Predicting the Potential Geographic Distribution of Phytophthora cinnamomi in China Using a MaxEnt-Based Ecological Niche Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Occurrence Data of P. cinnamomi
2.2. Environmental Variables
2.3. Filter out the Suitable Variables
2.4. Model Optimisation
2.5. Model Optimization and Accuracy Assessment
2.6. Data Processing
3. Results
3.1. Model Calibration Optimization and Accuracy Evaluation
3.2. Factors Influencing the Distribution of P. cinnamomi
3.3. Potential Distribution of P. cinnamomi Under Current Climatic Conditions
3.4. Potential Distribution of P. cinnamomi Under Future Environmental Factors
3.5. Changes in the P. cinnamomi Habitat Range
3.6. Core Distributional Shifts
4. Discussion
4.1. Determinants of the Potential Geographical Distribution of P. cinnamomi
4.2. Reliability of Model Results
4.3. Future Shifts in the Potential Distribution Range of P. cinnamomi
4.4. Limitations and Future Research Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbass, K.; Qasim, M.Z.; Song, H.; Murshed, M.; Mahmood, H.; Younis, I. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ. Sci. Pollut. Res. 2022, 29, 42539–42559. [Google Scholar] [CrossRef] [PubMed]
- Keck, F.; Peller, T.; Alther, R.; Barouillet, C.; Blackman, R.; Capo, E.; Chonova, T.; Couton, M.; Fehlinger, L.; Kirschner, D.; et al. The global human impact on biodiversity. Nature 2025, 641, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, A.; Garrido-Chamorro, S.; Barreiro, C. Microorganisms and climate change: A not so invisible effect. Microbiol. Res. 2023, 14, 918–947. [Google Scholar] [CrossRef]
- Yu, J.T.; Li, S.Y.; Sun, X.Y.; Zhou, W.Z.; He, L.B.; Zhao, G.Y.; Chen, Z.; Bai, X.T.; Zhang, J.S. The Impact and Determinants of Mountainous Topographical Factors on Soil Microbial Community Characteristics. Microorganisms 2023, 11, 2878. [Google Scholar] [CrossRef]
- Alqahtani, M.S.; Shahin, G.; Abdelalim, I.T.; Khalaf, S.M. Evaluation of ecological consequences on the global distribution of Staphylococcus aureus Rosenbach 1884 due to climate change, using Maxent modeling. Sci. Rep. 2025, 15, 11457. [Google Scholar] [CrossRef]
- Khalaf, S.M.; Alqahtani, M.S.; Ali, M.R.; Abdelalim, I.T.; Hodhod, M.S. Using MaxEnt modeling to analyze climate change impacts on Pseudomonas syringae van Hall, 1904 distribution on the global scale. Heliyon 2024, 10, e41017. [Google Scholar] [CrossRef] [PubMed]
- Carlson, C.J.; Brookson, C.B.; Becker, D.J.; Cummings, C.A.; Gibb, R.; Halliday, F.W.; Heckley, A.M.; Huang, Z.Y.X.; Lavelle, T.; Robertson, H.; et al. Pathogens and planetary change. Nat. Rev. Biodivers. 2025, 1, 32–49. [Google Scholar] [CrossRef]
- Qin, X.; Yang, J.; Ni, S. Microbiome-mediated protection against pathogens in woody plants. Int. J. Mol. Sci. 2023, 24, 16118. [Google Scholar] [CrossRef]
- Singh, B.K.; Delgado-Baquerizo, M.; Egidi, E.; Guirado, E.; Leach, J.E.; Liu, H.; Trivedi, P. Climate change impacts on plant pathogens, food security and paths forward. Nat. Rev. Microbiol. 2023, 21, 640–656. [Google Scholar] [CrossRef]
- Qiao, H.J.; Hu, J.H.; Huang, J.H. Theoretical Basis, Future Directions, and Challenges for Ecological Niche Models. Sci. Sin. (Vitae) 2013, 43, 915–927. [Google Scholar] [CrossRef]
- Vasconcelos, R.N.; Cantillo-Pérez, T.; Franca Rocha, W.J.; Aguiar, W.M.; Mendes, D.T.; de Jesus, T.B.; de Santana, C.O.; de Santana, M.M.M.; Oliveira, R.P. Advances and Challenges in Species Ecological Niche Modeling: A Mixed Review. Earth 2024, 5, 963–989. [Google Scholar] [CrossRef]
- Thuiller, W. Ecological niche modelling. Curr. Biol. 2024, 34, R225–R229. [Google Scholar] [CrossRef] [PubMed]
- Castaño-Quintero, S.; Escobar-Luján, J.; Osorio-Olvera, L.; Peterson, A.T.; Chiappa-Carrara, X.; Martínez-Meyer, E.; Yañez-Arenas, C. Supraspecific units in correlative niche modeling improves the prediction of geographic potential of biological invasions. PeerJ 2020, 8, e10454. [Google Scholar] [CrossRef]
- Morozov, A.; Ageel, A.; Bates, A.; Galyov, E. Modelling the effects of climate change on the interaction between bacteria and phages with a temperature-dependent lifecycle switch. Sci. Rep. 2025, 15, 6428. [Google Scholar] [CrossRef]
- Joyner, T.A.; Lukhnova, L.; Pazilov, Y.; Temiralyeva, G.; Hugh-Jones, M.E.; Aikimbayev, A.; Blackburn, J.K. Modeling the potential distribution of Bacillus anthracis under multiple climate change scenarios for Kazakhstan. PLoS ONE 2010, 5, e9596. [Google Scholar] [CrossRef] [PubMed]
- Rad, S.P.H.; Duque, T.S.; Flory, S.L.; Nascimento, V.G.D.; Mendes, D.S.; Maciel, J.C.; Santos, J.B.D.; Silva, R.S.D.; Shabani, F. Predicting the spread of invasive Imperata cylindrica under climate change: A global risk assessment and future distribution scenarios. PLoS ONE 2025, 20, e0321027. [Google Scholar] [CrossRef] [PubMed]
- El-Khalafy, M.M.; El-Kenany, E.T.; Al-Mokadem, A.Z.; Shaltout, S.K.; Mahmoud, A.R. Habitat suitability modeling to improve conservation strategy of two highly-grazed endemic plant species in saint Catherine Protectorate, Egypt. BMC Plant Biol. 2025, 25, 485. [Google Scholar] [CrossRef]
- He, Z.; Ali, H.; Wu, J.; Liu, Z.; Wei, X.; Zhuo, Z. Impact of climate change on the distribution of Isaria cicadae Miquel in China: Predictions based on the MaxEnt model. Front. Microbiol. 2025, 16, 1509882. [Google Scholar] [CrossRef]
- Lu, H.H.; Zheng, Y.Y.; Qiu, Y.S.; Tang, L.B.; Zhao, Y.C.; Xie, W.G. Comprehensive prediction of potential spatiotemporal distribution patterns, priority planting regions, and introduction adaptability of Elymus sibiricus in the Chinese region. Front. Plant Sci. 2025, 15, 1470653. [Google Scholar] [CrossRef]
- Campos, J.C.; Garcia, N.; Alírio, J.; Arenas-Castro, S.; Teodoro, A.C.; Sillero, N. Ecological niche models using MaxEnt in Google Earth Engine: Evaluation, guidelines and recommendations. Ecol. Inform. 2023, 76, 102147. [Google Scholar] [CrossRef]
- Lissovsky, A.A.; Dudov, S.V. Species-distribution modeling: Advantages and limitations of its application. 2. MaxEnt. Biol. Bull. Rev. 2021, 11, 265–275. [Google Scholar] [CrossRef]
- Kaky, E.; Nolan, V.; Alatawi, A.; Gilbert, F. A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants. Ecol. Inform. 2020, 60, 101150. [Google Scholar] [CrossRef]
- Ray, R.; Gururaja, K.V.; Ramchandra, T.V. Predictive distribution modeling for rare himalayan medicinal plant Berberis aristata DC. J. Environ. Biol. 2011, 32, 725–730. [Google Scholar]
- Yang, J.; Huang, Y.; Jiang, X.; Chen, H.; Liu, M.; Wang, R. Potential geographical distribution of the edangred plant Isoetes under human activities using MaxEnt and GARP. Glob. Ecol. Conserv. 2022, 38, e02186. [Google Scholar] [CrossRef]
- Aidoo, O.F.; Souza, P.G.C.; da Silva, R.S.; Júnior, P.A.S.; Picanço, M.C.; Osei-Owusu, J.; Sétamou, M.; Ekesi, S.; Borgemeister, C. A machine learning algorithm-based approach (MaxEnt) for predicting invasive potential of Trioza erytreae on a global scale. Ecol. Inform. 2022, 71, 101792. [Google Scholar] [CrossRef]
- Kharel, A.; Rookes, J.; Ziemann, M.; Cahill, D. Viable protoplast isolation, organelle visualization and transformation of the globally distributed plant pathogen Phytophthora cinnamomi. Protoplasma 2024, 261, 1073–1092. [Google Scholar] [CrossRef]
- Rands, R.D. Stripe canker of Cinnamon caused by Phytophthora cinnamomi n. sp. Meded. Van Het Inst. Voor Plantenziekten 1922, 40, 991–992. [Google Scholar] [CrossRef]
- Wang, M.S.; Zhang, S.H.; Chen, X.D.; Lu, J.; Wang, J.J.; Zhu, J.J. Research progress on biological characteristics and control techniques of Phytophthora cinnamomic. J. Anhui Agric. Sci. 2018, 46, 21–24+35. [Google Scholar] [CrossRef]
- Engelbrecht, J.; Duong, T.A.; Prabhu, S.A.; Seedat, M.; van den Berg, N. Genome of the destructive oomycete Phytophthora cinnamomi provides insights into its pathogenicity and adaptive potential. BMC Genom. 2021, 22, 302. [Google Scholar] [CrossRef]
- Zhao, J.; Hu, K.; Chen, K.; Shi, J. Quarantine supervision of wood packaging materials (WPM) at Chinese ports of entry from 2003 to 2016. PLoS ONE 2021, 16, e0255762. [Google Scholar] [CrossRef]
- Zhang, W.D.; Liu, Y.Y.; Li, M.M.; Du, H.; Huang, K.Y.; Feng, Y.Y.; Ma, C.W.; Wei, X.X.; Wang, X.Q.; Ran, J.H. Decoding endosperm endophytes in Pinus armandi: A crucial indicator for host response to climate change. BMC Microbiol. 2025, 25, 239. [Google Scholar] [CrossRef] [PubMed]
- Ho, H.H.; Zhuang, W.Y.; Liang, Z.R.; Yu, N.; Wang, Y.J. Phytophthora cinnamomi on black locust (Robinia pseudoacacia) in Jiangsu Province, China. Mycologia 1984, 75, 881–886. [Google Scholar] [CrossRef]
- Zhou, X.G.; Zhu, Z.Y.; Wu, L.Z.; Fa, J.P.; Wang, S.J. Phytophthora cinnamomi causes root rot of camellia (Camellia spp.). Acta Agric. Shanghai 1993, 71–75. [Google Scholar]
- de Andrade Lourenço, D.; Branco, I.; Choupina, A. Phytopathogenic oomycetes: A review focusing on Phytophthora cinnamomi and biotechnological approaches. Mol. Biol. Rep. 2020, 47, 9179–9188. [Google Scholar] [CrossRef]
- Burgess, T.I.; Scott, J.K.; Mcdougall, K.L.; Stukely, M.J.; Crane, C.; Dunstan, W.A.; Brigg, F.; Andjic, V.; White, D.; Rudman, T.; et al. Current and projected global distribution of Phytophthora cinnamomi, one of the world’s worst plant pathogens. Glob. Change Biol. 2017, 23, 1661–1674. [Google Scholar] [CrossRef]
- Brown, J.L. SDM toolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 2014, 5, 694–700. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, J.; Wang, Q.; Huang, R.; Nie, W.; Yang, S.; Cheng, X.F.; Li, M. Occurrence Data Sources Matter for Species Distribution Modeling: A Case Study of Quercus variabilis Based on Biomod2. Ecol. Evol. 2025, 15, e71390. [Google Scholar] [CrossRef]
- Pacifici, K.; Reich, B.J.; Miller, D.A.; Gardner, B.; Stauffer, G.; Singh, S.; Singh, S.; McKerrow, A.; Collazo, J.A. Integrating multiple data sources in species distribution modeling: A framework for data fusion. Ecology 2017, 98, 840–850. [Google Scholar] [CrossRef]
- Riahi, K.; Van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’neill, B.C.; Fujimori, S.; Bauer, N.; Dellink, R.; Fricko, O.; Lutz, W.; et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Change 2017, 42, 153–168. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Y.Y.; Huang, Y.; Zhang, J.D.; Mou, Q.Y.; Qiu, J.; Wang, R.L.; Li, Y.J.; Zhang, D.Q. Simulation of potential suitable distribution of original species of Fritillariae Cirrhosae Bulbus in China under climate change scenarios. Environ. Sci. Pollut. Res. 2022, 29, 22237–22250. [Google Scholar] [CrossRef]
- Zhao, Z.; Guo, Y.; Zhu, F.; Jiang, Y. Prediction of the impact of climate change on fast-growing timber trees in China. For. Ecol. Manag. 2021, 501, 119653. [Google Scholar] [CrossRef]
- Wang, Y.J.; Wu, K.F.; Zhao, R.X.; Xie, L.Y.; Li, Y.L.; Zhao, G.H.; Zhang, F.G. Prediction of potential suitable habitats in the 21st century and GAP analysis of priority conservation areas of Chionanthus retusus based on the MaxEnt and Marxan models. Front. Plant Sci. 2024, 15, 1304121. [Google Scholar] [CrossRef]
- Morales, N.S.; Fernández, I.C.; Baca-González, V. MaxEnt’s parameter configuration and small samples: Are we paying attention to recommendations? A systematic review. PeerJ 2017, 5, e3093. [Google Scholar] [CrossRef]
- Cavanaugh, J.E.; Neath, A.A. The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements. Wiley Interdiscip. Rev. Comput. Stat. 2019, 11, e1460. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Zhang, L.; Wang, Y.; Liu, Y.; Ma, Y. The optimized Maxent model reveals the pattern of distribution and changes in the suitable cultivation areas for Reaumuria songarica being driven by climate change. Ecol. Evol. 2024, 14, e70015. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Peng, D.L.; Li, Y.M.; Chen, Z.J.; Zhai, Y.Y.; Chen, L.; Bo, H. Potential global distribution of the guava root-knot nematode Meloidogyne enterolobii under different climate change scenarios using MaxEnt ecological niche modeling. J. Integr. Agric. 2023, 22, 2138–2150. [Google Scholar] [CrossRef]
- Blanc, M.; Martínez-Rincón, R.O. Global scale study of the environmental preferences and distribution of Orcinus orca. J. Coast. Conserv. 2023, 27, 60. [Google Scholar] [CrossRef]
- Wu, Z.; Gao, T.; Luo, Y.; Shi, J. Prediction of the global potential geographical distribution of Hylurgus ligniperda using a maximum entropy model. Ecosyst 2022, 9, 100042. [Google Scholar] [CrossRef]
- He, Y.L.; Ma, J.M.; Chen, G.S. Potential geographical distribution and its multi-factor analysis of Pinus massoniana in China based on the maxent model. Ecol. Indic. 2023, 154, 110790. [Google Scholar] [CrossRef]
- Xue, N.; Li, K.; Chen, K.; Li, P.; Ji, X.; Ma, Z.; Ji, W. Predicting climate change impacts on distribution and conservation of critically endangered Picea neoveitchii using MaxEnt. Front. For. Glob. Change 2024, 7, 1472857. [Google Scholar] [CrossRef]
- Koç, D.E.; Ustaoğlu, B.; Biltekin, D. Effect of climate change on the habitat suitability of the relict species Zelkova carpinifolia Spach using ensembled species distribution modelling. Sci. Rep. 2024, 14, 27967. [Google Scholar] [CrossRef]
- Hardham, A.R.; Blackman, L.M. Phytophthora cinnamomi. Mol. Plant Pathol. 2018, 19, 260–285. [Google Scholar] [CrossRef]
- Phillips, D.; Weste, G. Growth rates of four Australian isolates of Phytophthora cinnamomi in relation to temperature. Trans. Br. Mycol. Soc. 1985, 84, 183–185. [Google Scholar] [CrossRef]
- Linde, C.; Drenth, A.; Kemp, G.H.J.; Wingfield, M.J.; Broembsen, S.L.V. Population structure of Phytophthora cinnamomi in south africa. Phytopathology 1997, 87, 822–827. [Google Scholar] [CrossRef] [PubMed]
- Khaliq, I.; Hardy, G.E.S.J.; Burgess, T.I. Phytophthora cinnamomi exhibits phenotypic plasticity in response to cold temperatures. Mycol. Prog. 2020, 19, 405–415. [Google Scholar] [CrossRef]
- Sena, K.; Crocker, E.; Vincelli, P.; Barton, C. Phytophthora cinnamomi as a driver of forest change: Implications for conservation and management. For. Ecol. Manag. 2018, 409, 799–807. [Google Scholar] [CrossRef]
- Nesbitt, H.J.; Malajczuk, N.; Glenn, A.R. Effect of soil moisture and temperature on the survival of Phytophthora cinnamomi Rands in soil. Soil Biol. Biochem. 1979, 11, 137–140. [Google Scholar] [CrossRef]
- Lin, Z.Y.; Halliday, F.W.; Zhang, P.; Wang, X.X.; Chen, F.; Shi, A.Y.; Shi, J.J.; Yao, X.; Liu, X. Above- and belowground plant pathogens along elevational gradients: Patterns and potential mechanisms. Oikos 2025, 2025, e10455. [Google Scholar] [CrossRef]
- Serrano, M.S.; Romero, M.Á.; Homet, P.; Gómez-Aparicio, L. Climate change impact on the population dynamics of exotic pathogens: The case of the worldwide pathogen Phytophthora cinnamomi. Agric. For. Meteorol. 2022, 322, 109002. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Wisz, M.S.; Hijmans, R.J.; Li, J.; Peterson, A.T.; Graham, C.H.; Guisan, A. Effects of sample size on the performance of species distribution models. Divers. Distrib. 2008, 14, 763–773. [Google Scholar] [CrossRef]
- Hirzel, A.H.; Hausser, J.; Chessel, D.; Perrin, N. Ecological-niche factor analysis: How to compute habitat-suitability maps without absence data? Ecology 2002, 83, 2027–2036. [Google Scholar] [CrossRef]
- Chen, I.C.; Hill, J.K.; Ohlemüller, R.; Roy, D.B.; Thomas, C.D. Rapid range shifts of species associated with high levels of climate warming. Science 2011, 333, 1024–1026. [Google Scholar] [CrossRef]
- Jetz, W.; Wilcove, D.S.; Dobson, A.P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. 2007, 5, e157. [Google Scholar] [CrossRef]
- Change, I.P.O.C. Climate change 2007: The physical science basis. Agenda 2007, 6, 333. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Kriegler, E. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2017, 9, 3461–3482. [Google Scholar] [CrossRef]
- Sena, K.L.; Yang, J.; Kohlbrand, A.J.; Dreaden, T.J.; Barton, C.D. Landscape variables influence Phytophthora cinnamomi distribution within a forested Kentucky watershed. For. Ecol. Manag. 2019, 36, 39–44. [Google Scholar] [CrossRef]
- Tazerji, S.S.; Nardini, R.; Safdar, M.; Shehata, A.A.; Duarte, P.M. An overview of anthropogenic actions as drivers for emerging and re-emerging zoonotic diseases. Pathogens 2022, 11, 1376. [Google Scholar] [CrossRef]
- Xie, C.S.; Wu, Y.T.; Wu, Z.H.; Cao, H.; Cao, X.H.; Cui, F.; Meng, S.; Chen, J. Bacillus velezensis TCS001 Enhances the Resistance of Hickory to Phytophthora cinnamomi and Reshapes the Rhizosphere Microbial Community. Agriculture 2025, 15, 193. [Google Scholar] [CrossRef]
- Miljaković, D.; Marinković, J.; Balešević-Tubić, S. The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms 2020, 8, 1037. [Google Scholar] [CrossRef] [PubMed]
- Muthukumar, A.; Raj, T.S.; Prabhukarthikeyan, S.R.; Kumar, R.N.; Keerthana, U. Pseudomonas and Bacillus: A biological tool for crop protection. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2022; pp. 145–158. [Google Scholar] [CrossRef]
- Dow, L.; Gallart, M.; Ramarajan, M.; Law, S.R.; Thatcher, L.F. Streptomyces and their specialised metabolites for phytopathogen control–comparative in vitro and in planta metabolic approaches. Front. Plant Sci. 2023, 14, 1151912. [Google Scholar] [CrossRef] [PubMed]
Environmental Variables | Description | Percent Contribution | Permutation Importance |
---|---|---|---|
Elev | Elevation | 34.8 | 2.1 |
BIO12 | Annual precipitation(mm) | 24.6 | 19.8 |
BIO02 | Mean diurnal temperature range (°C) | 13.4 | 27.6 |
BIO10 | Mean temperature of warmest quarter (°C) | 8.6 | 40.7 |
Slope | Slope | 7.7 | 4.3 |
BIO14 | Precipitation of driest month(mm) | 7.4 | 3.7 |
T_PH | Soil acility and alkalinity | 3.4 | 1.7 |
Shared Socio-Economic Pathways, SSPs|Decades | Predicted Area (×104 km2) and % of the Corresponding Current Area | ||||||||
---|---|---|---|---|---|---|---|---|---|
Total Suitable Area | Poorly Suitable Area | Moderately Suitable Area | Highly Suitable Area | ||||||
1970–2000 | 420.59 | 190.41 | 146.78 | 83.40 | |||||
SSP126 | 2030S | 391.3 | 93.0% | 174.3 | 91.5% | 129.3 | 88.1% | 87.7 | 105.2% |
2050S | 394.0 | 93.7% | 185.4 | 97.3% | 116.6 | 79.4% | 92.0 | 110.3% | |
2070S | 395.8 | 94.1% | 183.7 | 96.5% | 123.1 | 83.9% | 89.0 | 106.7% | |
2090S | 396.7 | 94.3% | 187.0 | 98.2% | 124.4 | 84.7% | 85.3 | 102.3% | |
SSP370 | 2030S | 371.8 | 88.4% | 181.5 | 95.3% | 118.7 | 80.9% | 71.6 | 85.9% |
2050S | 388.8 | 92.5% | 177.3 | 93.1% | 119.1 | 81.1% | 92.4 | 110.8% | |
2070S | 390.5 | 92.8% | 189.9 | 99.7% | 113.8 | 77.5% | 86.8 | 104.1% | |
2090S | 415.5 | 98.8% | 197.7 | 103.8% | 124.6 | 84.9% | 93.2 | 111.8% | |
SSP585 | 2030S | 392.1 | 93.2% | 175.9 | 92.4% | 126.5 | 86.2% | 89.7 | 107.5% |
2050S | 398.9 | 94.9% | 186.1 | 97.7% | 121.7 | 82.9% | 91.1 | 109.2% | |
2070S | 407.7 | 73.2% | 207.4 | 108.9% | 111.7 | 76.1% | 88.6 | 106.2% | |
2090S | 408.8 | 97.2% | 188.2 | 98.8% | 128.0 | 87.2% | 92.6 | 111.1% |
Shared Socio-Economic Pathways, SSPs|Decades | Coordinate | Centroid Position | Migration Direction | Migration Distance/km | |
---|---|---|---|---|---|
1970–2000 | 114.150836° E, 31.593743° N | Zengdu District, Suizhou City, Hubei Province | |||
SSP126 | 2030S | 115.698358° E, 33.141402° N | Qiaocheng District, Bozhou City, Anhui Province | Northeast | 178.5 |
2050S | 114.759967° E, 32.289301° N | Pingqiao District, Xinyang City, Henan Province | Northeast | 81.2 | |
2070S | 114.472419° E, 31.671662° N | Guangshui City, Suizhou City, Hubei Province | Northeast | 34.2 | |
2090S | 115.826678° E, 33.488854° N | Guoyang County, Bozhou City, Anhui Province | Northeast | 234.5 | |
SSP370 | 2030S | 114.489599° E, 31.96863° N | Guangshui City, Suizhou City, Hubei Province | Northeast | 44.3 |
2050S | 114.415436° E, 31.399209° N | Dawu County, Xiaogan City, Hubei Province | Southeast | 32.0 | |
2070S | 115.419042° E, 32.076438° N | Xi County, Xinyang City, Henan Province | Northeast | 83.3 | |
2090S | 113.561336° E, 30.730627° N | Hanchuan City, Xiaogan City, Hubei Province | Southwest | 111.3 | |
SSP585 | 2030S | 114.682466° E, 31.959892° N | Guangshui City, Suizhou City, Hubei Province | Northeast | 62.3 |
2050S | 114.785718° E, 32.13088° N | Pingqiao District, Xinyang City, Henan Province | Northeast | 82.0 | |
2070S | 116.175465° E, 33.044489° N | Mengcheng County, Bozhou City, Anhui Province | Northeast | 223.8 | |
2090S | 115.22764° E, 32.741617° N | Xincai County, Zhumadian City, Henan Province | Northeast | 159.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Wang, H.; Dai, T. Predicting the Potential Geographic Distribution of Phytophthora cinnamomi in China Using a MaxEnt-Based Ecological Niche Model. Agriculture 2025, 15, 1411. https://doi.org/10.3390/agriculture15131411
Zhang X, Wang H, Dai T. Predicting the Potential Geographic Distribution of Phytophthora cinnamomi in China Using a MaxEnt-Based Ecological Niche Model. Agriculture. 2025; 15(13):1411. https://doi.org/10.3390/agriculture15131411
Chicago/Turabian StyleZhang, Xiaorui, Haiwen Wang, and Tingting Dai. 2025. "Predicting the Potential Geographic Distribution of Phytophthora cinnamomi in China Using a MaxEnt-Based Ecological Niche Model" Agriculture 15, no. 13: 1411. https://doi.org/10.3390/agriculture15131411
APA StyleZhang, X., Wang, H., & Dai, T. (2025). Predicting the Potential Geographic Distribution of Phytophthora cinnamomi in China Using a MaxEnt-Based Ecological Niche Model. Agriculture, 15(13), 1411. https://doi.org/10.3390/agriculture15131411