Validating Data Interpolation Empirical Orthogonal Functions Interpolated Soil Moisture Data in the Contiguous United States
Abstract
1. Introduction
2. Materials
2.1. Study Area
2.2. Dataset
3. Methodology
4. Results
4.1. Reconstructed SMAP Daily SM Product
4.2. Validation: Comparison with Original 1-km SMAP SM
4.3. Validation: Comparison with In Situ SM
5. Discussion
5.1. Existing Flaws in Results
5.2. Denoising Effect of DINEOF+
5.3. Limitation of DINEOF+ in Interpolating Soil Moisture
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, G.; Yang, H.; Zhang, Y.; Huang, C.; Pan, X.; Ma, M.; Song, M.; Zhao, H. More Extreme Precipitation in Chinese Deserts from 1960 to 2018. Earth Space Sci. 2019, 6, 1196–1204. [Google Scholar] [CrossRef]
- Berg, A.; Sheffield, J. Climate Change and Drought: The Soil Moisture Perspective. Curr. Clim. Change Rep. 2018, 4, 180–191. [Google Scholar] [CrossRef]
- Abolafia-Rosenzweig, R.; Livneh, B.; Small, E.; Kumar, S. Soil Moisture Data Assimilation to Estimate Irrigation Water Use. J. Adv. Model. Earth Syst. 2019, 11, 3670–3690. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Gao, F.; Anderson, M.; Cirone, R.; Chang, G.J. Improving crop condition monitoring using phenologically aligned vegetation index anomalies–A case study in central Iowa. Int. J. Appl. Earth Obs. Geoinf. 2025, 139, 104526. [Google Scholar] [CrossRef]
- Zhao, H.; Di, L.; Guo, L.; Zhang, C.; Lin, L. An Automated Data-Driven Irrigation Scheduling Approach Using Model Simulated Soil Moisture and Evapotranspiration. Sustainability 2023, 15, 12908. [Google Scholar] [CrossRef]
- Dobriyal, P.; Qureshi, A.; Badola, R.; Hussain, S.A. A Review of the Methods Available for Estimating Soil Moisture and Its Implications for Water Resource Management. J. Hydrol. 2012, 458–459, 110–117. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.P.; Martinuzzi, J.; Font, J.; Berger, M. Soil Moisture Retrieval from Space: The Soil Moisture and Ocean Salinity (Smos) Mission. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1729–1735. [Google Scholar] [CrossRef]
- Jackson, T.J.; Cosh, M.H.; Bindlish, R.; Starks, P.J.; Bosch, D.D.; Seyfried, M.; Goodrich, D.C.; Moran, M.S.; Du, J.Y. Validation of Advanced Microwave Scanning Radiometer Soil Moisture Products. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4256–4272. [Google Scholar] [CrossRef]
- Kim, H.; Lakshmi, V. Use of Cyclone Global Navigation Satellite System (Cygnss) Observations for Estimation of Soil Moisture. Geophys. Res. Lett. 2018, 45, 8272–8282. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The Soil Moisture Active Passive (Smap) Mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Zaussinger, F.; Dorigo, W.; Gruber, A.; Tarpanelli, A.; Filippucci, P.; Brocca, L. Estimating Irrigation Water Use over the Contiguous United States by Combining Satellite and Reanalysis Soil Moisture Data. Hydrol. Earth Syst. Sci. 2019, 23, 897–923. [Google Scholar] [CrossRef]
- Walker, J.P.; Houser, P.R. Requirements of a Global near-Surface Soil Moisture Satellite Mission: Accuracy, Repeat Time, and Spatial Resolution. Adv. Water Resour. 2004, 27, 785–801. [Google Scholar] [CrossRef]
- Fang, B.; Lakshmi, V.; Cosh, M.; Liu, P.; Bindlish, R.; Jackson, T.J. A Global 1-Km Downscaled Smap Soil Moisture Product Based on Thermal Inertia Theory. Vadose Zone J. 2022, 21, e20182. [Google Scholar] [CrossRef]
- Liu, P.-W.; Bindlish, R.; O’Neill, P.; Fang, B.; Lakshmi, V.; Yang, Z.; Cosh, M.H.; Bongiovanni, T.; Collins, C.H.; Starks, P.J.; et al. Thermal Hydraulic Disaggregation of Smap Soil Moisture over the Continental United States. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 4072–4092. [Google Scholar] [CrossRef]
- Lakshmi, V.; Fang, B. Smap-Derived 1-Km Downscaled Surface Soil Moisture Product, Version 1; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2023.
- Zhang, C.; Yang, Z.; Zhao, H.; Sun, Z.; Di, L.; Bindlish, R.; Liu, P.-W.; Colliander, A.; Mueller, R.; Crow, W.; et al. Crop-Casma: A Web Geoprocessing and Map Service Based Architecture and Implementation for Serving Soil Moisture and Crop Vegetation Condition Data over U.S. Cropland. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102902. [Google Scholar] [CrossRef]
- Fang, B.; Lakshmi, V.; Bindlish, R.; Jackson, T.J.; Liu, P.-W. Evaluation and Validation of a High Spatial Resolution Satellite Soil Moisture Product over the Continental United States. J. Hydrol. 2020, 588, 125043. [Google Scholar] [CrossRef]
- Eva, E.A.; Leasor, Z.; Dobreva, I.; Quiring, S.M. Identifying Important Features for Downscaling Soil Moisture to 1-Km in the Contiguous United States. EGUsphere 2025, 2025, 1–38. [Google Scholar]
- Gemitzi, A.; Kofidou, M.; Falalakis, G.; Fang, B.; Lakshmi, V. Estimating High-Resolution Soil Moisture by Combining Data from a Sparse Network of Soil Moisture Sensors and Remotely Sensed Modis Lst Information. Hydrol. Res. 2024, 55, 905–920. [Google Scholar] [CrossRef]
- Senyurek, V.; Gurbuz, A.; Kurum, M.; Lei, F.; Boyd, D.; Moorhead, R. Spatial and Temporal Interpolation of Cygnss Soil Moisture Estimations. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021. [Google Scholar]
- Lu, G.Y.; Wong, D.W. An Adaptive Inverse-Distance Weighting Spatial Interpolation Technique. Comput. Geosci. 2008, 34, 1044–1055. [Google Scholar] [CrossRef]
- Yao, X.; Fu, B.; Lü, Y.; Sun, F.; Wang, S.; Liu, M. Comparison of Four Spatial Interpolation Methods for Estimating Soil Moisture in a Complex Terrain Catchment. PLoS ONE 2013, 8, e54660. [Google Scholar] [CrossRef]
- Karamouz, M.; Alipour, R.S.; Roohinia, M.; Fereshtehpour, M. A Remote Sensing Driven Soil Moisture Estimator: Uncertain Downscaling with Geostatistically Based Use of Ancillary Data. Water Resour. Res. 2022, 58, e2022WR031946. [Google Scholar] [CrossRef]
- Chen, H.; Fan, L.; Wu, W.; Liu, H.-B. Comparison of Spatial Interpolation Methods for Soil Moisture and Its Application for Monitoring Drought. Environ. Monit. Assess. 2017, 189, 525. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Yang, R.; Liu, Q.; Zhao, L.; Dou, B. An Extended Kriging Method to Interpolate near-Surface Soil Moisture Data Measured by Wireless Sensor Networks. Sensors 2017, 17, 1390. [Google Scholar] [CrossRef]
- Srivastava, P.K.; Pandey, P.C.; Petropoulos, G.P.; Kourgialas, N.N.; Pandey, V.; Singh, U. GIS and Remote Sensing Aided Information for Soil Moisture Estimation: A Comparative Study of Interpolation Techniques. Resources 2019, 8, 70. [Google Scholar] [CrossRef]
- Zoubin, G.; Jordan, M. Supervised Learning from Incomplete Data Via an Em Approach. Adv. Neural Inf. Process. Syst. 1993, 6, 120–127. [Google Scholar]
- Beckers, J.M.; Rixen, M. EOF Calculations and Data Filling from Incomplete Oceanographic Datasets. J. Atmos. Ocean. Technol. 2003, 20, 1839–1856. [Google Scholar] [CrossRef]
- Zhao, H.; Matsuoka, A.; Manizza, M.; Winter, A. Recent Changes of Phytoplankton Bloom Phenology in the Northern High-Latitude Oceans (2003–2020). J. Geophys. Res. Ocean. 2022, 127, e2021JC018346. [Google Scholar] [CrossRef]
- Marchese, C.; Colella, S.; Brando, V.E.; Zoffoli, M.L.; Volpe, G. Towards Accurate L4 Ocean Colour Products: Interpolating Remote Sensing Reflectance Via Dineof. Int. J. Appl. Earth Obs. Geoinf. 2024, 135, 104270. [Google Scholar] [CrossRef]
- Alvera-Azcárate, A.; Barth, A.; Parard, G.; Beckers, J.-M. Analysis of Smos Sea Surface Salinity Data Using Dineof. Remote Sens. Environ. 2016, 180, 137–145. [Google Scholar] [CrossRef]
- Aida, A.-A.; Barth, A.; Beckers, J.-M.; Weisberg, R.H. Multivariate Reconstruction of Missing Data in Sea Surface Temperature, Chlorophyll, and Wind Satellite Fields. J. Geophys. Res. Ocean. 2007, 112, C3. [Google Scholar]
- Zhao, H.; Zhao, H.; Zhang, C. Reconstructing Smap-Derived 1-Km Soil Moisture Dataset Using DINEOF+ Algorithm. In Proceedings of the 2024 12th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Novi Sad, Serbia, 15–18 July 2024. [Google Scholar]
- Zhao, H.; Di, L.; Sun, Z.; Yu, E.; Zhang, C.; Lin, L. Validation and Calibration of Hrldas Soil Moisture Products in Nebraska. In Proceedings of the 2022 10th International Conference on Agro-geoinformatics (Agro-Geoinformatics), Boulder, CO, USA, 11–14 July 2022. [Google Scholar]
- Chaney, N.W.; Minasny, B.; Herman, J.D.; Nauman, T.W.; Brungard, C.W.; Morgan, C.L.S.; McBratney, A.B.; Wood, E.F.; Yimam, Y.T. Polaris Soil Properties: 30-M Probabilistic Maps of Soil Properties over the Contiguous United States. Water Resour. Res. 2019, 55, 2916–2938. [Google Scholar] [CrossRef]
- Kern, J.S. Geographic Patterns of Soil Water-Holding Capacity in the Contiguous United States. Soil Sci. Soc. Am. J. 1995, 59, 1126–1133. [Google Scholar] [CrossRef]
- Kern, J.S. Spatial Patterns of Soil Organic Carbon in the Contiguous United States. Soil Sci. Soc. Am. J. 1994, 58, 439–455. [Google Scholar] [CrossRef]
- Dorigo, W.; Himmelbauer, I.; Aberer, D.; Schremmer, L.; Petrakovic, I.; Zappa, L.; Preimesberger, W.; Xaver, A.; Annor, F.; Ardö, J.; et al. The International Soil Moisture Network: Serving Earth System Science for over a Decade. Hydrol. Earth Syst. Sci. 2021, 25, 5749–5804. [Google Scholar] [CrossRef]
- Zhao, H.; Matsuoka, A.; Manizza, M.; Winter, A. DINEOF Interpolation of Global Ocean Color Data: Error Analysis and Masking. J. Atmos. Ocean. Technol. 2024, 41, 953–968. [Google Scholar] [CrossRef]
- Fang, B.; Lakshmi, V.; Bindlish, R.; Jackson, T.J. Downscaling of Smap Soil Moisture Using Land Surface Temperature and Vegetation Data. Vadose Zone J. 2018, 17, 170198. [Google Scholar] [CrossRef]
- Boyd, J.D.; Kennelly, E.P.; Pistek, P. Estimation of Eof Expansion Coefficients from Incomplete Data. Deep Sea Res. Part I Oceanogr. Res. Pap. 1994, 41, 1479–1488. [Google Scholar] [CrossRef]
Network | Number of Stations | Number of Observations | Range of SM (m3/m3) |
---|---|---|---|
SCAN | 167 | 42,507 | 0.001–0.521 |
SNOTEL | 354 | 41,818 | 0.001–0.460 |
USCRN | 107 | 27,216 | 0.001–0.515 |
ARM | 15 | 14,724 | 0.002–0.456 |
TxSON | 37 | 13,053 | 0.051–0.493 |
iRON | 10 | 1954 | 0.010–0.430 |
FLUXNET-AMERIFLUX | 1 | 191 | 0.227–0.411 |
Original SMAP-Derived SM | DINEOF+ Reconstructed SM | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N | bias | MAE | RMS | R2 | slope | bias | MAE | RMS | R2 | slope | |
ARM | 313 | −0.11 | 0.11 | 0.06 | 0.53 | 1.33 | −0.06 | 0.07 | 0.06 | 0.40 | 1.04 |
SCAN | 5884 | 0.02 | 0.05 | 0.08 | 0.56 | 0.80 | 0.03 | 0.06 | 0.08 | 0.56 | 0.81 |
SNOTEL | 13,945 | 0.01 | 0.07 | 0.10 | 0.11 | 0.52 | 0.02 | 0.08 | 0.1 | 0.10 | 0.50 |
TxSON | 53 | −0.03 | 0.04 | 0.08 | 0.28 | 1.21 | 0.08 | 0.10 | 0.09 | 0.06 | 0.83 |
USCRN | 3180 | 0.04 | 0.07 | 0.10 | 0.25 | 0.51 | 0.05 | 0.08 | 0.10 | 0.31 | 0.59 |
iRON | 237 | −0.02 | 0.05 | 0.08 | 0.00 | −0.12 | −0.01 | 0.05 | 0.07 | 0.02 | 0.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Zhao, H.; Zhang, C. Validating Data Interpolation Empirical Orthogonal Functions Interpolated Soil Moisture Data in the Contiguous United States. Agriculture 2025, 15, 1212. https://doi.org/10.3390/agriculture15111212
Zhao H, Zhao H, Zhang C. Validating Data Interpolation Empirical Orthogonal Functions Interpolated Soil Moisture Data in the Contiguous United States. Agriculture. 2025; 15(11):1212. https://doi.org/10.3390/agriculture15111212
Chicago/Turabian StyleZhao, Haipeng, Haoteng Zhao, and Chen Zhang. 2025. "Validating Data Interpolation Empirical Orthogonal Functions Interpolated Soil Moisture Data in the Contiguous United States" Agriculture 15, no. 11: 1212. https://doi.org/10.3390/agriculture15111212
APA StyleZhao, H., Zhao, H., & Zhang, C. (2025). Validating Data Interpolation Empirical Orthogonal Functions Interpolated Soil Moisture Data in the Contiguous United States. Agriculture, 15(11), 1212. https://doi.org/10.3390/agriculture15111212