Evaluating Switchgrass (Panicum virgatum L.) as a Feedstock for Methane Production in Northern Europe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment Conditions and Switchgrass Management
2.1.1. Field and Weather Characteristics
2.1.2. Switchgrass Cultivars and Management
2.2. Sample Preparation and Chemical Analyses
2.2.1. Plant Material and Silage Preparation
2.2.2. Chemical Analyses of Biomass and Silage
2.3. Anaerobic Digestion Experiments
2.4. Statistical Analysis
3. Results and Discussion
3.1. Chemical Compositions of Harvested and Ensiled Biomasses
3.2. Cumulative and Area-Specific Methane Yield
3.3. Association Between Biomass Composition and Specific Methane Yield
3.4. Area-Specific Methane and Energy Yield
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lewandowski, I. The Role of Perennial Biomass Crops in a Growing Bioeconomy. In Perennial Biomass Crops for a Resource-Constrained World; Springer International Publishing: Cham, Switzerland, 2016; pp. 3–13. [Google Scholar]
- de Wit, M.; Faaij, A. European biomass resource potential and costs. Biomass Bioenergy 2010, 34, 188–202. [Google Scholar] [CrossRef]
- Kadžiulienė, Ž.; Tilvikienė, V.; Liaudanskienė, I.; Pocienė, L.; Černiauskienė, Ž.; Zvicevicius, E.; Raila, A. Artemisia dubia growth, yield and biomass characteristics for combustion. Zemdirbyste 2017, 104, 99–106. [Google Scholar] [CrossRef]
- Comparetti, A.; Greco, C.; Navickas, K.; Orlando, S.; Venslauskas, K. Life Cycle Impact Assessment applied to cactus pear crop production for generating bioenergy and biofertiliser. Riv. DI Stud. Sulla Sostenibilita’ 2020, 11, 315–329. [Google Scholar] [CrossRef]
- Popp, D.; von Gillhaussen, P.; Weidlich, E.W.A.; Sträuber, H.; Harms, H.; Temperton, V.M. Methane yield of biomass from extensive grassland is affected by compositional changes induced by order of arrival. GCB Bioenergy 2017, 9, 1555–1562. [Google Scholar] [CrossRef]
- Bolan, S.; Padhye, L.P.; Jasemizad, T.; Govarthanan, M.; Karmegam, N.; Wijesekara, H.; Amarasiri, D.; Hou, D.; Zhou, P.; Biswal, B.K.; et al. Impacts of climate change on the fate of contaminants through extreme weather events. Sci. Total Environ. 2024, 909, 168388. [Google Scholar] [CrossRef]
- Thomson, A.M.; Brown, R.A.; Rosenberg, N.J.; Izaurralde, R.C.; Benson, V. Climate Change Impacts for the Conterminous USA: An Integrated Assessment. Clim. Change 2005, 69, 43–65. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F. Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim. Dyn. 2008, 31, 79–105. [Google Scholar] [CrossRef]
- Vendramini, J.M.B.; Silveira, M.L.; Moriel, P. Resilience of warm-season (C4) perennial grasses under challenging environmental and management conditions. Anim. Front. 2023, 13, 16–22. [Google Scholar] [CrossRef]
- Byrt, C.S.; Grof, C.P.L.; Furbank, R.T. C4 Plants as Biofuel Feedstocks: Optimising Biomass Production and Feedstock Quality from a Lignocellulosic PerspectiveFree Access. J. Integr. Plant Biol. 2011, 53, 120–135. [Google Scholar] [CrossRef]
- Bouton, J. Improvement of Switchgrass as a Bioenergy Crop. In Genetic Improvement of Bioenergy Crops; Springer: New York, NY, USA, 2008; pp. 309–345. [Google Scholar]
- Liu, L.; Basso, B. Spatial evaluation of switchgrass productivity under historical and future climate scenarios in Michigan. GCB Bioenergy 2017, 9, 1320–1332. [Google Scholar] [CrossRef]
- Samson, R.; Mani, S.; Boddey, R.; Sokhansanj, S.; Quesada, D.; Urquiaga, S.; Reis, V.; Ho Lem, C. The Potential of C 4 Perennial Grasses for Developing a Global BIOHEAT Industry. CRC. Crit. Rev. Plant Sci. 2005, 24, 461–495. [Google Scholar] [CrossRef]
- Barney, J.N.; Mann, J.J.; Kyser, G.B.; Blumwald, E.; Van Deynze, A.; DiTomaso, J.M. Tolerance of switchgrass to extreme soil moisture stress: Ecological implications. Plant Sci. 2009, 177, 724–732. [Google Scholar] [CrossRef]
- Parrish, D.J.; Fike, J.H. The Biology and Agronomy of Switchgrass for Biofuels. CRC. Crit. Rev. Plant Sci. 2005, 24, 423–459. [Google Scholar] [CrossRef]
- Emery, S.M.; Stahlheber, K.A.; Gross, K.L. Drought minimized nitrogen fertilization effects on bioenergy feedstock quality. Biomass Bioenergy 2020, 133, 105452. [Google Scholar] [CrossRef]
- Bird, N.; Cowie, A.; Cherubini, F.; Jungmeier, G. Using a Life Cycle Assessment Approach to Estimate the Net Greenhouse Gas Emissions of Bioenergy. IEA Bioenergy: ExCo:2011:03. 2011. Available online: https://www.ieabioenergy.com/wp-content/uploads/2013/10/Using-a-LCA-approach-to-estimate-the-net-GHG-emissions-of-bioenergy.pdf (accessed on 4 June 2025).
- Bužinskienė, R.; Miceikienė, A.; Venslauskas, K.; Navickas, K. Assessment of Energy–Economy and Environmental Performance of Perennial Crops in Terms of Biogas Production. Agronomy 2023, 13, 1291. [Google Scholar] [CrossRef]
- Amaleviciute-Volunge, K.; Slepetiene, A.; Butkute, B. Methane yield of perennial grasses with as affected by the chemical composition of their biomass. Zemdirb. Agric. 2020, 107, 243–248. [Google Scholar] [CrossRef]
- Zegada-Lizarazu, W.; Zanetti, F.; Di Virgilio, N.; Monti, A. Is switchgrass good for carbon savings? Long-term results in marginal land. GCB Bioenergy 2022, 14, 814–823. [Google Scholar] [CrossRef]
- Wang, E.; Cruse, R.M.; Sharma-Acharya, B.; Herzmann, D.E.; Gelder, B.K.; James, D.E.; Flanagan, D.C.; Blanco-Canqui, H.; Mitchell, R.B.; Laird, D.A. Strategic switchgrass (Panicum virgatum) production within row cropping systems: Regional-scale assessment of soil erosion loss and water runoff impacts. GCB Bioenergy 2020, 12, 955–967. [Google Scholar] [CrossRef]
- Smeets, E.M.W.; Lewandowski, I.M.; Faaij, A.P.C. The economical and environmental performance of miscanthus and switchgrass production and supply chains in a European setting. Renew. Sustain. Energy Rev. 2009, 13, 1230–1245. [Google Scholar] [CrossRef]
- Parrish, D.J.; Casler, M.D.; Monti, A. The Evolution of Switchgrass as an Energy Crop. In Switchgrass: A Valuable Biomass Crop for Energy; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; pp. 1–28. [Google Scholar]
- Lemežienė, N.; Norkevičienė, E.; Liatukas, Ž.; Dabkevičienė, G.; Cecevičienė, J.; Butkutė, B. Switchgrass from North Dakota–an adaptable and promising energy crop for northern regions of Europe. Acta Agric. Scand. Sect. B Soil Plant Sci. 2015, 65, 118–124. [Google Scholar] [CrossRef]
- Sawatdeenarunat, C.; Surendra, K.C.; Takara, D.; Oechsner, H.; Khanal, S.K. Anaerobic digestion of lignocellulosic biomass: Challenges and opportunities. Bioresour. Technol. 2015, 178, 178–186. [Google Scholar] [CrossRef]
- Campiotti, C.A.; Bibbiani, C.; Greco, C. Renewable energy for greenhouse agriculture. Qual. Access Success. 2019, 20, 152–156. [Google Scholar]
- Budzianowski, W.M. Sustainable biogas energy in Poland: Prospects and challenges. Renew. Sustain. Energy Rev. 2012, 16, 342–349. [Google Scholar] [CrossRef]
- Massé, D.; Gilbert, Y.; Savoie, P.; Bélanger, G.; Parent, G.; Babineau, D. Methane yield from switchgrass harvested at different stages of development in Eastern Canada. Bioresour. Technol. 2010, 101, 9536–9541. [Google Scholar] [CrossRef] [PubMed]
- Kandel, T.P.; Gislum, R.; Jørgensen, U.; Lærke, P.E. Prediction of biogas yield and its kinetics in reed canary grass using near infrared reflectance spectroscopy and chemometrics. Bioresour. Technol. 2013, 146, 282–287. [Google Scholar] [CrossRef]
- Dickeduisberg, M.; Laser, H.; Tonn, B.; Isselstein, J. Tall wheatgrass (Agropyron elongatum) for biogas production: Crop management more important for biomass and methane yield than grass provenance. Ind. Crops Prod. 2017, 97, 653–663. [Google Scholar] [CrossRef]
- Hübner, M.; Oechsner, H.; Koch, S.; Seggl, A.; Hrenn, H.; Schmiedchen, B.; Wilde, P.; Miedaner, T. Impact of genotype, harvest time and chemical composition on the methane yield of winter rye for biogas production. Biomass Bioenergy 2011, 35, 4316–4323. [Google Scholar] [CrossRef]
- Oleszek, M.; Król, A.; Tys, J.; Matyka, M.; Kulik, M. Comparison of biogas production from wild and cultivated varieties of reed canary grass. Bioresour. Technol. 2014, 156, 303–306. [Google Scholar] [CrossRef]
- Dandikas, V.; Heuwinkel, H.; Lichti, F.; Drewes, J.E.; Koch, K. Correlation between biogas yield and chemical composition of energy crops. Bioresour. Technol. 2014, 174, 316–320. [Google Scholar] [CrossRef]
- Herrmann, C.; Idler, C.; Heiermann, M. Biogas crops grown in energy crop rotations: Linking chemical composition and methane production characteristics. Bioresour. Technol. 2016, 206, 23–35. [Google Scholar] [CrossRef]
- van der Weijde, T.; Kiesel, A.; Iqbal, Y.; Muylle, H.; Dolstra, O.; Visser, R.G.F.; Lewandowski, I.; Trindade, L.M. Evaluation of Miscanthus sinensis biomass quality as feedstock for conversion into different bioenergy products. GCB Bioenergy 2017, 9, 176–190. [Google Scholar] [CrossRef]
- Cherubini, F.; Strømman, A.H. Life cycle assessment of bioenergy systems: State of the art and future challenges. Bioresour. Technol. 2011, 102, 437–451. [Google Scholar] [CrossRef] [PubMed]
- Escobar, N.; Ramírez-Sanz, C.; Chueca, P.; Moltó, E.; Sanjuán, N. Multiyear Life Cycle Assessment of switchgrass (Panicum virgatum L.) production in the Mediterranean region of Spain: A comparative case study. Biomass Bioenergy 2017, 107, 74–85. [Google Scholar] [CrossRef]
- Carlsson, G.; Mårtensson, L.; Prade, T.; Svensson, S.; Jensen, E.S. Perennial species mixtures for multifunctional production of biomass on marginal land. GCB Bioenergy 2017, 9, 191–201. [Google Scholar] [CrossRef]
- ISO 11277; Soil Quality—Determination of Particle Size Distribution in Mineral Soil Material—Method by Sieving and Sedimentation. International Organization for Standardization: Geneva, Switzerland, 2020.
- Metzger, M.J.; Shkaruba, A.D.; Jongman, R.H.G.; Bunce, R.G.H. Descriptions of the European Environmental Zones and Strata; Alterra: Wageningen, The Netherlands, 2012. [Google Scholar]
- Mulkey, V.R.; Owens, V.N.; Lee, D.K. Management of Switchgrass-Dominated Conservation Reserve Program Lands for Biomass Production in South Dakota. Crop Sci. 2006, 46, 712–720. [Google Scholar] [CrossRef]
- Norkevičienė, E.; Lemežienė, N.; Cesevičienė, J.; Butkutė, B. Switchgrass (Panicum virgatum L.) from North Dakota—A New Bioenergy Crop for the Nemoral Zone of Europe. Commun. Soil. Sci. Plant Anal. 2016, 47, 64–74. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Zhao, D.; MacKown, C.T.; Starks, P.J.; Kindiger, B.K. Rapid Analysis of Nonstructural Carbohydrate Components in Grass Forage Using Microplate Enzymatic Assays. Crop Sci. 2010, 50, 1537–1545. [Google Scholar] [CrossRef]
- Badshah, M.; Lam, D.M.; Liu, J.; Mattiasson, B. Use of an Automatic Methane Potential Test System for evaluating the biomethane potential of sugarcane bagasse after different treatments. Bioresour. Technol. 2012, 114, 262–269. [Google Scholar] [CrossRef]
- Strömberg, S.; Nistor, M.; Liu, J. Towards eliminating systematic errors caused by the experimental conditions in Biochemical Methane Potential (BMP) tests. Waste Manag. 2014, 34, 1939–1948. [Google Scholar] [CrossRef]
- Angelidaki, I.; Alves, M.; Bolzonella, D.; Borzacconi, L.; Campos, J.L.; Guwy, A.J.; Kalyuzhnyi, S.; Jenicek, P.; van Lier, J.B. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Sci. Technol. 2009, 59, 927–934. [Google Scholar] [CrossRef] [PubMed]
- VDI 4630:2016-11; Fermentation of Organic Materials-Characterization of the Substrate, Sampling, Collection of Material Data, Fermentation Tests. Verein Deutscher Ingenieure: Düsseldorf, Germany, 2016.
- Waldheim, L.; Nilsson, T. Heating Value of Gases from Biomass Gasification. TPS01/16. IEA Bioenergy Agreement Subcommittee on Thermal Gasification of Biomass; TPS Termiska Processer AB: Nyköing, Sweden, 2001. [Google Scholar]
- Bélanger, G.; Savoie, P.; Parent, G.; Claessens, A.; Bertrand, A.; Tremblay, G.F.; Massé, D.; Gilbert, Y.; Babineau, D. Switchgrass silage for methane production as affected by date of harvest. Can. J. Plant Sci. 2012, 92, 1187–1197. [Google Scholar] [CrossRef]
- Richner, J.M.; Kallenbach, R.L.; Roberts, C.A. Dual Use Switchgrass: Managing Switchgrass for Biomass Production and Summer Forage. Agron. J. 2014, 106, 1438–1444. [Google Scholar] [CrossRef]
- Nges, I.A.; Wang, B.; Cui, Z.; Liu, J. Digestate liquor recycle in minimal nutrients-supplemented anaerobic digestion of wheat straw. Biochem. Eng. J. 2015, 94, 106–114. [Google Scholar] [CrossRef]
- Liu, X.A.; Fike, J.H.; Galbraith, J.M.; Fike, W.B.; Parrish, D.J.; Evanylo, G.K.; Strahm, B.D. Effects of harvest frequency and biosolids application on switchgrass yield, feedstock quality, and theoretical ethanol yield. GCB Bioenergy 2015, 7, 112–121. [Google Scholar] [CrossRef]
- Aurangzaib, M.; Moore, K.J.; Archontoulis, S.V.; Heaton, E.A.; Lenssen, A.W.; Fei, S. Compositional differences among upland and lowland switchgrass ecotypes grown as a bioenergy feedstock crop. Biomass Bioenergy 2016, 87, 169–177. [Google Scholar] [CrossRef]
- Casler, M.D.; Boe, A.R. Cultivar × Environment Interactions in Switchgrass. Crop Sci. 2003, 43, 2226–2233. [Google Scholar] [CrossRef]
- Guretzky, J.A.; Biermacher, J.T.; Cook, B.J.; Kering, M.K.; Mosali, J. Switchgrass for forage and bioenergy: Harvest and nitrogen rate effects on biomass yields and nutrient composition. Plant Soil. 2011, 339, 69–81. [Google Scholar] [CrossRef]
- McIntosh, D.W.; Bates, G.E.; Keyser, P.D.; Allen, F.L.; Harper, C.A.; Waller, J.C.; Birckhead, J.L.; Backus, W.M. Forage Harvest Timing Impact on Biomass Quality from Native Warm-Season Grass Mixtures. Agron. J. 2016, 108, 1524–1530. [Google Scholar] [CrossRef]
- Mitchell, R.; Fritz, J.; Moore, K.; Moser, L.; Vogel, K.; Redfearn, D.; Wester, D. Predicting Forage Quality in Switchgrass and Big Bluestem. Agron. J. 2001, 93, 118–124. [Google Scholar] [CrossRef]
- Heaton, E.A.; Dohleman, F.G.; Long, S.P. Seasonal nitrogen dynamics of Miscanthus × giganteus and Panicum virgatum. GCB Bioenergy 2009, 1, 297–307. [Google Scholar] [CrossRef]
- Frank, A.B.; Berdahl, J.D.; Hanson, J.D.; Liebig, M.A.; Johnson, H.A. Biomass and Carbon Partitioning in Switchgrass. Crop Sci. 2004, 44, 1391–1396. [Google Scholar] [CrossRef]
- Butkutė, B.; Lemežienė, N.; Cesevičienė, J.; Liatukas, Ž.; Dabkevičienė, G. Carbohydrate and lignin partitioning in switchgrass biomass (Panicum virgatum L.) as a bioenergy feedstock. Zemdirb. Agric. 2013, 100, 251–260. [Google Scholar] [CrossRef]
- Sadeghpour, A.; Gorlitsky, L.E.; Hashemi, M.; Weis, S.A.; Herbert, S.J. Response of Switchgrass Yield and Quality to Harvest Season and Nitrogen Fertilizer. Agron. J. 2014, 106, 290–296. [Google Scholar] [CrossRef]
- Watts, K.A. Forage and pasture management for laminitic horses. Clin. Tech. Equine Pract. 2004, 3, 88–95. [Google Scholar] [CrossRef]
- Ahn, H.K.; Smith, M.C.; Kondrad, S.L.; White, J.W. Evaluation of Biogas Production Potential by Dry Anaerobic Digestion of Switchgrass–Animal Manure Mixtures. Appl. Biochem. Biotechnol. 2010, 160, 965–975. [Google Scholar] [CrossRef]
- Dandikas, V.; Heuwinkel, H.; Lichti, F.; Drewes, J.E.; Koch, K. Predicting methane yield by linear regression models: A validation study for grassland biomass. Bioresour. Technol. 2018, 265, 372–379. [Google Scholar] [CrossRef]
- Luna-delRisco, M.; Normak, A.; Orupõld, K. Biochemical methane potential of different organic wastes and energy crops from Estonia. Agron. Res. 2011, 9, 331–342. [Google Scholar]
- Barbanti, L.; Di Girolamo, G.; Grigatti, M.; Bertin, L.; Ciavatta, C. Anaerobic digestion of annual and multi-annual biomass crops. Ind. Crops Prod. 2014, 56, 137–144. [Google Scholar] [CrossRef]
- Ragaglini, G.; Dragoni, F.; Simone, M.; Bonari, E. Suitability of giant reed (Arundo donax L.) for anaerobic digestion: Effect of harvest time and frequency on the biomethane yield potential. Bioresour. Technol. 2014, 152, 107–115. [Google Scholar] [CrossRef]
- El-Mashad, H.M. Kinetics of methane production from the codigestion of switchgrass and Spirulina platensis algae. Bioresour. Technol. 2013, 132, 305–312. [Google Scholar] [CrossRef]
- Frigon, J.C.; Roy, C.; Guiot, S.R. Anaerobic co-digestion of dairy manure with mulched switchgrass for improvement of the methane yield. Bioprocess. Biosyst. Eng. 2012, 35, 341–349. [Google Scholar] [CrossRef]
- Jackowiak, D.; Frigon, J.C.; Ribeiro, T.; Pauss, A.; Guiot, S. Enhancing solubilisation and methane production kinetic of switchgrass by microwave pretreatment. Bioresour. Technol. 2011, 102, 3535–3540. [Google Scholar] [CrossRef]
- Capecchi, L.; Galbe, M.; Wallberg, O.; Mattarelli, P.; Barbanti, L. Combined ethanol and methane production from switchgrass (Panicum virgatum L.) impregnated with lime prior to steam explosion. Biomass Bioenergy 2016, 90, 22–31. [Google Scholar] [CrossRef]
- Butkute, B.; Lemežiene, N.; Kanapeckas, J.; Navickas, K.; Dabkevičius, Z.; Venslauskas, K. Cocksfoot, tall fescue and reed canary grass: Dry matter yield, chemical composition and biomass convertibility to methane. Biomass Bioenergy 2014, 66, 1–11. [Google Scholar] [CrossRef]
- Peng, X.; Li, C.; Liu, J.; Yi, Z.; Han, Y. Changes in composition, cellulose degradability and biochemical methane potential of Miscanthus species during the growing season. Bioresour. Technol. 2017, 235, 389–395. [Google Scholar] [CrossRef]
- Howard Skinner, R.; Zegada-Lizarazu, W.; Schmidt, J.P. Environmental Impacts of Switchgrass Management for Bioenergy Production. In Switchgrass: A Valuable Biomass Crop for Energy; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; pp. 129–152. [Google Scholar]
- Amaducci, S.; Perego, A. Field evaluation of Arundo donax clones for bioenergy production. Ind. Crops Prod. 2015, 75, 122–128. [Google Scholar] [CrossRef]
- Seppälä, M.; Paavola, T.; Lehtomäki, A.; Rintala, J. Biogas production from boreal herbaceous grasses–Specific methane yield and methane yield per hectare. Bioresour. Technol. 2009, 100, 2952–2958. [Google Scholar] [CrossRef]
- Kandel, T.P.; Ward, A.J.; Elsgaard, L.; Møller, H.B.; Lærke, P.E. Methane yield from anaerobic digestion of festulolium and tall fescue cultivated on a fen peatland under different harvest managements. Acta Agric. Scand. Sect. B Soil Plant Sci. 2017, 67, 670–677. [Google Scholar] [CrossRef]
- Zhong, W.; Zhang, Z.; Luo, Y.; Sun, S.; Qiao, W.; Xiao, M. Effect of biological pretreatments in enhancing corn straw biogas production. Bioresour. Technol. 2011, 102, 11177–11182. [Google Scholar] [CrossRef]
- Lalak, J.; Kasprzycka, A.; Martyniak, D.; Tys, J. Effect of biological pretreatment of Agropyron elongatum ‘BAMAR’ on biogas production by anaerobic digestion. Bioresour. Technol. 2016, 200, 194–200. [Google Scholar] [CrossRef]
- Souza, M.F.; Devriendt, N.; Willems, B.; Guisson, R.; Biswas, J.K.; Meers, E. Techno-economic Feasibility of Extrusion as a Pretreatment Step for Biogas Production from Grass. BioEnergy Res. 2022, 15, 1232–1239. [Google Scholar] [CrossRef]
- Akman, H.E.; Perendeci, N.A.; Ertekin, C.; Yaldiz, O. Energy Crops and Methane: Process Optimization of Ca(OH)2 Assisted Thermal Pretreatment and Modeling of Methane Production. Molecules 2022, 27, 6891. [Google Scholar] [CrossRef]
- Prasad, R.K.; Sharma, A.; Mazumder, P.B.; Dhussa, A. A comprehensive pre-treatment strategy evaluation of ligno-hemicellulosic biomass to enhance biogas potential in the anaerobic digestion process. RSC Sustain. 2024, 2, 2444–2467. [Google Scholar] [CrossRef]
- Dinuccio, E.; Balsari, P.; Gioelli, F.; Menardo, S. Evaluation of the biogas productivity potential of some Italian agro-industrial biomasses. Bioresour. Technol. 2010, 101, 3780–3783. [Google Scholar] [CrossRef]
- Wang, X.; Yang, G.; Feng, Y.; Ren, G.; Han, X. Optimizing feeding composition and carbon–nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Bioresour. Technol. 2012, 120, 78–83. [Google Scholar] [CrossRef]
- Triolo, J.M.; Sommer, S.G.; Møller, H.B.; Weisbjerg, M.R.; Jiang, X.Y. A new algorithm to characterize biodegradability of biomass during anaerobic digestion: Influence of lignin concentration on methane production potential. Bioresour. Technol. 2011, 102, 9395–9402. [Google Scholar] [CrossRef]
- Kandel, T.P.; Sutaryo, S.; Møller, H.B.; Jørgensen, U.; Lærke, P.E. Chemical composition and methane yield of reed canary grass as influenced by harvesting time and harvest frequency. Bioresour. Technol. 2013, 130, 659–666. [Google Scholar] [CrossRef]
- Tilvikiene, V.; Kadziuliene, Z.; Dabkevicius, Z.; Venslauskas, K.; Navickas, K. Feasibility of tall fescue, cocksfoot and reed canary grass for anaerobic digestion: Analysis of productivity and energy potential. Ind. Crops Prod. 2016, 84, 87–96. [Google Scholar] [CrossRef]
- Claus, S.; Taube, F.; Wienforth, B.; Svoboda, N.; Sieling, K.; Kage, H.; Senbayram, M.; Dittert, K.; Gericke, D.; Pacholski, A.; et al. Life-cycle assessment of biogas production under the environmental conditions of northern Germany: Greenhouse gas balance. J. Agric. Sci. 2014, 152, 172–181. [Google Scholar] [CrossRef]
Year | Soil Property | ||||||
---|---|---|---|---|---|---|---|
Corg. | N-NO3 | N-NH4 | K2O | P2O5 | S | pHKCl | |
g kg−1 | mg kg−1 | ||||||
Before establishment of experiment in 2014 | 21.3 | 7.60 | 1.80 | 158 | 196 | 2.5 | 6.8 |
After investigation in 2016 | 23.1 | 4.29 | 1.59 | 162 | 154 | 1.7 | 6.9 |
Harvest Regime | Cut | Harvest Date | Growth Stage | ||
---|---|---|---|---|---|
‘Dacotah’ | ‘Foresburg’ | ‘Cave in Rock’ | |||
I | First | 14 July | Heading | Heading | Booting |
Second | 3 October | Pre-heading | |||
II | First | 8 August | Flowering | Flowering | Heading |
Second | 3 October | Pre-heading |
Cultivar | Harvest Date | NDF | ADF | ADL | WSC | Starch | Ash | N | C | Cel | HCel | C/N | ADL/ Cel | ADL/ HCel |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
g kg−1 DM | ||||||||||||||
Dacotah | 14 July | 697 b; x | 418 b; x | 62.4 b; x | 65.9 b; y | 91.7 a; x | 52.3 b; x | 10.30 a; x | 481 b; x | 356 | 279 | 46.7 b; x | 0.175 | 0.223 |
8 August | 736 a; y | 440 a; y | 74.3 a; y | 95.0 a; x | 99.5 a; x | 49.3 c; x | 7.79 b; x | 486 a; y | 366 | 296 | 62.4 a; y | 0.203 | 0.251 | |
3 October | 666 c; x | 405 b; x | 58.6 c; x | 70.1 b; z | 60.6 b; x | 66.9 a; x | 11.10 a; x | 480 b; x | 346 | 261 | 43.4 b; y | 0.169 | 0.224 | |
Forestburg | 14 July | 694 b; x | 400 b; y | 51.4 b; y | 61.5 c; y | 80.5 a; y | 51.9 b; x | 10.30 a; x | 481 b; x | 349 | 294 | 46.7 c; x | 0.147 | 0.175 |
8 August | 745 a; x | 457 a; x | 79.7 a; x | 72.5 b; z | 80.7 a; y | 49.0 c; x | 7.18 c; y | 488 a; x | 377 | 288 | 67.9 a; x | 0.211 | 0.277 | |
3 October | 669 c; x | 402 b; x | 53.3 b; y | 86.5 a; y | 58.8 b; x | 67.0 a; x | 9.60 b; y | 478 c; y | 349 | 267 | 49.8 b; x | 0.153 | 0.200 | |
Cave in Rock | 14 July | 679 b; y | 384 b; z | 50.6 c; y | 79.7 c; x | 90.8 a; x | 49.1 b; y | 10.20 b; x | 482 b; x | 334 | 294 | 47.2 b; x | 0.152 | 0.172 |
8 August | 734 a; y | 454 a; x | 83.3 a; x | 89.6 b; y | 82.7 b; y | 45.7 c; y | 7.76 c; x | 488 a; x | 371 | 280 | 62.9 a; y | 0.225 | 0.298 | |
3 October | 654 c; y | 385 b; y | 57.8 b; x | 98.4 a; x | 55.4 c; x | 61.2 a; y | 11.40 a; x | 480 b; x | 328 | 269 | 42.1 c; y | 0.176 | 0.215 | |
Silage characteristics | ||||||||||||||
pH | TS, % WM | VS, % TS | ||||||||||||
Dacotah | 4.2 a; x | 32.8 a; x | 94.3 a; x | |||||||||||
4.4 a; x | 42.4 b; y | 94.9 a; x | ||||||||||||
4.4 a; x | 37.2 b; y | 92.6 b; y | ||||||||||||
Forestburg | 4.2 a; x | 31.9 a; x | 94.1 a; x | |||||||||||
5.1 b; y | 37.4 b; z | 94.9 a; x | ||||||||||||
4.2 a; x | 34.6 a; z | 92.4 b; y | ||||||||||||
Cave in Rock | 4.0 a; x | 32.4 a; x | 94.7 a; x | |||||||||||
4.6 a; x | 34.5 a; z | 94.8 a; x | ||||||||||||
4.2 a; x | 30.8 a; z | 92.3 b; y |
Day of BMP Assay | CH4, % CH4YVS | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dacotah | Forestburg | Cave in Rock | |||||||
14 July | 8 August | 3 October | 14 July | 8 August | 3 October | 14 July | 8 August | 3 October | |
2nd | 27.1 | 20.8 | 30.4 | 26.1 | 18.7 | 29.2 | 24.7 | 20.8 | 27.3 |
3rd | 11.9 | 16.6 | 14.5 | 14.7 | 16.3 | 14.0 | 14.4 | 14.6 | 14.2 |
2nd + 3rd | 39.0 | 37.4 | 44.9 | 40.8 | 35.0 | 43.1 | 39.1 | 35.4 | 41.5 |
4th | 9.77 | 14.1 | 10.0 | 9.11 | 14.7 | 9.57 | 10.8 | 15.2 | 10.6 |
2nd + 3rd + 4th | 48.8 | 51.4 | 54.8 | 49.9 | 49.8 | 52.7 | 49.8 | 50.6 | 52.2 |
Cultivar | Harvest Date of the First Cut (Harvest Regime) | Dry Matter Yield (2015–2016), t ha−1 | CH4YTS, Nm3 ha−1 from Biomass | HHVY GJ ha−1 | LHVY GJ ha−1 | ||||
---|---|---|---|---|---|---|---|---|---|
First Cut | Second Cut | Annual | First Cut | Second Cut | Annual | Annual | Annual | ||
Dacotah | 14 July (I) | 5.9 | 0.7 | 6.6 | 862 | 266 | 1128 | 44.9 | 40.4 |
8 August (II) | 6.7 | 0.3 | 7 | 828 | 59 † | 888 | 35.3 | 31.8 | |
Average | 6.3 | 0.5 | 6.8 | 845 | 163 | 1008 | 40.1 | 36.1 | |
Forestburg | 14 July (I) | 5.3 | 1.5 | 6.8 | 1211 | 522 | 1732 | 68.9 | 62.0 |
8 August (II) | 9.5 | 0.3 | 9.8 | 1247 | 85 † | 1332 | 53.0 | 47.7 | |
Average | 7.4 | 0.9 | 8.3 | 1229 | 304 | 1532 | 61.0 | 54.9 | |
Cave in Rock | 14 July (I) | 6.4 | 2.2 | 8.6 | 1148 | 752 | 1900 | 75.6 | 68.0 |
8 August (II) | 11.3 | 0.6 | 11.9 | 1004 | 206 † | 1210 | 48.2 | 43.3 | |
Average | 8.8 | 1.4 | 10.2 | 1076 | 479 | 1555 | 61.9 | 55.7 | |
Average for three cultivars | 14 July (I) | 5.8 | 1.4 | 7.3 | 1074 | 514 | 1587 | 63.2 | 56.8 |
8 August (II) | 9.1 | 0.4 | 9.5 | 1026 | 117 | 1143 | 45.5 | 40.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Norkevičienė, E.; Venslauskas, K.; Navickas, K.; Greco, C.; Amalevičiūtė-Volungė, K.; Kemešytė, V.; Liatukienė, A.; Petrauskas, G.; Butkutė, B. Evaluating Switchgrass (Panicum virgatum L.) as a Feedstock for Methane Production in Northern Europe. Agriculture 2025, 15, 1244. https://doi.org/10.3390/agriculture15121244
Norkevičienė E, Venslauskas K, Navickas K, Greco C, Amalevičiūtė-Volungė K, Kemešytė V, Liatukienė A, Petrauskas G, Butkutė B. Evaluating Switchgrass (Panicum virgatum L.) as a Feedstock for Methane Production in Northern Europe. Agriculture. 2025; 15(12):1244. https://doi.org/10.3390/agriculture15121244
Chicago/Turabian StyleNorkevičienė, Eglė, Kęstutis Venslauskas, Kęstutis Navickas, Carlo Greco, Kristina Amalevičiūtė-Volungė, Vilma Kemešytė, Aurelija Liatukienė, Giedrius Petrauskas, and Bronislava Butkutė. 2025. "Evaluating Switchgrass (Panicum virgatum L.) as a Feedstock for Methane Production in Northern Europe" Agriculture 15, no. 12: 1244. https://doi.org/10.3390/agriculture15121244
APA StyleNorkevičienė, E., Venslauskas, K., Navickas, K., Greco, C., Amalevičiūtė-Volungė, K., Kemešytė, V., Liatukienė, A., Petrauskas, G., & Butkutė, B. (2025). Evaluating Switchgrass (Panicum virgatum L.) as a Feedstock for Methane Production in Northern Europe. Agriculture, 15(12), 1244. https://doi.org/10.3390/agriculture15121244