Validating Data Interpolation Empirical Orthogonal Functions Interpolated Soil Moisture Data in the Contiguous United States
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Dataset
3. Methodology
4. Results
4.1. Reconstructed SMAP Daily SM Product
4.2. Validation: Comparison with Original 1-km SMAP SM
4.3. Validation: Comparison with In Situ SM
5. Discussion
5.1. Existing Flaws in Results
5.2. Denoising Effect of DINEOF+
5.3. Limitation of DINEOF+ in Interpolating Soil Moisture
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, G.; Yang, H.; Zhang, Y.; Huang, C.; Pan, X.; Ma, M.; Song, M.; Zhao, H. More Extreme Precipitation in Chinese Deserts from 1960 to 2018. Earth Space Sci. 2019, 6, 1196–1204. [Google Scholar] [CrossRef]
- Berg, A.; Sheffield, J. Climate Change and Drought: The Soil Moisture Perspective. Curr. Clim. Change Rep. 2018, 4, 180–191. [Google Scholar] [CrossRef]
- Abolafia-Rosenzweig, R.; Livneh, B.; Small, E.; Kumar, S. Soil Moisture Data Assimilation to Estimate Irrigation Water Use. J. Adv. Model. Earth Syst. 2019, 11, 3670–3690. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Gao, F.; Anderson, M.; Cirone, R.; Chang, G.J. Improving crop condition monitoring using phenologically aligned vegetation index anomalies–A case study in central Iowa. Int. J. Appl. Earth Obs. Geoinf. 2025, 139, 104526. [Google Scholar] [CrossRef]
- Zhao, H.; Di, L.; Guo, L.; Zhang, C.; Lin, L. An Automated Data-Driven Irrigation Scheduling Approach Using Model Simulated Soil Moisture and Evapotranspiration. Sustainability 2023, 15, 12908. [Google Scholar] [CrossRef]
- Dobriyal, P.; Qureshi, A.; Badola, R.; Hussain, S.A. A Review of the Methods Available for Estimating Soil Moisture and Its Implications for Water Resource Management. J. Hydrol. 2012, 458–459, 110–117. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.P.; Martinuzzi, J.; Font, J.; Berger, M. Soil Moisture Retrieval from Space: The Soil Moisture and Ocean Salinity (Smos) Mission. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1729–1735. [Google Scholar] [CrossRef]
- Jackson, T.J.; Cosh, M.H.; Bindlish, R.; Starks, P.J.; Bosch, D.D.; Seyfried, M.; Goodrich, D.C.; Moran, M.S.; Du, J.Y. Validation of Advanced Microwave Scanning Radiometer Soil Moisture Products. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4256–4272. [Google Scholar] [CrossRef]
- Kim, H.; Lakshmi, V. Use of Cyclone Global Navigation Satellite System (Cygnss) Observations for Estimation of Soil Moisture. Geophys. Res. Lett. 2018, 45, 8272–8282. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The Soil Moisture Active Passive (Smap) Mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Zaussinger, F.; Dorigo, W.; Gruber, A.; Tarpanelli, A.; Filippucci, P.; Brocca, L. Estimating Irrigation Water Use over the Contiguous United States by Combining Satellite and Reanalysis Soil Moisture Data. Hydrol. Earth Syst. Sci. 2019, 23, 897–923. [Google Scholar] [CrossRef]
- Walker, J.P.; Houser, P.R. Requirements of a Global near-Surface Soil Moisture Satellite Mission: Accuracy, Repeat Time, and Spatial Resolution. Adv. Water Resour. 2004, 27, 785–801. [Google Scholar] [CrossRef]
- Fang, B.; Lakshmi, V.; Cosh, M.; Liu, P.; Bindlish, R.; Jackson, T.J. A Global 1-Km Downscaled Smap Soil Moisture Product Based on Thermal Inertia Theory. Vadose Zone J. 2022, 21, e20182. [Google Scholar] [CrossRef]
- Liu, P.-W.; Bindlish, R.; O’Neill, P.; Fang, B.; Lakshmi, V.; Yang, Z.; Cosh, M.H.; Bongiovanni, T.; Collins, C.H.; Starks, P.J.; et al. Thermal Hydraulic Disaggregation of Smap Soil Moisture over the Continental United States. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 4072–4092. [Google Scholar] [CrossRef]
- Lakshmi, V.; Fang, B. Smap-Derived 1-Km Downscaled Surface Soil Moisture Product, Version 1; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2023.
- Zhang, C.; Yang, Z.; Zhao, H.; Sun, Z.; Di, L.; Bindlish, R.; Liu, P.-W.; Colliander, A.; Mueller, R.; Crow, W.; et al. Crop-Casma: A Web Geoprocessing and Map Service Based Architecture and Implementation for Serving Soil Moisture and Crop Vegetation Condition Data over U.S. Cropland. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102902. [Google Scholar] [CrossRef]
- Fang, B.; Lakshmi, V.; Bindlish, R.; Jackson, T.J.; Liu, P.-W. Evaluation and Validation of a High Spatial Resolution Satellite Soil Moisture Product over the Continental United States. J. Hydrol. 2020, 588, 125043. [Google Scholar] [CrossRef]
- Eva, E.A.; Leasor, Z.; Dobreva, I.; Quiring, S.M. Identifying Important Features for Downscaling Soil Moisture to 1-Km in the Contiguous United States. EGUsphere 2025, 2025, 1–38. [Google Scholar]
- Gemitzi, A.; Kofidou, M.; Falalakis, G.; Fang, B.; Lakshmi, V. Estimating High-Resolution Soil Moisture by Combining Data from a Sparse Network of Soil Moisture Sensors and Remotely Sensed Modis Lst Information. Hydrol. Res. 2024, 55, 905–920. [Google Scholar] [CrossRef]
- Senyurek, V.; Gurbuz, A.; Kurum, M.; Lei, F.; Boyd, D.; Moorhead, R. Spatial and Temporal Interpolation of Cygnss Soil Moisture Estimations. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021. [Google Scholar]
- Lu, G.Y.; Wong, D.W. An Adaptive Inverse-Distance Weighting Spatial Interpolation Technique. Comput. Geosci. 2008, 34, 1044–1055. [Google Scholar] [CrossRef]
- Yao, X.; Fu, B.; Lü, Y.; Sun, F.; Wang, S.; Liu, M. Comparison of Four Spatial Interpolation Methods for Estimating Soil Moisture in a Complex Terrain Catchment. PLoS ONE 2013, 8, e54660. [Google Scholar] [CrossRef]
- Karamouz, M.; Alipour, R.S.; Roohinia, M.; Fereshtehpour, M. A Remote Sensing Driven Soil Moisture Estimator: Uncertain Downscaling with Geostatistically Based Use of Ancillary Data. Water Resour. Res. 2022, 58, e2022WR031946. [Google Scholar] [CrossRef]
- Chen, H.; Fan, L.; Wu, W.; Liu, H.-B. Comparison of Spatial Interpolation Methods for Soil Moisture and Its Application for Monitoring Drought. Environ. Monit. Assess. 2017, 189, 525. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Yang, R.; Liu, Q.; Zhao, L.; Dou, B. An Extended Kriging Method to Interpolate near-Surface Soil Moisture Data Measured by Wireless Sensor Networks. Sensors 2017, 17, 1390. [Google Scholar] [CrossRef]
- Srivastava, P.K.; Pandey, P.C.; Petropoulos, G.P.; Kourgialas, N.N.; Pandey, V.; Singh, U. GIS and Remote Sensing Aided Information for Soil Moisture Estimation: A Comparative Study of Interpolation Techniques. Resources 2019, 8, 70. [Google Scholar] [CrossRef]
- Zoubin, G.; Jordan, M. Supervised Learning from Incomplete Data Via an Em Approach. Adv. Neural Inf. Process. Syst. 1993, 6, 120–127. [Google Scholar]
- Beckers, J.M.; Rixen, M. EOF Calculations and Data Filling from Incomplete Oceanographic Datasets. J. Atmos. Ocean. Technol. 2003, 20, 1839–1856. [Google Scholar] [CrossRef]
- Zhao, H.; Matsuoka, A.; Manizza, M.; Winter, A. Recent Changes of Phytoplankton Bloom Phenology in the Northern High-Latitude Oceans (2003–2020). J. Geophys. Res. Ocean. 2022, 127, e2021JC018346. [Google Scholar] [CrossRef]
- Marchese, C.; Colella, S.; Brando, V.E.; Zoffoli, M.L.; Volpe, G. Towards Accurate L4 Ocean Colour Products: Interpolating Remote Sensing Reflectance Via Dineof. Int. J. Appl. Earth Obs. Geoinf. 2024, 135, 104270. [Google Scholar] [CrossRef]
- Alvera-Azcárate, A.; Barth, A.; Parard, G.; Beckers, J.-M. Analysis of Smos Sea Surface Salinity Data Using Dineof. Remote Sens. Environ. 2016, 180, 137–145. [Google Scholar] [CrossRef]
- Aida, A.-A.; Barth, A.; Beckers, J.-M.; Weisberg, R.H. Multivariate Reconstruction of Missing Data in Sea Surface Temperature, Chlorophyll, and Wind Satellite Fields. J. Geophys. Res. Ocean. 2007, 112, C3. [Google Scholar]
- Zhao, H.; Zhao, H.; Zhang, C. Reconstructing Smap-Derived 1-Km Soil Moisture Dataset Using DINEOF+ Algorithm. In Proceedings of the 2024 12th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Novi Sad, Serbia, 15–18 July 2024. [Google Scholar]
- Zhao, H.; Di, L.; Sun, Z.; Yu, E.; Zhang, C.; Lin, L. Validation and Calibration of Hrldas Soil Moisture Products in Nebraska. In Proceedings of the 2022 10th International Conference on Agro-geoinformatics (Agro-Geoinformatics), Boulder, CO, USA, 11–14 July 2022. [Google Scholar]
- Chaney, N.W.; Minasny, B.; Herman, J.D.; Nauman, T.W.; Brungard, C.W.; Morgan, C.L.S.; McBratney, A.B.; Wood, E.F.; Yimam, Y.T. Polaris Soil Properties: 30-M Probabilistic Maps of Soil Properties over the Contiguous United States. Water Resour. Res. 2019, 55, 2916–2938. [Google Scholar] [CrossRef]
- Kern, J.S. Geographic Patterns of Soil Water-Holding Capacity in the Contiguous United States. Soil Sci. Soc. Am. J. 1995, 59, 1126–1133. [Google Scholar] [CrossRef]
- Kern, J.S. Spatial Patterns of Soil Organic Carbon in the Contiguous United States. Soil Sci. Soc. Am. J. 1994, 58, 439–455. [Google Scholar] [CrossRef]
- Dorigo, W.; Himmelbauer, I.; Aberer, D.; Schremmer, L.; Petrakovic, I.; Zappa, L.; Preimesberger, W.; Xaver, A.; Annor, F.; Ardö, J.; et al. The International Soil Moisture Network: Serving Earth System Science for over a Decade. Hydrol. Earth Syst. Sci. 2021, 25, 5749–5804. [Google Scholar] [CrossRef]
- Zhao, H.; Matsuoka, A.; Manizza, M.; Winter, A. DINEOF Interpolation of Global Ocean Color Data: Error Analysis and Masking. J. Atmos. Ocean. Technol. 2024, 41, 953–968. [Google Scholar] [CrossRef]
- Fang, B.; Lakshmi, V.; Bindlish, R.; Jackson, T.J. Downscaling of Smap Soil Moisture Using Land Surface Temperature and Vegetation Data. Vadose Zone J. 2018, 17, 170198. [Google Scholar] [CrossRef]
- Boyd, J.D.; Kennelly, E.P.; Pistek, P. Estimation of Eof Expansion Coefficients from Incomplete Data. Deep Sea Res. Part I Oceanogr. Res. Pap. 1994, 41, 1479–1488. [Google Scholar] [CrossRef]
Network | Number of Stations | Number of Observations | Range of SM (m3/m3) |
---|---|---|---|
SCAN | 167 | 42,507 | 0.001–0.521 |
SNOTEL | 354 | 41,818 | 0.001–0.460 |
USCRN | 107 | 27,216 | 0.001–0.515 |
ARM | 15 | 14,724 | 0.002–0.456 |
TxSON | 37 | 13,053 | 0.051–0.493 |
iRON | 10 | 1954 | 0.010–0.430 |
FLUXNET-AMERIFLUX | 1 | 191 | 0.227–0.411 |
Original SMAP-Derived SM | DINEOF+ Reconstructed SM | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N | bias | MAE | RMS | R2 | slope | bias | MAE | RMS | R2 | slope | |
ARM | 313 | −0.11 | 0.11 | 0.06 | 0.53 | 1.33 | −0.06 | 0.07 | 0.06 | 0.40 | 1.04 |
SCAN | 5884 | 0.02 | 0.05 | 0.08 | 0.56 | 0.80 | 0.03 | 0.06 | 0.08 | 0.56 | 0.81 |
SNOTEL | 13,945 | 0.01 | 0.07 | 0.10 | 0.11 | 0.52 | 0.02 | 0.08 | 0.1 | 0.10 | 0.50 |
TxSON | 53 | −0.03 | 0.04 | 0.08 | 0.28 | 1.21 | 0.08 | 0.10 | 0.09 | 0.06 | 0.83 |
USCRN | 3180 | 0.04 | 0.07 | 0.10 | 0.25 | 0.51 | 0.05 | 0.08 | 0.10 | 0.31 | 0.59 |
iRON | 237 | −0.02 | 0.05 | 0.08 | 0.00 | −0.12 | −0.01 | 0.05 | 0.07 | 0.02 | 0.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Zhao, H.; Zhang, C. Validating Data Interpolation Empirical Orthogonal Functions Interpolated Soil Moisture Data in the Contiguous United States. Agriculture 2025, 15, 1212. https://doi.org/10.3390/agriculture15111212
Zhao H, Zhao H, Zhang C. Validating Data Interpolation Empirical Orthogonal Functions Interpolated Soil Moisture Data in the Contiguous United States. Agriculture. 2025; 15(11):1212. https://doi.org/10.3390/agriculture15111212
Chicago/Turabian StyleZhao, Haipeng, Haoteng Zhao, and Chen Zhang. 2025. "Validating Data Interpolation Empirical Orthogonal Functions Interpolated Soil Moisture Data in the Contiguous United States" Agriculture 15, no. 11: 1212. https://doi.org/10.3390/agriculture15111212
APA StyleZhao, H., Zhao, H., & Zhang, C. (2025). Validating Data Interpolation Empirical Orthogonal Functions Interpolated Soil Moisture Data in the Contiguous United States. Agriculture, 15(11), 1212. https://doi.org/10.3390/agriculture15111212