Integrating WOFOST and Deep Learning for Winter Wheat Yield Estimation in the Huang-Huai-Hai Plain
Abstract
:1. Introduction
- (1)
- Multi-scenario wheat growth simulation: Combine crop models with meteorological, soil, and management data. Simulate wheat growth and yield using accumulated temperature theory under multiple scenarios;
- (2)
- Wheat yield mapping: Use remote sensing data and simulated growth results to produce pixel-level yield maps;
- (3)
- Yield calibration: Calibrate simulated yields using historical statistics to enhance accuracy and reduce uncertainty.
2. Study Area and Data
2.1. The HHH Plain
2.2. Data and Preprocessing
2.2.1. Remote Sensing Data and Preprocessing
2.2.2. Meteorological Data and Preprocessing
- (1)
- Meteorological Station Data
- (2)
- Acquisition of temperature data
2.2.3. Other Data
- (1)
- Soil data
- (2)
- Winter wheat distribution data
- (3)
- Statistical data
- (4)
- Administrative division data
3. Methods
- (1)
- Agronomic Knowledge Base Development: The WOFOST model simulates winter wheat growth dynamics and yield formation across diverse environmental and management scenarios. By integrating meteorological data, soil parameters, cultivar characteristics, and field management practices, we generate a comprehensive dataset. This simulation dataset provides both the sample volume and mechanistic foundation for subsequent data-driven modeling;
- (2)
- Deep Learning-Based Yield Modeling: Deep learning algorithms are applied to analyze and extract key yield-related indicators from the simulation dataset. By systematically optimizing the model architecture and parameters, the study enhances both the estimation accuracy and the generalization capability of the yield prediction model;
- (3)
- Winter wheat yield estimation: The phenological stages of winter wheat within the study area are determined to guide the acquisition of Landsat-8 and Sentinel-2 remote sensing imagery. These datasets are utilized to derive LAI for yield estimation. The trained yield estimation model is then applied to generate spatially explicit yield distribution maps over multiple years;
- (4)
- Multi-Scale Validation and Calibration: The initially simulated yield estimates are adjusted using municipal-level statistical yield data to improve their reliability. Subsequently, county-level statistical yield data are employed to evaluate and validate the accuracy of the corrected yield estimates, ensuring the practical applicability and robustness of the proposed model.
3.1. Construction of Multi-Scenario Wheat Growth Simulation Dataset and Yield Estimation
3.1.1. WOFOST
3.1.2. Model Localization
3.2. Deep Learning-Based Yield Modeling
3.3. Estimation of Winter Wheat Yield
3.3.1. Phenological Extraction of Winter Wheat in the HHH Plain
3.3.2. Feature Inversion Method
3.4. Correction of Yield Estimation Results
3.5. Accuracy Evaluation
4. Results
4.1. Accuracy of Winter Wheat Yield Estimation in the HHH Plain
4.2. Estimation Results of Winter Wheat Yield in the HHH Plain
5. Discussion
5.1. Comparison of HHHWheatYield20/30 m with Existing Datasets
5.2. Advantages and Limitations of Model Coupling
5.3. Uncertainty Analysis and Improvement Methods
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, R.; Dong, J.; Ge, Y.; Lin, H.; Che, X.; Di, Y.; Chen, X.; Qi, S.; Ding, M.; Xiao, X.; et al. Tracking Paddy Rice Acreage, Flooding Impacts, and Mitigations during El Niño Flooding Events Using Sentinel-1/2 Imagery and Cloud Computing. ISPRS J. Photogramm. Remote Sens. 2024, 217, 165–178. [Google Scholar] [CrossRef]
- Zhao, L.; Li, F.; Chang, Q. Review on Crop Type Identification and Yield Forecasting Using Remote Sensing. Trans. Chin. Soc. Agric. Mach. 2023, 54, 1–19. [Google Scholar]
- Shi, W.; Wang, M.; Tao, F.; Xu, X.; Deng, X.; Liu, L.; Kong, X.; Zuo, L.; Lei, M.; Shi, X.; et al. Wheat Redistribution in Huang-Huai-Hai, China, Could Reduce Groundwater Depletion and Environmental Footprints without Compromising Production. Commun. Earth Environ. 2024, 5, 380. [Google Scholar] [CrossRef]
- Li, M.; Wang, P.; Tansey, K.; Zhang, Y.; Guo, F.; Liu, J.; Li, H. An Interpretable Wheat Yield Estimation Model Using an Attention Mechanism-Based Deep Learning Framework with Multiple Remotely Sensed Variables. Int. J. Appl. Earth Obs. Geoinf. 2025, 140, 104579. [Google Scholar] [CrossRef]
- Tian, H.; Wang, P.; Tansey, K.; Han, D.; Zhang, J.; Zhang, S.; Li, H. A Deep Learning Framework under Attention Mechanism for Wheat Yield Estimation Using Remotely Sensed Indices in the Guanzhong Plain, PR China. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102375. [Google Scholar] [CrossRef]
- Teste, F.; Makowski, D.; Bazzi, H.; Ciais, P. Early Forecasting of Corn Yield and Price Variations Using Satellite Vegetation Products. Comput. Electron. Agric. 2024, 221, 108962. [Google Scholar] [CrossRef]
- Hashemi, M.G.Z.; Tan, P.-N.; Jalilvand, E.; Wilke, B.; Alemohammad, H.; Das, N.N. Yield Estimation from SAR Data Using Patch-Based Deep Learning and Machine Learning Techniques. Comput. Electron. Agric. 2024, 226, 109340. [Google Scholar] [CrossRef]
- Ma, Y.; Liang, S.-Z.; Myers, D.B.; Swatantran, A.; Lobell, D.B. Subfield-Level Crop Yield Mapping without Ground Truth Data: A Scale Transfer Framework. Remote Sens. Environ. 2024, 315, 114427. [Google Scholar] [CrossRef]
- Wang, J.; Wang, P.; Tian, H.; Tansey, K.; Liu, J.; Quan, W. A Deep Learning Framework Combining CNN and GRU for Improving Wheat Yield Estimates Using Time Series Remotely Sensed Multi-Variables. Comput. Electron. Agric. 2023, 206, 107705. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Huete, A.R.; Liu, H.Q.; Batchily, K.; van Leeuwen, W. A Comparison of Vegetation Indices over a Global Set of TM Images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Bolton, D.K.; Friedl, M.A. Forecasting Crop Yield Using Remotely Sensed Vegetation Indices and Crop Phenology Metrics. Agric. For. Meteorol. 2013, 173, 74–84. [Google Scholar] [CrossRef]
- Moriondo, M.; Maselli, F.; Bindi, M. A Simple Model of Regional Wheat Yield Based on NDVI Data. Eur. J. Agron. 2007, 26, 266–274. [Google Scholar] [CrossRef]
- Lyu, Y.; Wang, P.; Bai, X.; Li, X.; Ye, X.; Hu, Y.; Zhang, J. Machine Learning Techniques and Interpretability for Maize Yield Estimation Using Time-Series Images of MODIS and Multi-Source Data. Comput. Electron. Agric. 2024, 222, 109063. [Google Scholar] [CrossRef]
- Xu, X.; Wu, B.; Meng, J.; Li, Q.; Huang, W.; Liu, L.; Wang, J. Research Advances in Crop Yield Estimation Models Based on Remote Sensing. Trans. Chin. Soc. Agric. Eng. 2008, 24, 290–298. [Google Scholar]
- Van Diepen, C.A.; Wolf, J.; van Keulen, H.; Rappoldt, C. WOFOST: A Simulation Model of Crop Production. Soil. Use Manag. 1989, 5, 16–24. [Google Scholar] [CrossRef]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT Cropping System Model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Keating, B.A.; Carberry, P.S.; Hammer, G.L.; Probert, M.E.; Robertson, M.J.; Holzworth, D.; Huth, N.I.; Hargreaves, J.N.G.; Meinke, H.; Hochman, Z.; et al. An Overview of APSIM, a Model Designed for Farming Systems Simulation. Eur. J. Agron. 2003, 18, 267–288. [Google Scholar] [CrossRef]
- Huang, J.; Ma, H.; Sedano, F.; Lewis, P.; Liang, S.; Wu, Q.; Su, W.; Zhang, X.; Zhu, D. Evaluation of Regional Estimates of Winter Wheat Yield by Assimilating Three Remotely Sensed Reflectance Datasets into the Coupled WOFOST–PROSAIL Model. Eur. J. Agron. 2019, 102, 1–13. [Google Scholar] [CrossRef]
- Zhuo, W.; Fang, S.; Gao, X.; Wang, L.; Wu, D.; Fu, S.; Wu, Q.; Huang, J. Crop Yield Prediction Using MODIS LAI, TIGGE Weather Forecasts and WOFOST Model: A Case Study for Winter Wheat in Hebei, China during 2009–2013. Int. J. Appl. Earth Obs. Geoinf. 2022, 106, 102668. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, Z.; Tao, F.; Zhang, L.; Luo, Y.; Han, J.; Li, Z. Identifying the Contributions of Multi-Source Data for Winter Wheat Yield Prediction in China. Remote Sens. 2020, 12, 750. [Google Scholar] [CrossRef]
- Guo, Y.; Xiao, Y.; Hao, F.; Zhang, X.; Chen, J.; de Beurs, K.; He, Y.; Fu, Y.H. Comparison of Different Machine Learning Algorithms for Predicting Maize Grain Yield Using UAV-Based Hyperspectral Images. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103528. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep Learning in Neural Networks: An Overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef]
- Wang, X.; Liu, B.; Chen, Z.; Ju, T. Winter Wheat Yield Estimation at County-Scale Based on the Multi-Source Data and LSTM Model. Res. Agric. Mod. 2023, 44, 1117–1126. [Google Scholar]
- Yu, J.; Zhang, X.; Xu, L.; Dong, J.; Zhangzhong, L. A Hybrid CNN-GRU Model for Predicting Soil Moisture in Maize Root Zone. Agric. Water Manag. 2021, 245, 106649. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep Learning in Agriculture: A Survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef]
- Sarker, I.H. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN Comput. Sci. 2021, 2, 420. [Google Scholar] [CrossRef]
- Lu, J.; Li, J.; Fu, H.; Zou, W.; Kang, J.; Yu, H.; Lin, X. Estimation of Rice Yield Using Multi-Source Remote Sensing Data Combined with Crop Growth Model and Deep Learning Algorithm. Agric. For. Meteorol. 2025, 370, 110600. [Google Scholar] [CrossRef]
- Liu, S.; Mo, X.; Lin, Z.; Xu, Y.; Ji, J.; Wen, G.; Richey, J. Crop Yield Responses to Climate Change in the Huang-Huai-Hai Plain of China. Agric. Water Manag. 2010, 97, 1195–1209. [Google Scholar] [CrossRef]
- Xia, X.; Zhu, X.; Pan, Y.; Zhang, J. Calibrating and Optimizing the Parameters in Angstrom Equation for Calculating Evapotranspiration from Mainland China. J. Irrig. Drain. 2020, 39, 123–130. [Google Scholar]
- Dong, J.; Pang, Z.; Fu, Y.; Peng, Q.; Li, X.; Yuan, W. Annual Winter Wheat Mapping Dataset in China from 2001 to 2020. Sci. Data 2024, 11, 1218. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Fu, Y.; Wang, J.; Tian, H.; Fu, S.; Niu, Z.; Han, W.; Zheng, Y.; Huang, J.; Yuan, W. Early-Season Mapping of Winter Wheat in China Based on Landsat and Sentinel Images. Earth Syst. Sci. Data 2020, 12, 3081–3095. [Google Scholar] [CrossRef]
- He, L.; Hou, Y.; Zhao, G.; Wu, D.; Yu, Q. Parameter Optimization of WOFOST Crop Model Based on Global Sensitivity Analysis and Bayesian Method. Trans. Chin. Soc. Agric. Eng. 2016, 32, 169–179. [Google Scholar]
- Huang, J.; Jia, S.; Ma, H.; Hou, Y.; He, L. Dynamic Simulation of Winter Wheat Growth Process in China’s Main Production Areas Based on WOFOST Model. Trans. Chin. Soc. Agric. Eng. 2017, 33, 222–228. [Google Scholar]
- Ma, Y.; Wang, S.; Zhang, L. Study on Improvement of WOFOST Against Overwinter of Wheat in North China. Chin. J. Agrometeorol. 2005, 26, 145–149. [Google Scholar]
- Wang, T.; Lu, C.; Yu, B. Assessing the Potential Productivity of Winter Wheat Using WOFOST in the Beijing–Tianjin–Hebei Region. J. Nat. Resour. 2010, 25, 475–487. [Google Scholar]
- Wu, D.; Ouyang, Z.; Zhao, X.; Yu, Q.; Luo, Y. The Applicability Research of WOFOST Model in North China Plain. Chin. J. Plant Ecol. 2003, 27, 594–602. [Google Scholar]
- Zhang, J.; Zhao, Y.; Wang, C.; Yang, X.; Wang, J. Evaluation Technology on Drought Disaster to Yields of Winter Wheat Based on WOFOST Crop Growth Model. Acta Ecol. Sin. 2013, 33, 1762–1769. [Google Scholar] [CrossRef]
- Zhu, J. Study on Winter Wheat Irrigation Simulation in Baoding City, Hebei Province Based on WOFOST Model; Nanjing University of Information Science and Technology: Nanjing, China, 2015. [Google Scholar]
- Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Ren, Y.; Li, Q.; Du, X.; Zhang, Y.; Wang, H.; Shi, G.; Wei, M. Analysis of Corn Yield Prediction Potential at Various Growth Phases Using a Process-Based Model and Deep Learning. Plants 2023, 12, 446. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhao, J.; Wang, X.; Jie, Z.; Zhuo, W.; Huang, R. Winter Wheat Growth Period Extraction Method Based on Remote Sensing and Accumulated Temperature. Trans. Chin. Soc. Agric. Mach. 2019, 50, 169–176. [Google Scholar]
- Pasqualotto, N.; Delegido, J.; Van Wittenberghe, S.; Rinaldi, M.; Moreno, J. Multi-Crop Green LAI Estimation with a New Simple Sentinel-2 LAI Index (SeLI). Sensors 2019, 19, 904. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Pattey, E.; Jégo, G. Assessment of Vegetation Indices for Regional Crop Green LAI Estimation from Landsat Images over Multiple Growing Seasons. Remote Sens. Environ. 2012, 123, 347–358. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, P.; Bai, X.; Khan, J.; Zhang, S.; Li, L.; Wang, L. Assimilation of the Leaf Area Index and Vegetation Temperature Condition Index for Winter Wheat Yield Estimation Using Landsat Imagery and the CERES-Wheat Model. Agric. For. Meteorol. 2017, 246, 194–206. [Google Scholar] [CrossRef]
- Stevens, F.R.; Gaughan, A.E.; Linard, C.; Tatem, A.J. Disaggregating Census Data for Population Mapping Using Random Forests with Remotely-Sensed and Ancillary Data. PLoS ONE 2015, 10, e0107042. [Google Scholar] [CrossRef]
- Wu, N.; Yan, J.; Liang, D.; Sun, Z.; Ranjan, R.; Li, J. High-Resolution Mapping of GDP Using Multi-Scale Feature Fusion by Integrating Remote Sensing and POI Data. Int. J. Appl. Earth Obs. Geoinf. 2024, 129, 103812. [Google Scholar] [CrossRef]
- Zhao, Y.; Du, X.; Li, Q.; Zhang, Y.; Wang, H.; Wang, Y.; Xu, J.; Xiao, J.; Shen, Y.; Dong, Y.; et al. Mapping and Analyzing Winter Wheat Yields in the Huang-Huai-Hai Plain: A Climate-Independent Perspective. Remote Sens. 2025, 17, 1409. [Google Scholar] [CrossRef]
- Zhang, Z.; Luo, Y.; Han, J.; Xu, J.; Tao, F. Estimating Global Wheat Yields at 4 Km Resolution during 1982–2020 by a Spatiotemporal Transferable Method. Remote Sens. 2024, 16, 2342. [Google Scholar] [CrossRef]
- Zhao, Y.; Han, S.; Zheng, J.; Xue, H.; Li, Z.; Meng, Y.; Li, X.; Yang, X.; Li, Z.; Cai, S.; et al. ChinaWheatYield30m: A 30 m Annual Winter Wheat Yield Dataset from 2016 to 2021 in China. Earth Syst. Sci. Data 2023, 15, 4047–4063. [Google Scholar] [CrossRef]
- Han, J.; Zhang, Z.; Xu, J.; Chen, Y.; Jägermeyr, J.; Cao, J.; Luo, Y.; Cheng, F.; Zhuang, H.; Wu, H.; et al. Threat of Low-Frequency High-Intensity Floods to Global Cropland and Crop Yields. Nat. Sustain. 2024, 7, 994–1006. [Google Scholar] [CrossRef]
- Deines, J.M.; Patel, R.; Liang, S.-Z.; Dado, W.; Lobell, D.B. A Million Kernels of Truth: Insights into Scalable Satellite Maize Yield Mapping and Yield Gap Analysis from an Extensive Ground Dataset in the US Corn Belt. Remote Sens. Environ. 2021, 253, 112174. [Google Scholar] [CrossRef]
- Gao, F.; Anderson, M.; Daughtry, C.; Johnson, D. Assessing the Variability of Corn and Soybean Yields in Central Iowa Using High Spatiotemporal Resolution Multi-Satellite Imagery. Remote Sens. 2018, 10, 1489. [Google Scholar] [CrossRef]
- Zhuang, H.; Zhang, Z.; Cheng, F.; Han, J.; Luo, Y.; Zhang, L.; Cao, J.; Zhang, J.; He, B.; Xu, J.; et al. Integrating Data Assimilation, Crop Model, and Machine Learning for Winter Wheat Yield Forecasting in the North China Plain. Agric. For. Meteorol. 2024, 347, 109909. [Google Scholar] [CrossRef]
- Talero-Sarmiento, L.; Roa-Prada, S.; Caicedo-Chacon, L.; Gavanzo-Cardenas, O. A Data-Driven Approach to Improve Cocoa Crop Establishment in Colombia: Insights and Agricultural Practice Recommendations from an Ensemble Machine Learning Model. Agriengineering 2025, 7, 6. [Google Scholar] [CrossRef]
Province | Green-up | Flowering | Maturity |
---|---|---|---|
Anhui | February 20th | April 20th | May 25th |
Henan | March 5th | April 30th | June 5th |
Hebei | March 10th | May 10th | June 10th |
Shandong | March 5th | April 30th | June 5th |
Jiangsu | February 25th | April 20th | May 30th |
Beijing | March 10th | May 10th | June 10th |
Tianjin | March 10th | May 10th | June 10th |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Du, X.; Xu, J.; Li, Q.; Zhang, Y.; Wang, H.; Yan, S.; Gong, S.; Hu, H. Integrating WOFOST and Deep Learning for Winter Wheat Yield Estimation in the Huang-Huai-Hai Plain. Agriculture 2025, 15, 1257. https://doi.org/10.3390/agriculture15121257
Zhao Y, Du X, Xu J, Li Q, Zhang Y, Wang H, Yan S, Gong S, Hu H. Integrating WOFOST and Deep Learning for Winter Wheat Yield Estimation in the Huang-Huai-Hai Plain. Agriculture. 2025; 15(12):1257. https://doi.org/10.3390/agriculture15121257
Chicago/Turabian StyleZhao, Yachao, Xin Du, Jingyuan Xu, Qiangzi Li, Yuan Zhang, Hongyan Wang, Sifeng Yan, Shuguang Gong, and Haoxuan Hu. 2025. "Integrating WOFOST and Deep Learning for Winter Wheat Yield Estimation in the Huang-Huai-Hai Plain" Agriculture 15, no. 12: 1257. https://doi.org/10.3390/agriculture15121257
APA StyleZhao, Y., Du, X., Xu, J., Li, Q., Zhang, Y., Wang, H., Yan, S., Gong, S., & Hu, H. (2025). Integrating WOFOST and Deep Learning for Winter Wheat Yield Estimation in the Huang-Huai-Hai Plain. Agriculture, 15(12), 1257. https://doi.org/10.3390/agriculture15121257