Study on Spray Deposition Effect of a New High-Clearance Air-Assisted Electrostatic Sprayer
Abstract
1. Introduction
2. Materials and Methods
2.1. The Sprayer
2.2. The Air-Assisted Electrostatic Spray Nozzle
2.3. Spray Suspension Unit Design
2.4. The Vineyard
2.5. The Test Design
2.6. Field Test Data Analyses
3. Results
3.1. The Performance of the High-Clearance Air-Assisted Electrostatic Sprayer
3.2. The Effect of Applied Voltage on Droplet Deposition
4. Conclusions
- (1)
- The middle row of the high-clearance air-assisted electrostatic sprayer deposition effect was better than the left and right rows, with the maximum droplet coverage and droplet deposition density increased by 29.5% and 26.7%, respectively. And the minimum droplet deposition density inside the grape canopy was 26.4 deposits/cm2.
- (2)
- When the applied voltage was 3.0 kV, the average droplet coverage and the average droplet deposition density of the grape canopy increased relative to the applied voltage of 0 kV. Throughout the canopy of wine grapes, the average droplet coverage and average droplet deposition density increased by 3.89% and 15.72%, respectively.
- (3)
- When the applied voltage was 3.0 kV, the droplet coverage and droplet deposition density of the outer grape canopy increased significantly relative to the applied voltage of 0 kV, but decreased the droplet coverage and droplet deposition density of the inner canopy. And it also resulted in a lower spray penetration coefficient. This suggested that while electrostatic spraying improved surface deposition, it limited spray penetration efficiency.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chambers, J.E.; Greim, H.; Kendall, R.J.; Segner, H.; Sharpe, R.M.; Van Der Kraak, G. Human and ecological risk assessment of a crop protection chemical: A case study with the azole fungicide epoxiconazole. Crit. Rev. Toxicol. 2014, 44, 176–210. [Google Scholar] [CrossRef]
- Meena, P.N.; Raghavendra, D.; Singh, S.; Kumar, N.; Khokhar, M.K.; Chander, S.; Lal, M.K.; Tiwari, R.K.; Kumar, R. Integrated Pest Management techniques in a Kinnow mandarin (Citrus reticulata Blanco) orchard with an emphasis on yield improvement. Heliyon 2025, 11, e42574. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Hassan, M.; Yu, J.; Zhu, A.; Han, Z.; He, P.; Chen, Q.; Li, H.; Ouyang, Q. Time series prediction of insect pests in tea gardens. J. Sci. Food Agric. 2024, 104, 5614–5624. [Google Scholar] [CrossRef]
- Kharim, M.N.A.; Wayayok, A.; Shariff, A.R.M.; Abdullah, A.F.; Husin, E.M. Droplet deposition density of organic liquid fertilizer at low altitude UAV aerial spraying in rice cultivation. Comput. Electron. Agric. 2019, 167, 105045. [Google Scholar] [CrossRef]
- Lin, J.; Ma, J.; Liu, K.; Huang, X.; Xiao, L.; Ahmed, S.; Dong, X.; Qiu, B. Development and test of an autonomous air-assisted sprayer based on single hanging track for solar greenhouse. Crop Prot. 2021, 142, 105502. [Google Scholar] [CrossRef]
- Guo, Z.; Wu, X.; Jayan, H.; Yin, L.; Xue, S.; El-Seedi, H.R.; Zou, X. Recent developments and applications of surface enhanced Raman scattering spectroscopy in safety detection of fruits and vegetables. Food Chem. 2024, 434, 137469. [Google Scholar] [CrossRef]
- Zheng, X.; Yang, F.; Fan, D.; Yan, Y. Rural human settlement environment, non-agricultural transfer of labour and arable land abandonment in China. Heliyon 2024, 10, e36418. [Google Scholar] [CrossRef]
- Zhou, Q.; Xue, X.; Chen, C.; Cai, C.; Jiao, Y. Canopy deposition characteristics of different orchard pesticide dose models. Int. J. Agric. Biol. Eng. 2023, 16, 1–6. [Google Scholar] [CrossRef]
- Duga, A.T.; Ruysen, K.; Dekeyser, D.; Nuyttens, D.; Bylemans, D.; Nicolai, B.M.; Verboven, P. Spray deposition profiles in pome fruit trees: Effects of sprayer design, training system and tree canopy characteristics. Crop Prot. 2015, 67, 200–213. [Google Scholar] [CrossRef]
- Miranda-Fuentes, A.; Marucco, P.; González-Sánchez, E.; Gil, E.; Grella, M.; Balsari, P. Developing strategies to reduce spray drift in pneumatic spraying in vineyards: Assessment of the parameters affecting droplet size in pneumatic spraying. Sci. Total Environ. 2018, 616–617, 805–815. [Google Scholar] [CrossRef]
- Li, T.; Qi, P.; Wang, Z.; Xu, S.; Huang, Z.; Han, L.; He, X. Evaluation of the Effects of Airflow Distribution Patterns on Deposit Coverage and Spray Penetration in Multi-Unit Air-Assisted Sprayer. Agronomy 2022, 12, 944. [Google Scholar] [CrossRef]
- Salcedo, R.; Llop, J.; Campos, J.; Costas, M.; Gallart, M.; Ortega, P.; Gil, E. Evaluation of leaf deposit quality between electrostatic and conventional multi-row sprayers in a trellised vineyard. Crop Prot. 2020, 127, 104964. [Google Scholar] [CrossRef]
- Fox, R.D.; Derksen, R.C.; Zhu, H.; Brazee, R.D.; Svensson, S.A. A History of Air-Blast Sprayer Development and Future Prospects. Trans. ASABE 2008, 51, 405–410. [Google Scholar] [CrossRef]
- Salyani, M. Optimization of deposition efficiency for airblast sprayers. Trans. ASAE 2000, 43, 247–253. [Google Scholar] [CrossRef]
- Gianfranco, P.; Nicola, Z. Influence of canopy development in the vineyard on spray deposition from a tunnel sprayer. J. Agric. Eng. 2018, 49, 164–173. [Google Scholar]
- Landers, A.; Cabre, T.P.; Llorens, J. Technologies for the precise application of pesticides into vineyards. Trans. ASABE 2018, 51, 405–410. [Google Scholar]
- Triloff, P. Results of measuring the air distribution of sprayers for 3D-crops and parameters for evaluating and comparing fan types. In Proceedings of the SuproFruit 2015—13th Workshop on Spray Application in Fruit Growing, Lindau, Germany, 15–18 July 2015; pp. 21–23. [Google Scholar]
- Shen, Y.; Zhu, H.; Liu, H.; Chen, Y.; Ozkan, E. Development of a Laser-Guided, Embedded-Computer-Controlled, Air-Assisted Precision Sprayer. Trans. ASABE 2017, 60, 1827–1838. [Google Scholar] [CrossRef]
- Sinha, R.; Ranjan, R.; Khot, L.R.; Hoheisel, G.-A.; Grieshop, M.J. Comparison of within canopy deposition for a solid set canopy delivery system (SSCDS) and an axial–fan airblast sprayer in a vineyard. Crop Prot. 2020, 132, 105124. [Google Scholar] [CrossRef]
- Devanand, M.; Divaker, D. Effects of charging voltage, application speed, target height, and orientation upon charged spray deposition on leaf abaxial and adaxial surfaces. Crop Prot. 2010, 29, 134–141. [Google Scholar]
- Liu, X.; Song, L.; Cui, H.; Liu, Y.; Liu, X.; Wu, M. Decoupling on Influence of Air Droplets Stress and Canopy Porosity Change on Deposition Performance in Air-assisted Spray. Trans. Chin. Soc. Agric. Mach. 2021, 52, 117–126. [Google Scholar]
- Gu, J.; Heping, Z.; Ding, W.; Wang, X. Characterization of Air Profiles Impeded by Plant Canopies for a Variable-Rate Air-Assisted Sprayer. Trans. ASABE 2014, 57, 1307–1315. [Google Scholar]
- Knight, R.M.; Li, X.; Hocter, J.S.; Zhang, B.; Zhao, L.; Zhu, H. Optimization of Induction Charging of Water Droplets to Develop an Electrostatic Spray Scrubber Intended for Poultry Particulate Matter Mitigation. J. ASABE 2022, 65, 815–824. [Google Scholar] [CrossRef]
- Grella, M.; Miranda-Fuentes, A.; Marucco, P.; Balsari, P. Field assessment of a newly-designed pneumatic spout to contain spray drift in vineyards: Evaluation of canopy distribution and off-target losses. Pest Manag. Sci. 2020, 76, 4173–4191. [Google Scholar] [CrossRef] [PubMed]
- Manoj-Kumar, P.; Ghanshyam, C.; Pawan, K. Characterization of electrode material for electrostatic spray charging: Theoretical and engineering practices. J. Electrost. 2013, 71, 55–60. [Google Scholar]
- Triloff, P. A case study-canopy adapted dosing and spray application in 3D crops. Dose Expr. Workshop Assoc. Appl. Biol. 2018, 6–7. [Google Scholar]
- Pascuzzi, S.; Cerruto, E. Spray deposition in “tendone” vineyards when using a pneumatic electrostatic sprayer. Crop Prot. 2015, 68, 1–11. [Google Scholar] [CrossRef]
- Wu, S.; Liu, J.; Wang, J.; Hao, D.; Wang, R. The Motion of Strawberry Leaves in an Air-Assisted Spray Field and its Influence on Droplet Deposition. Trans. ASABE 2021, 64, 83–93. [Google Scholar] [CrossRef]
- Lin, J.; Cai, J.; Xiao, L.; Liu, K.; Chen, J.; Ma, J.; Qiu, B. An angle correction method based on the influence of angle and travel speed on deposition in the air-assisted spray. Crop Prot. 2024, 175, 106444. [Google Scholar] [CrossRef]
- Dai, S.; Ou, M.; Du, W.; Yang, X.; Dong, X.; Jiang, L.; Zhang, T.; Ding, S.; Jia, W. Effects of sprayer speed, spray distance, and nozzle arrangement angle on low-flow air-assisted spray deposition. Front. Plant Sci. 2023, 14, 1184244. [Google Scholar] [CrossRef]
- Rincón, V.J.; Grella, M.; Marucco, P.; Alcatrão, L.E.; Sanchez-Hermosilla, J.; Balsari, P. Spray performance assessment of a remote-controlled vehicle prototype for pesticide application in greenhouse tomato crops. Sci. Total Environ. 2020, 726, 138509. [Google Scholar] [CrossRef]
- Dai, S.; Zhang, J.; Jia, W.; Ou, M.; Zhou, H.; Dong, X.; Chen, H.; Wang, M.; Chen, Y.; Yang, S. Experimental Study on the Droplet Size and Charge-to-Mass Ratio of an Air-Assisted Electrostatic Nozzle. Agriculture 2022, 12, 889. [Google Scholar] [CrossRef]
- Liao, J.; Hewitt, A.J.; Wang, P.; Luo, X.; Zang, Y.; Zhou, Z.; Lan, Y.; O’Donnell, C. Development of droplet characteristics prediction models for air induction nozzles based on wind tunnel tests. Int. J. Agric. Biol. Eng. 2019, 12, 1–6. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, J.; Guo, J.; Qiu, B. Numerical Simulation and Validation of Droplet Deposition on Tomato Leaf Surface under Air-Assisted Spraying. Agronomy 2024, 14, 1661. [Google Scholar] [CrossRef]
- Nishida, K.; Ishii, M.; Tsushima, S.; Hirai, S. Detection of water vapor in cathode gas diffusion layer of polymer electrolyte fuel cell using water sensitive paper. J. Power Sources 2012, 199, 155–160. [Google Scholar] [CrossRef]
- Zhu, H.; Salyani, M.; Fox, R.D. A portable scanning system for evaluation of spray deposit distribution. Comput. Electron. Agric. 2011, 76, 38–43. [Google Scholar] [CrossRef]
- Guo, J.; Dong, X.; Qiu, B. Analysis of the Factors Affecting the Deposition Coverage of Air-Assisted Electrostatic Spray on Tomato Leaves. Agronomy 2024, 14, 1108. [Google Scholar] [CrossRef]
- Wang, J.; Chen, R. An improved finite element model for the hydraulic analysis of drip irrigation subunits considering local emitter head loss. Irrig. Sci. 2020, 38, 147–162. [Google Scholar] [CrossRef]
- Lin, J.; Cai, J.; Ouyang, J.; Xiao, L.; Qiu, B. The Influence of Electrostatic Spraying with Waist-Shaped Charging Devices on the Distribution of Long-Range Air-Assisted Spray in Greenhouses. Agronomy 2024, 14, 2278. [Google Scholar] [CrossRef]
Row | Applied Voltage 0 kV | Applied Voltage 3 kV | |
---|---|---|---|
Average Droplet Coverage (%) | Left row | 7.50 | 7.85 |
Middle row | 9.39 | 9.89 | |
Right row | 7.54 | 7.64 | |
Average Droplet Deposition Density (deposits/cm2) | Left row | 89.7 | 101.7 |
Middle row | 101.6 | 124.2 | |
Right row | 85.75 | 94.7 | |
Spray Penetration Coefficient (SP) | Left row | 0.33 | 0.30 |
Middle row | 0.42 | 0.38 | |
Right row | 0.38 | 0.32 |
Row | Outer | Inner | |||
---|---|---|---|---|---|
0 kV | 3 kV | 0 kV | 3 kV | ||
Average Droplet Coverage (%) | Left row | 10.01 | 10.92 ↑ | 5.00 | 4.78 ↓ |
Middle row | 10.9 | 12.26 ↑ | 7.95 | 7.51 ↓ | |
Right row | 9.3 | 10.33 ↑ | 5.75 | 4.95 ↓ | |
Average Droplet Deposition Density (deposits/cm2) | Left row | 110.1 | 132.6 ↑ | 69.4 | 70.9 ↑ |
Middle row | 119.1 | 169.2 ↑ | 84.1 | 79.1 ↓ | |
Right row | 104.2 | 130.9 ↑ | 67.3 | 58.4 ↓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ou, M.; Dai, S.; Jing, X.; Jia, W.; Dong, X.; Wang, Y.; Wu, M. Study on Spray Deposition Effect of a New High-Clearance Air-Assisted Electrostatic Sprayer. Agriculture 2025, 15, 1331. https://doi.org/10.3390/agriculture15131331
Ou M, Dai S, Jing X, Jia W, Dong X, Wang Y, Wu M. Study on Spray Deposition Effect of a New High-Clearance Air-Assisted Electrostatic Sprayer. Agriculture. 2025; 15(13):1331. https://doi.org/10.3390/agriculture15131331
Chicago/Turabian StyleOu, Mingxiong, Shiqun Dai, Xinbao Jing, Weidong Jia, Xiang Dong, Yunfei Wang, and Minmin Wu. 2025. "Study on Spray Deposition Effect of a New High-Clearance Air-Assisted Electrostatic Sprayer" Agriculture 15, no. 13: 1331. https://doi.org/10.3390/agriculture15131331
APA StyleOu, M., Dai, S., Jing, X., Jia, W., Dong, X., Wang, Y., & Wu, M. (2025). Study on Spray Deposition Effect of a New High-Clearance Air-Assisted Electrostatic Sprayer. Agriculture, 15(13), 1331. https://doi.org/10.3390/agriculture15131331