.; de Carvalho, J.V.; Silva, E.C.; da Costa Filho, J.D.; Cavalcante, J.D.; dos Santos, E.S.; de Santana Souza, D.F.; de Araújo Padilha, C.E. Ethanol Production from Corncob Assisted by Polyethylene Glycol and Conversion of Lignin-Rich Residue into Lignosulfonate and Phenolic Acids. BioEnergy Res. 2024, 17, 1598–1611. [Google Scholar] [CrossRef]
- Vennila, T.; Karuna, M.S.; Srivastava, B.K.; Venugopal, J.; Surakasi, R. New Strategies in Treatment and Enzymatic Processes: Ethanol Production From Sugarcane Bagasse. In Human Agro-Energy Optimization for Business and Industry; IGI Global: Hershey, PA, USA, 2023; pp. 219–240. [Google Scholar] [CrossRef]
- Taghizadeh-Alisaraei, A.; Tatari, A.; Khanali, M.; Keshavarzi, M. Potential of biofuels production from wheat straw biomass, current achievements and perspectives: A review. Biofuels 2023, 14, 79–92. [Google Scholar] [CrossRef]
- Kumar, A.; Jain, S.; Kumar, S. Bio-oil production from rice Straw: Evaluating solvent effects and two-stage liquefaction process. Biomass Bioenergy 2025, 200, 107980. [Google Scholar] [CrossRef]
- Tian, B.; Wang, S.; Wang, J.; Feng, F.; Xu, L.; Ma, X.; Tian, Y. A comprehensive evaluation on thermo-chemical potential of longan waste for the production of chemicals and carbon materials. Fuel 2023, 334, 126655. [Google Scholar] [CrossRef]
- Nguyen, T.V.T.; Unpaprom, Y.; Ramaraj, R. Enhanced fermentable sugar production from low grade and damaged longan fruits using cellulase with algal enzymes for bioethanol production. Emergent Life Sci. Res. 2020, 6, 26–31. [Google Scholar] [CrossRef]
- Wattanapanom, S.; Muenseema, J.; Techapun, C.; Jantanasakulwong, K.; Sanguanchaipaiwong, V.; Chaiyaso, T.; Hanmoungjai, P.; Seesuriyachan, P.; Khemacheewakul, J.; Nunta, R. Kinetic parameters of Candida tropicalis TISTR 5306 for ethanol production process using an optimal enzymatic digestion strategy of assorted grade longan solid waste powder. Chiang Mai J. Sci 2019, 46, 1036–1054. [Google Scholar]
- Kumar, S.; Agarwal, G.; Sreekrishnan, T. Optimization of co-culture condition with respect to aeration and glucose to xylose ratio for bioethanol production. Indian Chem. Eng. 2023, 65, 233–248. [Google Scholar] [CrossRef]
- Nosrati-Ghods, N.; Harrison, S.T.; Isafiade, A.J.; Tai, S.L. Ethanol from biomass hydrolysates by efficient fermentation of glucose and xylose—A review. ChemBioEng Rev. 2018, 5, 294–311. [Google Scholar] [CrossRef]
- Farias, D.; Maugeri-Filho, F. Sequential fed batch extractive fermentation for enhanced bioethanol production using recycled Spathaspora passalidarum and mixed sugar composition. Fuel 2021, 288, 119673. [Google Scholar] [CrossRef]
- Ochoa-Chacón, A.; Martinez, A.; Poggi-Varaldo, H.M.; Villa-Tanaca, L.; Ramos-Valdivia, A.C.; Ponce-Noyola, T. Xylose metabolism in bioethanol production: Saccharomyces cerevisiae vs. non-Saccharomyces yeasts. BioEnergy Res. 2022, 15, 905–923. [Google Scholar] [CrossRef]
- da Silva, D.D.V.; Machado, E.; Danelussi, O.; dos Santos, M.G.; da Silva, S.S.; Dussán, K.J. Repeated-batch fermentation of sugarcane bagasse hemicellulosic hydrolysate to ethanol using two xylose-fermenting yeasts. Biomass Convers. Biorefinery 2022, 12, 4321–4331. [Google Scholar] [CrossRef]
- Gao, J.; Yu, W.; Li, Y.; Jin, M.; Yao, L.; Zhou, Y.J. Engineering co-utilization of glucose and xylose for chemical overproduction from lignocellulose. Nat. Chem. Biol. 2023, 19, 1524–1531. [Google Scholar] [CrossRef]
- Germec, M.; Turhan, I. Ethanol production from acid-pretreated and detoxified tea processing waste and its modeling. Fuel 2018, 231, 101–109. [Google Scholar] [CrossRef]
- Alvarado-Santos, E.; Aguilar-López, R.; Neria-González, M.I.; Romero-Cortés, T.; Robles-Olvera, V.J.; López-Pérez, P.A. A novel kinetic model for a cocoa waste fermentation to ethanol reaction and its experimental validation. Prep. Biochem. Biotechnol. 2023, 53, 167–182. [Google Scholar] [CrossRef]
- Germec, M.; Karhan, M.; Demirci, A.; Turhan, I. Kinetic modeling, sensitivity analysis, and techno-economic feasibility of ethanol fermentation from non-sterile carob extract-based media in Saccharomyces cerevisiae biofilm reactor under a repeated-batch fermentation process. Fuel 2022, 324, 124729. [Google Scholar] [CrossRef]
- Asiedu, N.Y.; Bamaalabong, P.P.; Johnson, J.E.; Bonsu, J.K.; Addo, A. Modeling, simulations, and Simulink developments in the analysis of optimal control of temperature and pH in a batch ethanol fermentation process. J. Eng. Appl. Sci. 2024, 71, 195. [Google Scholar] [CrossRef]
- da Silva Fernandes, F.; de Souza, É.S.; Carneiro, L.M.; Alves Silva, J.P.; de Souza, J.V.B.; da Silva Batista, J. Current ethanol production requirements for the yeast Saccharomyces cerevisiae. Int. J. Microbiol. 2022, 2022, 7878830. [Google Scholar] [CrossRef]
- Todhanakasem, T.; Wu, B.; Simeon, S. Perspectives and new directions for bioprocess optimization using Zymomonas mobilis in the ethanol production. World J. Microbiol. Biotechnol. 2020, 36, 112. [Google Scholar] [CrossRef]
- Mann, S.; Sharma, J.G.; Kataria, R. Optimization of acidic pre-treatment conditions using response surface methodology for ethanol production from Pistia stratiotes using Saccharomyces cerevisiae and Pichia stipitis. Biomass Convers. Biorefinery 2025, 15, 4333–4348. [Google Scholar] [CrossRef]
- Jeyaram, K.; Murugan, D.; Velmurugan, S.; Prabhu, A.A.; Raja, S.; Bose, S.A.; Balakrishnan, D. Investigation of the influence of Candida tropicalis on bioethanol production using sugarcane bagasse: Stochastic and in silico analysis. Environ. Sci. Pollut. Res. 2024, 31, 64476–64492. [Google Scholar] [CrossRef]
- Porninta, K.; Khemacheewakul, J.; Techapun, C.; Phimolsiripol, Y.; Jantanasakulwong, K.; Sommanee, S.; Mahakuntha, C.; Feng, J.; Htike, S.L.; Moukamnerd, C. Pretreatment and enzymatic hydrolysis optimization of lignocellulosic biomass for ethanol, xylitol, and phenylacetylcarbinol co-production using Candida magnoliae. Front. Bioeng. Biotechnol. 2024, 11, 1332185. [Google Scholar] [CrossRef]
- Nunta, R.; Techapun, C.; Kuntiya, A.; Hanmuangjai, P.; Moukamnerd, C.; Khemacheewakul, J.; Sommanee, S.; Reungsang, A.; Boonmee Kongkeitkajorn, M.; Leksawasdi, N. Ethanol and phenylacetylcarbinol production processes of Candida tropicalis TISTR 5306 and Saccharomyces cerevisiae TISTR 5606 in fresh juices from longan fruit of various sizes. J. Food Process. Preserv. 2018, 42, e13815. [Google Scholar] [CrossRef]
- Dhanani, T.; Shah, S.; Kumar, S. A validated high-performance liquid chromatography method for determination of tannin-related marker constituents gallic acid, corilagin, chebulagic acid, ellagic acid and chebulinic acid in four Terminalia species from India. J. Chromatogr. Sci. 2015, 53, 625–632. [Google Scholar] [CrossRef]
- Leksawasdi, N.; Joachimsthal, E.L.; Rogers, P.L. Mathematical modelling of ethanol production from glucose/xylose mixtures by recombinant Zymomonas mobilis. Biotechnol. Lett. 2001, 23, 1087–1093. [Google Scholar] [CrossRef]
- Feng, J.; Techapun, C.; Phimolsiripol, Y.; Rachtanapun, P.; Phongthai, S.; Khemacheewakul, J.; Taesuwan, S.; Porninta, K.; Htike, S.L.; Mahakuntha, C. Co-substrate model development and validation on pure sugars and corncob hemicellulosic hydrolysate for xylitol production. Sci. Rep. 2024, 14, 25928. [Google Scholar] [CrossRef]
- Queiroz, S.d.S.; Jofre, F.M.; Bianchini, I.d.A.; Boaes, T.d.S.; Bordini, F.W.; Chandel, A.K.; Felipe, M.d.G.d.A. Current advances in Candida tropicalis: Yeast overview and biotechnological applications. Biotechnol. Appl. Biochem. 2023, 70, 2069–2087. [Google Scholar] [CrossRef]
- Leksawasdi, N.; Breuer, M.; Hauer, B.; Rosche, B.; Rogers, P.L. Kinetics of pyruvate decarboxylase deactivation by benzaldehyde. Biocatal. Biotransformation 2003, 21, 315–320. [Google Scholar] [CrossRef]
- Martínez-Jimenez, F.; Pereira, I.; Ribeiro, M.; Sargo, C.; dos Santos, A.; Zanella, E.; Stambuk, B.; Ienczak, J.; Morais, E.; Costa, A. Integration of first-and second-generation ethanol production: Evaluation of a mathematical model to describe sucrose and xylose co-fermentation by recombinant Saccharomyces cerevisiae. Renew. Energy 2022, 192, 326–339. [Google Scholar] [CrossRef]
- Nguyen, T.V.T.; Unpaprom, Y.; Manmai, N.; Whangchai, K.; Ramaraj, R. Impact and significance of pretreatment on the fermentable sugar production from low-grade longan fruit wastes for bioethanol production. Biomass Convers. Biorefinery 2022, 12, 1605–1617. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Yang, P.; Duan, G.; Liu, X.; Gu, Z.; Li, Y. Polyphenol scaffolds in tissue engineering. Mater. Horiz. 2021, 8, 145–167. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Insights into the phenolic compounds present in jambolan (Syzygium cumini) along with their health-promoting effects. Int. J. Food Sci. Technol. 2018, 53, 2431–2447. [Google Scholar] [CrossRef]
- Mohammed, Y. Isolation and characterization of tannic acid hydrolysing bacteria from soil. Biochem. Anal. Biochem. 2016, 5, 254. [Google Scholar] [CrossRef]
- Teodoro, G.R.; Brighenti, F.L.; Delbem, A.C.B.; Delbem, Á.C.B.; Khouri, S.; Gontijo, A.V.L.; Pascoal, A.C.; Salvador, M.J.; Koga-Ito, C.Y. Antifungal activity of extracts and isolated compounds from Buchenavia tomentosa on Candida albicans and non-albicans. Future Microbiol. 2015, 10, 917–927. [Google Scholar] [CrossRef]
- Salih, E.Y.; Julkunen-Tiitto, R.; Luukkanen, O.; Fyhrqvist, P. Anti-Candida activity of extracts containing ellagitannins, triterpenes and flavonoids of Terminalia brownii, a medicinal plant growing in semi-arid and Savannah woodland in Sudan. Pharmaceutics 2022, 14, 2469. [Google Scholar] [CrossRef]
- Dodić, J.M.; Vučurović, D.G.; Dodić, S.N.; Grahovac, J.A.; Popov, S.D.; Nedeljković, N.M. Kinetic modelling of batch ethanol production from sugar beet raw juice. Appl. Energy 2012, 99, 192–197. [Google Scholar] [CrossRef]
- Agu, K.C.; Oduola, M.K. Kinetic modeling of ethanol production by batch fermentation of sugarcane juice using immobilized yeast. Glob. J. Eng. Technol. Adv 2021, 7, 124–136. [Google Scholar] [CrossRef]
- Rages, A.A.; Haider, M.M.; Aydin, M. Alkaline hydrolysis of olive fruits wastes for the production of single cell protein by Candida lipolytica. Biocatal. Agric. Biotechnol. 2021, 33, 101999. [Google Scholar] [CrossRef]
- Aiello, E.; Arena, M.P.; De Vero, L.; Montanini, C.; Bianchi, M.; Mescola, A.; Alessandrini, A.; Pulvirenti, A.; Gullo, M. Wine Yeast Strains Under Ethanol-Induced Stress: Morphological and Physiological Responses. Fermentation 2024, 10, 631. [Google Scholar] [CrossRef]
- Qiao, Y.; Li, C.; Lu, X.; Zong, H.; Zhuge, B. Transporter engineering promotes the co-utilization of glucose and xylose by Candida glycerinogenes for D-xylonate production. Biochem. Eng. J. 2021, 175, 108150. [Google Scholar] [CrossRef]
- Reider Apel, A.; Ouellet, M.; Szmidt-Middleton, H.; Keasling, J.D.; Mukhopadhyay, A. Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae. Sci. Rep. 2016, 6, 19512. [Google Scholar] [CrossRef]
- Hung, Y.-H.R.; Chae, M.; Sauvageau, D.; Bressler, D.C. Adapted feeding strategies in fed-batch fermentation improve sugar delivery and ethanol productivity. Bioengineered 2023, 14, 2250950. [Google Scholar] [CrossRef]
- Sandri, J.P.; Ramos, M.D.; Perez, C.L.; Mesquita, T.J.; Zangirolami, T.C.; Milessi, T.S. Bioreactor and process design for 2G ethanol production from xylose using industrial S. cerevisiae and commercial xylose isomerase. Biochem. Eng. J. 2023, 191, 108777. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, D.; Lin, Y.; Wang, X.; Kong, H.; Tanaka, S. Substrate and product inhibition on yeast performance in ethanol fermentation. Energy Fuels 2015, 29, 1019–1027. [Google Scholar] [CrossRef]
- Auesukaree, C. Molecular mechanisms of the yeast adaptive response and tolerance to stresses encountered during ethanol fermentation. J. Biosci. Bioeng. 2017, 124, 133–142. [Google Scholar] [CrossRef]
CF | S1 + S2 (g/L) | μmax (per h) | qs1,max (g/g/h) | qp,max (g/g/h) | Pmax (g/L) | YP/S (g/g) | Qp (g/L/h) |
---|---|---|---|---|---|---|---|
1.0 | 20.8 + 9.78 | 0.094 ± 0.003 d | 1.202 ± 0.023 b | 0.630 ± 0.011 c,d | 11.9 ± 0.26 j | 0.41 ± 0.009 b,c | 0.992 ± 0.022 e,f,g |
1.1 | 23.2 + 11.1 | 0.099 ± 0.005 d | 1.019 ± 0.037 c,d | 0.607 ± 0.011 e | 13.0 ± 0.17 i | 0.41 ± 0.006 b,c | 1.083 ± 0.014 d |
1.2 | 25.7 + 11.8 | 0.110 ± 0.004 b,c | 1.191 ± 0.037 b | 0.682 ± 0.017 b | 14.3 ± 0.15 h | 0.41 ± 0.005 b,c | 1.192 ± 0.013 c |
1.3 | 27.7 + 12.7 | 0.117 ± 0.005 b | 1.080 ± 0.046 c | 0.642 ± 0.012 c | 15.1 ± 0.13 g | 0.41 ± 0.005 c | 1.258 ± 0.011 b |
1.4 | 28.7 + 13.6 | 0.119 ± 0.006 b | 0.922 ± 0.016 f | 0.600 ± 0.010 d | 17.7 ± 0.15 e | 0.45 ± 0.007 a | 0.983 ± 0.008 f |
1.5 | 30.5 + 14.5 | 0.122 ± 0.004 b | 0.909 ± 0.029 f | 0.528 ± 0.015 g | 17.1 ± 0.44 f | 0.42 ± 0.011 b,c | 0.950 ± 0.024 g |
1.6 | 32.3 + 15.4 | 0.132 ± 0.003 a | 1.026 ± 0.012 c,d | 0.645 ± 0.006 c | 18.1 ± 0.09 d | 0.41 ± 0.002 c | 1.006 ± 0.005 e |
1.8 | 36.8 + 17.6 | 0.136 ± 0.003 a | 1.184 ± 0.008 b | 0.755 ± 0.016 a | 19.5 ± 0.05 c | 0.39 ± 0.002 d | 1.083 ± 0.003 d |
2.0 | 41.0 + 19.3 | 0.137 ± 0.003 a | 0.978 ± 0.023 e | 0.561 ± 0.007 f | 23.5 ± 0.38 b | 0.43 ± 0.009 b | 1.306 ± 0.021 a |
3.0 | 62.2 + 29.6 | 0.138 ± 0.006 a | 1.294 ± 0.064 a | 0.617 ± 0.021 c,d | 25.5 ± 0.58 a | 0.30 ± 0.008 e | 1.063 ± 0.024 d |
5.0 | 104 + 48.5 | 0.079 ± 0.006 e | 0.442 ± 0.041 g | 0.143 ± 0.005 h | 6.10 ± 0.13 k | 0.25 ± 0.007 f | 0.145 ± 0.003 h |
7.0 | 145 + 68.0 | No observable growth, substrates consumption, product formation |
Equations | Parameters | S1 | S2 | S3 | Units |
---|---|---|---|---|---|
Cell Growth | μmax | 0.0957 | 0.0472 | 0.00756 | per h |
Ksx | 0.640 | 3.31 | 1.35 | g/L | |
Pix | 113 | 45.1 | 67.2 | g/L | |
Pmx | 472 | 136 | 225 | g/L | |
Kix | 517 | 219 | 336 | g/L | |
Substrate Uptake | qsmax | 0.865 | 1.13 | 0.0548 | g/g/h |
Kss | 0.256 | 1.65 | 1.21 | g/L | |
Pis | 49.6 | 69.4 | 10.0 | g/L | |
Pms | 153 | 168 | 600 | g/L | |
Kis | 600 | 175 | 335 | g/L | |
Ethanol Production | qpmax | 0.355 | 0.479 | - | g/g/h |
Ksp | 0.256 | 1.65 | - | g/L | |
Pip | 49.6 | 69.4 | - | g/L | |
Pmp | 153 | 168 | - | g/L | |
Kip | 600 | 175 | - | g/L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, J.; Mahakuntha, C.; Htike, S.L.; Techapun, C.; Phimolsiripol, Y.; Rachtanapun, P.; Khemacheewakul, J.; Taesuwan, S.; Porninta, K.; Sommanee, S.; et al. A Substrate–Product Switch Mathematical Model for the Growth Kinetics of Ethanol Metabolism from Longan Solid Waste Using Candida tropicalis. Agriculture 2025, 15, 1472. https://doi.org/10.3390/agriculture15141472
Feng J, Mahakuntha C, Htike SL, Techapun C, Phimolsiripol Y, Rachtanapun P, Khemacheewakul J, Taesuwan S, Porninta K, Sommanee S, et al. A Substrate–Product Switch Mathematical Model for the Growth Kinetics of Ethanol Metabolism from Longan Solid Waste Using Candida tropicalis. Agriculture. 2025; 15(14):1472. https://doi.org/10.3390/agriculture15141472
Chicago/Turabian StyleFeng, Juan, Chatchadaporn Mahakuntha, Su Lwin Htike, Charin Techapun, Yuthana Phimolsiripol, Pornchai Rachtanapun, Julaluk Khemacheewakul, Siraphat Taesuwan, Kritsadaporn Porninta, Sumeth Sommanee, and et al. 2025. "A Substrate–Product Switch Mathematical Model for the Growth Kinetics of Ethanol Metabolism from Longan Solid Waste Using Candida tropicalis" Agriculture 15, no. 14: 1472. https://doi.org/10.3390/agriculture15141472
APA StyleFeng, J., Mahakuntha, C., Htike, S. L., Techapun, C., Phimolsiripol, Y., Rachtanapun, P., Khemacheewakul, J., Taesuwan, S., Porninta, K., Sommanee, S., Nunta, R., & Leksawasdi, N. (2025). A Substrate–Product Switch Mathematical Model for the Growth Kinetics of Ethanol Metabolism from Longan Solid Waste Using Candida tropicalis. Agriculture, 15(14), 1472. https://doi.org/10.3390/agriculture15141472