Progress in “Clean Agriculture” for Nitrogen Management to Enhance the Soil Health of Arable Fields and Its Application by Remote Sensing in Hokkaido, Japan
Abstract
1. Introduction
2. Clean Agriculture and Hokkaido Fertilizer Recommendations
2.1. History of Clean Agriculture
2.2. Hokkaido Fertilizer Recommendations: Practice of Clean Agriculture Based on Soil Diagnosis
2.3. Wide Dissemination of AC-N as the Index for Available N
3. Sustainable Crop Production
3.1. Sugar Beet
3.2. Potato
3.3. Winter Wheat
4. Water Quality
5. Climate Change
6. Human Health
7. Remote Sensing
7.1. Variable Additional N Application System for Wheat Using Growth Sensors
7.2. Variable Basal Nitrogen Application System Using AC-N Maps from Drone Images
- An AC-N map of the field is created using bare soil images taken by a UAV-drone and actual AC-N measurements at several points.
- The map of variable fertilizer application rates is designed on the basis of the AC-N map, the above-mentioned methods for estimating N fertilizer application rates, and the history of organic matter applications and field practices (Table 2). When blended fertilizers are used, variable fertilizer application rates may sometimes be determined after consulting with the user regarding the required phosphate and potassium application amounts.
- The variable fertilizer application rates are transferred to the application (app) compatible with the Android mobile operating system developed by Zukosha Co., Ltd. (Obihiro, Japan). This app can determine the current location using a GPS and transfer the fertilizer application rates at the current location to the fertilizer applicator terminal via a wireless LAN.
7.3. Determining Suitable Fields for Variable N Application
7.4. Current Limitations and Future Prospects for Remote Sensing Technology
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The Concept and Future Prospects of Soil Health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Doran, J.W.; Sarrantonio, M.; Liebig, M.A. Soil Health and Sustainability. Adv. Agron. 1996, 56, 2–55. [Google Scholar]
- Doran, J.W.; Parkin, T.B. Defining and Assessing Soil Quality. In Defining Soil Quality for a Sustainable Environment; Doran, J.W., Coleman, D.C., Bezdicek, B.F., Stewart, B.A., Eds.; Soil Science Society of America: Madison, WI, USA, 1994; Volume 35, pp. 1–21. [Google Scholar]
- Thapa, S.; Bhandari, A.; Ghimire, R.; Xue, Q.; Kidwaro, F.; Ghatrehsamani, S.; Maharjan, B.; Goodwin, M. Managing Micronutrients for Improving Soil Fertility, Health, and Soybean Yield. Sustainability 2021, 13, 11766. [Google Scholar] [CrossRef]
- Silveira, M.L.; Kohmann, M.M. Maintaining Soil Fertility and Health for Sustainable Pastures. In Management Strategies for Sustainable Cattle Production in Southern Pastures; Academic Press: New York, NY, USA, 2020; pp. 35–58. ISBN 9780128144749. [Google Scholar]
- Chaparro, J.M.; Sheflin, A.M.; Manter, D.K.; Vivanco, J.M. Manipulating the Soil Microbiome to Increase Soil Health and Plant Fertility. Biol. Fertil. Soils 2012, 48, 489–499. [Google Scholar] [CrossRef]
- Karlen, D.L.; Veum, K.S.; Sudduth, K.A.; Obrycki, J.F.; Nunes, M.R. Soil Health Assessment: Past Accomplishments, Current Activities, and Future Opportunities. Soil. Tillage Res. 2019, 195, 104365. [Google Scholar] [CrossRef]
- Lamichhane, S.; Bal Krishna, K.C.; Sarukkalige, R. Polycyclic Aromatic Hydrocarbons (PAHs) Removal by Sorption: A Review. Chemosphere 2016, 148, 336–353. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint Pollution of Surface Waters with Phosphorus and Nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Evans, A.E.; Mateo-Sagasta, J.; Qadir, M.; Boelee, E.; Ippolito, A. Agricultural Water Pollution: Key Knowledge Gaps and Research Needs. Curr. Opin. Environ. Sustain. 2019, 36, 20–27. [Google Scholar] [CrossRef]
- Battaglia, M.; Thomason, W.; Fike, J.H.; Evanylo, G.K.; von Cossel, M.; Babur, E.; Iqbal, Y.; Diatta, A.A. The Broad Impacts of Corn Stover and Wheat Straw Removal for Biofuel Production on Crop Productivity, Soil Health and Greenhouse Gas Emissions: A Review. GCB Bioenergy 2021, 13, 45–57. [Google Scholar] [CrossRef]
- Thangarajan, R.; Bolan, N.S.; Tian, G.; Naidu, R.; Kunhikrishnan, A. Role of Organic Amendment Application on Greenhouse Gas Emission from Soil. Sci. Tot. Environ. 2013, 465, 72–96. [Google Scholar] [CrossRef]
- Lal, R. Soil Health and Carbon Management. Food Energy Secur. 2016, 5, 212–222. [Google Scholar] [CrossRef]
- Wall, D.H.; Nielsen, U.N.; Six, J. Soil Biodiversity and Human Health. Nature 2015, 528, 69–76. [Google Scholar] [CrossRef]
- Frąc, M.; Hannula, S.E.; Bełka, M.; Jȩdryczka, M. Fungal Biodiversity and Their Role in Soil Health. Front. Microbiol. 2018, 9, 316246. [Google Scholar] [CrossRef]
- Wagg, C.; Bender, S.F.; Widmer, F.; Van Der Heijden, M.G.A. Soil Biodiversity and Soil Community Composition Determine Ecosystem Multifunctionality. Proc. Natl. Acad. Sci. USA 2014, 111, 5266–5270. [Google Scholar] [CrossRef] [PubMed]
- Perković, S.; Paul, C.; Vasić, F.; Helming, K. Human Health and Soil Health Risks from Heavy Metals, Micro(Nano)Plastics, and Antibiotic Resistant Bacteria in Agricultural Soils. Agronomy 2022, 12, 2945. [Google Scholar] [CrossRef]
- Morton, C.M.; Pullabhotla, H.; Bevis, L.; Lobell, D.B. Soil Micronutrients Linked to Human Health in India. Sci. Rep. 2023, 13, 13591. [Google Scholar] [CrossRef] [PubMed]
- Barrett, C.B.; Bevis, L.E.M. The Self-Reinforcing Feedback between Low Soil Fertility and Chronic Poverty. Nat. Geosci. 2015, 8, 907–912. [Google Scholar] [CrossRef]
- Kibblewhite, M.G.; Ritz, K.; Swift, M.J. Soil Health in Agricultural Systems. Philos. T Roy. Soc. B 2008, 363, 685–701. [Google Scholar] [CrossRef]
- Adhikari, K.; Hartemink, A.E. Linking Soils to Ecosystem Services—A Global Review. Geoderma 2016, 262, 101–111. [Google Scholar] [CrossRef]
- Bonfante, A.; Basile, A.; Bouma, J. Targeting the Soil Quality and Soil Health Concepts When Aiming for the United Nations Sustainable Development Goals and the EU Green Deal. Soil 2020, 6, 453–466. [Google Scholar] [CrossRef]
- Fueki, N.; Sato, K.; Takeuchi, H.; Sato, H.; Nakatsu, S.; Kato, J. Prediction of Nitrogen Uptake by Sugar Beet (Beta Vulgaris L.) by Scoring Organic Matter and Nitrogen Management (N-Score), in Hokkaido, Japan. Soil. Sci. Plant Nutr. 2011, 57, 411–420. [Google Scholar] [CrossRef]
- Suzuki, K.; Shiga, H. The Maximum Permissible Amount of Nitrogen Input into an Andisol Upland Field in Abashiri Area Assessed by Percolate Nitrate Concentrations. Jpn. J. Soil. Sci. Plant Nutr. 2004, 75, 45–52, (In Japanese with English abstract). [Google Scholar] [CrossRef]
- Department of Agriculture Hokkaido Local Government Clean Agriculture of Hokkaido. Available online: https://www.pref.hokkaido.lg.jp/ns/shs/clean/ (accessed on 30 December 2023).
- Nakatsuji, T.; Shiga, H.; Takeuchi, H.; Tsukamoto, Y.; Goto, E.; Watanabe, Y.; Sakurai, M.; Fueki, N.; Hikasa, Y.; Hayashi, T.; et al. Hokkaido Region. In The Soils of Japan; Hatano, R., Shinjo, H., Takata, Y., Eds.; Springer: Singapore, 2021; pp. 135–184. [Google Scholar]
- Souma, S. Direction and Technological Agenda of Environmentally Harmonized Agriculture (Clean Agriculture) Aimed in Hokkaido. J. Agr. Sci. 1992, 47, 193–198. (In Japanese) [Google Scholar]
- Department of Agricultural Research Hokkaido Research Organization List of Research Outcomes. Available online: https://www.hro.or.jp/agricultural/center/result/kenkyuseika.html (accessed on 24 December 2023).
- Tripathi, A.; Tiwari, R.K.; Tiwari, S.P. A Deep Learning Multi-Layer Perceptron and Remote Sensing Approach for Soil Health Based Crop Yield Estimation. Int. J. Appl. Earth Obs. Geoinf. 2022, 113, 102959. [Google Scholar] [CrossRef]
- Hussain, Z.; Deng, L.; Wang, X.; Cui, R.; Liu, G. A Review of Farmland Soil Health Assessment Methods: Current Status and a Novel Approach. Sustainability 2022, 14, 9300. [Google Scholar] [CrossRef]
- Guo, M. Soil Health Assessment and Management: Recent Development in Science and Practices. Soil. Syst. 2021, 5, 61. [Google Scholar] [CrossRef]
- Omer, E.; Szlatenyi, D.; Csenki, S.; Alrwashdeh, J.; Czako, I.; Láng, V. Farming Practice Variability and Its Implications for Soil Health in Agriculture: A Review. Agriculture 2024, 14, 2114. [Google Scholar] [CrossRef]
- Souma, S. Agenda and Perspective of Clean Agriculture. Hokuno 1995, 62, 314–317. (In Japanese) [Google Scholar]
- Department of Agriculture Hokkaido Prefectural Government. Hokkaido Fertilizer Recommendations 2020; Department of Agricultural Research Hokkaido Research Organization, Ed.; Department of Agriculture, Hokkaido Prefectural Government: Sapporo, Japan, 2020. (In Japanese) [Google Scholar]
- Ministry of Agriculture Forestry and Fisheries MIDORI Strategy for Sustainable Food Systems. Available online: https://www.maff.go.jp/j/kanbo/kankyo/seisaku/midori/ (accessed on 17 March 2025).
- Hatano, R. Development of International Collaboration and Our Challenges to Regional Issues in Soil Science and Plant Nutrition Research 2. Progress of Internationalization of Soil Science in Japan. Jpn. J. Soil. Sci. Plant Nutr. 2022, 93, 405–410. (In Japanese) [Google Scholar] [CrossRef]
- Norris, C.E.; Mac Bean, G.; Cappellazzi, S.B.; Cope, M.; Greub, K.L.H.; Liptzin, D.; Rieke, E.L.; Tracy, P.W.; Morgan, C.L.S.; Honeycutt, C.W. Introducing the North American Project to Evaluate Soil Health Measurements. Agron. J. 2020, 112, 3195–3215. [Google Scholar] [CrossRef]
- Panagos, P.; Broothaerts, N.; Ballabio, C.; Orgiazzi, A.; De Rosa, D.; Borrelli, P.; Liakos, L.; Vieira, D.; Van Eynde, E.; Arias Navarro, C.; et al. How the EU Soil Observatory Is Providing Solid Science for Healthy Soils. Eur. J. Soil. Sci. 2024, 75, e13507. [Google Scholar] [CrossRef]
- Friedman, D.; Hubbs, M.; Tugel, A.; Seybold, C.; Sucik, M. Guidelines for Soil Quality Assessment in Conservation Planning; Joubert, B., Ed.; United States Department of Agriculture, Natural Resources Conservation Service, Soil Quality Institute: Washington, DC, USA, 2001. [Google Scholar]
- Agriculture and Horticulture Development Board; British Beet Research Organization. Soil Health Scorecard Approach Sampling Protocol and Benchmarking Tables England and Wales Version 1.0; Agriculture and Horticulture Development Board: Coventry, UK, 2022. [Google Scholar]
- Okumura, M.; Mino, K.; Miki, N.; Suzuki, K.; Yamagami, M.; Kitagawa, I. Relationship between α-Glucosidase Activity, Microbial Biomass and Physical Properties in the Volcanic Ash Soils Distributed in the Central Part of Hokkaido. Jpn. J. Soil. Sci. Plant Nutr. 1998, 69, 340–347, (In Japanese with English abstract). [Google Scholar] [CrossRef]
- Higashida, S.; Tamura, H.; Yamagami, M. Microbial Activities in Upland Fields and Factors Relating Them. Bull. Hokkaido Pref. Agr. Exp. Stn. 1996, 70, 17–26, (In Japanese with English abstract). [Google Scholar]
- Department of Agriculture Hokkaido Research Organization. Analytical Methods for Soil and Crop Nutrition Diagnosis; Department of Agriculture Hokkaido Research Organization: Sapporo, Japan, 2012. [Google Scholar]
- Sakaguchi, M.; Sakurai, M.; Nakatsuji, T. Rapid Analysis of Autoclave-Extractable Nitrogen for Assessing Soil Nitrogen Fertility by UV Absorptiometry of L−tryptophan as a Standard Substance. Jpn. J. Soil. Sci. Plant Nutr. 2010, 81, 130–134. (In Japanese) [Google Scholar] [CrossRef]
- Okazaki, T.; Fueki, N.; Koyano, S.; Tanaka, T.; Sato, T.; Ozawa, T.; Ueda, H. Estimation of Soil Autoclaved Nitrogen of Upland and Grassland Soils by Near Infrared Spectroscopy. Jpn. J. Soil. Sci. Plant Nutr. 2020, 91, 228–231. (In Japanese) [Google Scholar] [CrossRef]
- Matsunaga, T.; Moriizumi, M. Methods of Soil Analysis for Available Nitrogen: Past Progress and Future Prospects. Jpn. J. Soil. Sci. Plant Nutr. 2012, 83, 625–629. (In Japanese) [Google Scholar] [CrossRef]
- Nakatsu, S.; Tamura, H. Effects of Thirty Years Continuous Application of Organic Materials (Bark Manure and Crop Residues) on Total Carbon, Total Nitrogen and Physical Characteristics of Upland Field Soil in Light Colored Andosol in Hokkaido. Jpn. J. Soil. Sci. Plant Nutr. 2008, 79, 139–145, (In Japanese with English abstract). [Google Scholar] [CrossRef]
- Nakatsu, S.; Higashida, S.; Yamagami, M. Effects of Continuous Manure Application on Yield and Quality of Upland Crop and Soil in Light Colored Andosol. Jpn. J. Soil. Sci. Plant Nutr. 2000, 71, 97–100. (In Japanese) [Google Scholar] [CrossRef]
- Nakatsu, S.; Tamura, H. Effects of Thirty Years Continuous Application of Organic Matter (Cattle Manure with Bark and Crop Residues) on Yield and Quality of Upland Crops in Light Colored Andosol in Hokkaido. Bull. Hokkaido Pref. Agr. Exp. Stn. 2009, 94, 81–88, (In Japanese with English abstract). [Google Scholar]
- Fueki, N.; Sato, K.; Nakatsu, S. Interpretation of Soil Mineral Nitrogen by Scoring Organic Matter and Nitrogen Management as an “N-Score” in the Fields of Hokkaido before Sugar Beet Planting. Soil. Sci. Plant Nutr. 2010, 56, 750–759. [Google Scholar] [CrossRef]
- Tarkalson, D.D.; Bjorneberg, D.L.; Camp, S.; Dean, G.; Elison, D.; Foote, P. Improving Nitrogen Management in Pacific Northwest Sugarbeet Production. J. Sugar Beet Res. 2016, 53, 14–38. [Google Scholar] [CrossRef]
- Ishikura, K. Reduction of Greenhouse Gas Emission by Clean Agriculture. Greentechno Inf. 2023, 19, 12–15. (In Japanese) [Google Scholar]
- Taniguchi, T. The Effect of Manuring Practice on Processing Quality of Potato. Jpn. J. Soil. Sci. Plant Nutr. 1992, 63, 723–727. (In Japanese) [Google Scholar] [CrossRef]
- Vos, J. Nitrogen Responses and Nitrogen Management in Potato. Potato Res. 2009, 52, 305–317. [Google Scholar] [CrossRef]
- Oka, H. Studies on the High Productivity of Potato in the Tokachi District of Hokkaido Part II Relation between the Growth of Potatoes and the Use of Applied Nitrogen under Heavy Application of Phosphoric Acid. Res. Bull. Hokkaido Natl. Agr. Exp. Stn. 1969, 95, 46–52, (In Japanese with English abstract). [Google Scholar]
- Fueki, N.; Otsuka, S.; Tamura, H.; Nakamoto, H.; Watanabe, Y. Nitrogen Fertilization Method for Potato Processing for Chips, Fries, Croquettes and Salads Based on Relationships between Vendible Tuber Yield, Nitrogen Uptake by Potatoes, and Soil Autoclaved Nitrogen. Jpn. J. Soil. Sci. Plant Nutr. 2020, 91, 341–350, (In Japanese with English abstract). [Google Scholar] [CrossRef]
- Ministry of Agriculture Forestry and Fisheries Trends of Production and Distribution of Domestic Wheat. Available online: https://www.maff.go.jp/j/seisan/boueki/mugi_zyukyuu/attach/pdf/index-10.pdf (accessed on 3 December 2023).
- Sato, K.; Nakatsu, S.; Miki, N.; Nakamura, R.; Fueki, N.; Shiga, H. Recommendation of Nitrogen Fertilizer Application for Winter Wheat Based on Using Diagnosis of Soil Nitrate-N in Early Spring in Hokkaido. Jpn. J. Soil. Sci. Plant Nutr. 2008, 79, 45–51, (In Japanese with English abstract). [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, F.; Chen, X.; Dou, Z.; Li, J. In-Season Nitrogen Management Strategy for Winter Wheat: Maximizing Yields, Minimizing Environmental Impact in an over-Fertilization Context. Field Crops Res. 2010, 116, 140–146. [Google Scholar] [CrossRef]
- Rasmussen, I.S.; Dresbøll, D.B.; Thorup-Kristensen, K. Winter Wheat Cultivars and Nitrogen (N) Fertilization-Effects on Root Growth, N Uptake Efficiency and N Use Efficiency. Eur. J. Agron. 2015, 68, 38–49. [Google Scholar] [CrossRef]
- Fueki, N.; Nakamura, R.; Sawaguchi, A.; Watanobe, K.; Suzuki, T.; Uchida, T.; Onodera, M. Effect of Timing of Additional N Fertilization on Spike Number, Grain Yield, Grain Protein and N Use Efficiency of Winter Wheat Cultivar “Kitahonami. ” Bull. Hokkaido Res. Organization Agr. Exp. Stn. 2015, 99, 61–72. [Google Scholar]
- Fueki, N.; Nakamura, R.; Sawaguchi, A.; Watanobe, K.; Suzuki, T.; Uchida, T.; Onodera, M. Prediction of Nitrogen Uptake by Winter Wheat (Triticum Aestivum L.) by Measurement of Superior Stem Number and Leaf Color Value, for Decision-Making Regarding Additional Nitrogen Fertilization. Soil. Sci. Plant Nutr. 2015, 61, 769–774. [Google Scholar] [CrossRef]
- Hayashi, Y.; Hatano, R. Annual Nitrogen Leaching to Subsurface Drainage Water from a Clayey Aquic Soil Cultivated with Onions in Hokkaido, Japan. Soil. Sci. Plant Nutr. 1999, 45, 451–459. [Google Scholar] [CrossRef]
- Hatano, R.; Nagumo, T.; Hata, H.; Kuramochi, K. Impact of Nitrogen Cycling on Stream Water Quality in a Basin Associated with Forest, Grassland, and Animal Husbandry, Hokkaido, Japan. Ecol. Eng. 2005, 24, 509–515. [Google Scholar] [CrossRef]
- Yang, X.; Lu, Y.; Ding, Y.; Yin, X.; Raza, S.; Tong, Y. Optimising Nitrogen Fertilisation: A Key to Improving Nitrogen-Use Efficiency and Minimising Nitrate Leaching Losses in an Intensive Wheat/Maize Rotation (2008–2014). Field Crops Res. 2017, 206, 1–10. [Google Scholar] [CrossRef]
- Nakatsuji, T.; Fueki, N.; Nakatsu, S.; Suzuki, K.; Shiga, H. Validity of a Concept of Permissible Nitrogen Input as an Index for Risk Assessment of Nitrate Pollution in Groundwater. Jpn. J. Soil. Sci. Plant Nutr. 2016, 87, 360–364. (In Japanese) [Google Scholar] [CrossRef]
- Liang, L.; Nagumo, T.; Hatano, R. Nitrogen Flow in the Rural Ecosystem of Mikasa City in Hokkaido, Japan. Pedosphere 2006, 16, 264–272. [Google Scholar] [CrossRef]
- Nagumo, T.; Hatano, R. Regional Characteristics of Stream Water Quality during the Snow-Melting Season in Hokkaido. Jpn. J. Soil. Sci. Plant Nutr. 2001, 72, 41–48, (In Japanese with English abstract). [Google Scholar] [CrossRef]
- Matsumoto, T.; Tou, S. Risk Assessment of Nitrate Pollution in Groundwater Based on the Environmental Nitrogen-Assimilation Capacity of Agricultural Lands in Hokkaido. Jpn. J. Soil. Sci. Plant Nutr. 2006, 77, 17–24, (In Japanese with English abstract). [Google Scholar] [CrossRef]
- Dybowski, D.; Dzierzbicka-Glowacka, L.A.; Pietrzak, S.; Juszkowska, D.; Puszkarczuk, T. Estimation of Nitrogen Leaching Load from Agricultural Fields in the Puck Commune with an Interactive Calculator. PeerJ 2020, 8, e8899. [Google Scholar] [CrossRef]
- Meisinger, J.J.; Delgado, J.A. Principles for Managing Nitrogen Leaching. J. Soil. Water Conserv. 2002, 57, 485–498. [Google Scholar] [CrossRef]
- Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; Blanco, G.; et al. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.S.; Cheng, K.; Das, B.S.; et al. Soil Carbon 4 per Mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Iwasaki, S.; Endo, Y.; Hatano, R. The Effect of Organic Matter Application on Carbon Sequestration and Soil Fertility in Upland Fields of Different Types of Andosols. Soil. Sci. Plant Nutr. 2017, 63, 200–220. [Google Scholar] [CrossRef]
- Van Groenigen, J.W.; Velthof, G.L.; Oenema, O.; Van Groenigen, K.J.; Van Kessel, C. Towards an Agronomic Assessment of N 2 O Emissions: A Case Study for Arable Crops. Eur. J. Soil. Sci. 2010, 61, 903–913. [Google Scholar] [CrossRef]
- Shcherbak, I.; Millar, N.; Robertson, G.P. Global Metaanalysis of the Nonlinear Response of Soil Nitrous Oxide (N2O) Emissions to Fertilizer Nitrogen. Proc. Natl. Acad. Sci. USA 2014, 111, 9199–9204. [Google Scholar] [CrossRef]
- Nagatake, A.; Mukumbuta, I.; Yasuda, K.; Shimizu, M.; Kawai, M.; Hatano, R. Temporal Dynamics of Nitrous Oxide Emission and Nitrate Leaching in Renovated Grassland with Repeated Application of Manure and/or Chemical Fertilizer. Atmosphere 2018, 9, 485. [Google Scholar] [CrossRef]
- Kitamura, R.; Sugiyama, C.; Yasuda, K.; Nagatake, A.; Yuan, Y.; Du, J.; Yamaki, N.; Taira, K.; Kawai, M.; Hatano, R. Effects of Three Types of Organic Fertilizers on Greenhouse Gas Emissions in a Grassland on Andosol in Southern Hokkaido, Japan. Front. Sustain. Food Syst. 2021, 5, 649613. [Google Scholar] [CrossRef]
- Mizuno, N.; Amano, Y.; Mizuno, T.; Nanzyo, M. Changes in the Heavy Mineral Content and Element Concentration of Tarumae-a Tephra with Distance from the Source Volcano. Soil. Sci. Plant Nutr. 2008, 54, 839–845. [Google Scholar] [CrossRef]
- Nakatsu, S.; Nakamoto, H.; Matsumoto, T.; Igarashi, T.; Sugawara, A. Factors Affecting Cadmium Concentration in Lowland Rice in Hokkaido and Countermeasures for the Control of Cadmium Uptake. Jpn. J. Soil. Sci. Plant Nutr. 2010, 81, 514–517. (In Japanese) [Google Scholar]
- Sugikawa, Y.; Goto, E.; Asaka, D. Application Standard of Lime-Treated Sewage Sludge Compost for Paddy Rice in Hokkaido. Jpn. J. Soil. Sci. Plant Nutr. 2009, 80, 530–533. (In Japanese) [Google Scholar] [CrossRef]
- Hara, K.; Suda, T.; Watanobe, K. Evaluation of Sensor-Based Variable Rate Nitrogen Fertilization for Winter Wheat Production. J. Jpn. Soc. Agr. Mach. Food Eng. 2015, 77, 485–493, (In Japanese with English abstract). [Google Scholar] [CrossRef]
- Niwa, K.; Yokobori, J.; Yoneyama, A.; Shinagawa, H. The Monitoring of Soil Information within an Agricultural Field Using Low Altitude Remote Sensing. Water Land. Environ. Eng. 2016, 84, 752–794. (In Japanese) [Google Scholar] [CrossRef]
- Niwa, K.; Seino, N.; Akashi, N.; Kikuchi, K. Drawing of Large-Scaled Soil Map on Volcanic Acid Soil Area in Tokachi District of Hokkaido. Jpn. J. Soil. Sci. Plant Nutr. 2004, 75, 69–78, (In Japanese with English abstract). [Google Scholar] [CrossRef]
- Niwa, K.; Yokobori, J.; Hara, K.; Fueki, N.; Wakabayashi, M. Use of Remote-Sensing Data on Soil Nitrogen Availability and Wheat Growth to Estimate Factors That Affect within-Field Variation in Wheat Growth. Jpn. J. Soil. Sci. Plant Nutr. 2018, 89, 544–551, (In Japanese with English abstract). [Google Scholar] [CrossRef]
- Zhou, P.; Ou, Y.; Yang, W.; Gu, Y.; Kong, Y.; Zhu, Y.; Jin, C.; Hao, S. Variable-Rate Fertilization for Summer Maize Using Combined Proximal Sensing Technology and the Nitrogen Balance Principle. Agriculture 2024, 14, 1180. [Google Scholar] [CrossRef]
- Shahandeh, H.; Wright, A.L.; Hons, F.M. Use of Soil Nitrogen Parameters and Texture for Spatially-Variable Nitrogen Fertilization. Precis. Agric. 2011, 12, 146–163. [Google Scholar] [CrossRef]
- Mirzakhaninafchi, H.; Singh, M.; Bector, V.; Gupta, O.P.; Singh, R. Design and Development of a Variable Rate Applicator for Real-Time Application of Fertilizer. Sustainability 2021, 13, 8694. [Google Scholar] [CrossRef]
- Basso, B.; Fiorentino, C.; Cammarano, D.; Schulthess, U. Variable Rate Nitrogen Fertilizer Response in Wheat Using Remote Sensing. Precis. Agric. 2016, 17, 168–182. [Google Scholar] [CrossRef]
- Guerrero, A.; De Neve, S.; Mouazen, A.M. Data Fusion Approach for Map-Based Variable-Rate Nitrogen Fertilization in Barley and Wheat. Soil. Tillage Res. 2021, 205, 104789. [Google Scholar] [CrossRef]
- Guerrero, A.; De Neve, S.; Mouazen, A.M. Current Sensor Technologies for in Situ and On-Line Measurement of Soil Nitrogen for Variable Rate Fertilization: A Review. Adv. Agron. 2021, 168, 1–38. [Google Scholar] [CrossRef]
- Heiß, A.; Paraforos, D.S.; Sharipov, G.M.; Griepentrog, H.W. Real-Time Control for Multi-Parametric Data Fusion and Dynamic Offset Optimization in Sensor-Based Variable Rate Nitrogen Application. Comput. Electron. Agric. 2022, 196, 106893. [Google Scholar] [CrossRef]
- Kazlauskas, M.; Šarauskis, E.; Lekavičienė, K.; Naujokienė, V.; Romaneckas, K.; Bručienė, I.; Buragienė, S.; Steponavičius, D. The Comparison Analysis of Uniform-and Variable-Rate Fertilizations on Winter Wheat Yield Parameters Using Site-Specific Seeding. Processes 2022, 10, 2717. [Google Scholar] [CrossRef]
- Sanches, G.M.; Faria, H.M.; Otto, R.; Neto, A.S.; Corá, J.E. Using Soil Apparent Electrical Conductivity (ECa) to Assess Responsiveness of Nitrogen Rates and Yield in Brazilian Sugarcane Fields. Agronomy 2025, 15, 606. [Google Scholar] [CrossRef]
- Niwa, K.; Yokobori, J.; Ishikura, K.; Hara, K.; Fueki, N.; Imada, S. The Possibility of Introducing Variable-Rate Nitrogen Application in Uplands of Andosol Areas as Evaluated by Surface Soil and Crop Growth Attributes Estimated from Satellite Images. Jpn. J. Soil. Sci. Plant Nutr. 2021, 92, 249–254, (In Japanese with English abstract). [Google Scholar] [CrossRef]
- Takata, Y.; Yamada, H.; Kanuma, N.; Ise, Y.; Kanda, T. Digital Soil Mapping Using Drone Images and Machine Learning at the Sloping Vegetable Fields in Cool Highland in the Northern Kanto Region, Japan. Soil. Sci. Plant Nutr. 2023, 69, 221–230. [Google Scholar] [CrossRef]
- Morishita, M.; Ishitsuka, N. Mapping of Soil Management Zones by Unsupervised Classification of Drone Aerial Images. Jpn. J. Soil. Sci. Plant Nutr. 2023, 94, 254–262, (In Japanese with English abstract). [Google Scholar] [CrossRef]
- Morishita, M.; Ishitsuka, N. Estimation of Soil Properties Distribution Using UAV Observation and Machine Learning-Application of Data Augmentation to Soil Physicochemical Properties. J. Jpn. Agr. Syst. Soc. 2021, 37, 21–28, (In Japanese with English abstract). [Google Scholar] [CrossRef]
- Morishita, M.; Ishitsuka, N. Estimation of Soil Moisture Distribution in Soybean Field Using UAV-Application of Machine Learning by Data Augmentation of Ground Truth. J. Jpn. Agr. Syst. Soc. 2020, 36, 55–61, (In Japanese with English abstract). [Google Scholar] [CrossRef]
- Ishikura, K.; Fueki, N.; Hara, K.; Niwa, K.; Seshimo, T. Evaluation of Soil Physical Properties in Agricultural Fields Using Satellite Images and Topographic Information I. Poor Water Retention. Jpn. J. Soil. Sci. Plant Nutr. 2024, 95, 11–20, (In Japanese with English abstract). [Google Scholar] [CrossRef]
- Ishikura, K.; Fueki, N.; Hara, K.; Niwa, K.; Seshimo, T. Evaluation of Soil Physical Properties in Agricultural Fields Using Satellite Images and Topographic Information II. Poor Drainage. Jpn. J. Soil. Sci. Plant Nutr. 2024, 95, 21–29. [Google Scholar] [CrossRef]
- Niwa, K.; Yokobori, J.; Imada, S. Estimation of Factors Affecting Sugar Beet Growth in Lowland Soils Based on Satellite Imagery Data from Two Different Years. Jpn. J. Soil. Sci. Plant Nutr. 2025, in press (In Japanese with English abstract). [Google Scholar]
- Ishikura, K.; Fueki, N.; Suda, T.; Sugikawa, Y.; Tou, S. Estimation of Nitrogen Uptake and Tiller Number of Winter Wheat Using a Handheld Optical Sensor in Hokkaido, Japan. Soil. Sci. Plant Nutr. 2020, 66, 828–836. [Google Scholar] [CrossRef]
Soil Properties | Hokkaido’s Criteria | Notes | North America | EU |
---|---|---|---|---|
Topsoil thickness | 20–30 cm | Yes | ||
Effective soil depths | >50 cm | Yes | ||
Penetration resistance | 16–20 mm | Yamanaka penetration meter equivalent to 0.94–1.57 MPa | Yes | |
Solid phase | 0.25–0.30 m3 m−3 <0.40 m3 m−3 | Volcanic soils Lowland and upland soils | ||
Saturated hydraulic conductivity | 10−3–10−4 cm s−1 | Yes | ||
Bulk density | 0.7–0.9 Mg m−3 0.9–1.1 Mg m−3 | Volcanic soils Lowland and upland soils | Yes | Yes |
Coarse porosity | 0.15–0.25 m3 m−3 | Equivalent to a soil water potential of 0–3.2 kPa | ||
Available moisture | >0.1 m3 m−3 | Equivalent to a soil water potential of 3.2–100 kPa | Yes | |
Topsoil tilth/Soil structure | >70% | Weight proportion of soil clods <20 mm | ||
Groundwater level | >60 cm | Yes | ||
Compaction | <20 mm | Yamanaka penetration meter at the depth of 10 cm below plow horizon | ||
pH | 5.5–6.5 | Soil–water = 1:2.5 | Yes | Yes |
EC | <0.3–0.8 dS m−1 | Only for horticultural soils | Yes | |
Available P2O5 | 100–300 mg kg−1 | Truog method | Yes | Yes |
Exchangeable K2O | 150–300 mg kg−1 | Ammonium acetate pH 7 extraction | Yes | Yes |
Exchangeable MgO | 250–450 mg kg−1 | Ammonium acetate pH 7 extraction | Yes | Yes |
Exchangeable CaO | 1700–3500 mg kg−1 | Ammonium acetate pH 7 extraction for medium particle size | Yes | |
Ratio Ca/Mg | <6 | Equivalent charge ratio | ||
Ratio Mg/K | >2 | Equivalent charge ratio | ||
Reducible Mn | 50–500 mg kg−1 | Ammonium acetate pH 7 extraction with hydroquinone | Yes | |
Hot-water extractable B | 0.5–1.0 mg kg−1 | Yes | ||
Soluble Zn | 2–40 mg kg−1 | Hydrochloric acid extraction | Yes | Yes |
Soluble Cu | 0.3–8.0 mg kg−1 | Hydrochloric acid extraction | Yes | Yes |
Exchangeable Ni | <5 mg kg−1 | Ammonium acetate pH 7 extraction | Yes | |
Hg, As, Cd | − | Controlled by Japanese law | Yes | |
Aggregate stability | − | − | Yes | |
Erosion | − | − | Yes | |
Texture | − | − | Yes | Yes |
Organic matter/C | − | − | Yes | Yes |
Total N | − | − | Yes | Yes |
Mineralizable N | − | Similar to AC-N | Yes | |
CEC | − | − | Yes | Yes |
Exchangeable Na2O | − | − | Yes | Yes |
Microbial activity or soil respiration | − | Correlated with AC-N | Yes | Yes |
Organic Matter Application/Field Practice | N-Score |
---|---|
Cattle manure 1, single-year application | 1.0 kg N Mg−1 manure |
Cattle manure 1, more than 10 years consecutive application | 3.0 kg N Mg−1 manure |
Cattle and pig slurry | 1.3 kg N Mg−1 slurry |
Cattle urine | 2.5 kg N Mg−1 urine |
Pig manure | 3.7 kg N Mg−1 manure |
Poultry manure | 13 kg N Mg−1 manure |
N fertilizer amount at sowing green manure | 100% of N amount (kg N ha−1) |
Incorporating sugar beet leaf | 40 kg N ha−1 |
Converting from paddy rice field to arable field within 2 years | 10 kg N ha−1 |
AC-N | Total N Fertilization Rates (kg N ha−1) | |
---|---|---|
(mg kg−1) | Following Sugar Beet | Others |
10–20 | 110 | 150 |
30–40 | 80 | 120 |
50–60 | 40 | 80 |
70–80 | 30 | 70 |
90–100 | 30 | 50 |
≥110 | 30 | 30 |
Target Yield † | Soil Nitrate Abundance in a Depth of 0–60 cm (kg N ha−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|
(Mg ha−1) | 0 | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 |
4.8 | 80 | 60 | 40 | 20 | (20) ‡ | (20) ‡ | (20) ‡ | (20) ‡ | (20) ‡ |
5.4 | 100 | 80 | 60 | 40 | 20 | (20) ‡ | (20) ‡ | (20) ‡ | (20) ‡ |
6.0 | 120 | 100 | 80 | 60 | 40 | 20 | (20) ‡ | (20) ‡ | (20) ‡ |
6.6 | (140) ¶ | 120 | 100 | 80 | 60 | 40 | 20 | (20) ‡ | (20) ‡ |
7.2 | (160) ¶ | (140) ¶ | 120 | 100 | 80 | 60 | 40 | 20 | (20) ‡ |
7.8 | (180) ¶ | (160) ¶ | (140) ¶ | 120 | 100 | 80 | 60 | 40 | 20 |
Region | Tiller Number at Regrowth Stage | Additional N Fertilization Rates (kg N ha−1) | |
---|---|---|---|
(Stem m−2) | Regrowth | Panicle Formation | |
Eastern Hokkaido | >1000 | 0 | Decision from Table 4 |
≤1000 | 20–40 (=A) | (Decision from Table 4) − (A) | |
Central Hokkaido | ≥1300 | 20 | 0 |
800–1300 | 60 | 0 † | |
<800 | 60 | 40 |
Year | Percolation | No Manure | Manure at 20 Mg ha−1 | ||||
---|---|---|---|---|---|---|---|
Recommended Chemical Fertilization Rates | No Reduction of Chemical Fertilizer | Reduction by 20 kg N ha−1 | |||||
(mm) | Leaching (kg N ha−1) | Conc (mg N L−1) | Leaching (kg N ha−1) | Conc (mg N L−1) | Leaching (kg N ha−1) | Conc (mg N L−1) | |
2000 | 326 | 25.7 | 7.9 | 43.6 | 13.4 | 33.3 | 10.2 |
2001 | 391 | 17.2 | 4.4 | 40.6 | 10.4 | 32.2 | 8.2 |
2002 | 287 | 22.6 | 7.9 | 34.4 | 12.0 | 24.1 | 8.4 |
Ave. | 335 | 21.8 | 6.5 | 39.6 | 11.8 | 29.9 | 8.9 |
Crop | Treatment | Application Rates | Crop Yield | N2O Emission | |
---|---|---|---|---|---|
Chemical N Fertilizer | Manure | ||||
(kg N ha−1) | (Mg ha−1) | (Mg ha−1) | (kg N ha−1) | ||
Winter wheat | Conventional | 140 | 0 | 4.44 | 1.85 |
Clean Agriculture | 110 | 30 | 6.06 | 0.22 | |
Excess manure | 110 | 90 | 5.45 | 3.83 | |
Sugar beet | Conventional | 210 | 0 | 66.43 | 1.02 |
Clean Agriculture | 180 | 30 | 66.61 | 0.51 | |
Excess manure | 180 | 90 | 76.33 | 1.21 |
Element | Soil † | Compost (Single Year) | Compost (3 Years) | |||||
---|---|---|---|---|---|---|---|---|
Control | 1 Mg | 2 Mg | 4 Mg | Control | 1 Mg | 2 Mg | ||
Zn | BL | 14.3 | 12.7 | 13.2 | 14.1 | 10.3 | 10.7 | 10.4 |
GL | 17.9 | 17.9 | 17.8 | 17.7 | 15.8 | 15.8 | 15.4 | |
PT | 17.9 | 18.2 | 18.0 | − | 14.7 | 14.9 | 14.0 | |
Cu | BL | 0.3 | 0.2 | 0.2 | 0.5 | 1.2 | 1.2 | 0.7 |
GL | 1.8 | 1.9 | 2.4 | 2.0 | 3.3 | 2.9 | 3.4 | |
PT | 0.7 | 0.4 | 0.4 | − | 1.3 | 1.1 | 0.9 | |
As | BL | − | − | − | − | <0.2 | <0.2 | <0.2 |
GL | − | − | − | − | <0.2 | <0.2 | <0.2 | |
PT | − | − | − | − | <0.2 | <0.2 | <0.2 | |
Cd | BL | ≤0.02 | ≤0.02 | ≤0.02 | ≤0.02 | <0.05 | <0.05 | <0.05 |
GL | ≤0.02 | ≤0.02 | ≤0.02 | ≤0.02 | <0.05 | <0.05 | <0.05 | |
PT | ≤0.02 | ≤0.02 | ≤0.02 | − | <0.05 | <0.05 | <0.05 |
Field | Year | Treatment | Yield | CV ¶ |
---|---|---|---|---|
(t ha−1) | ||||
A | 2003 | CF † | 6.04 | 0.214 |
VF ‡ | 6.07 | 0.204 | ||
B | 2004 | CF † | 6.65 | 0.111 |
VF ‡ | 6.96 | 0.070 | ||
C | 2005 | CF † | 5.38 | 0.129 |
VF ‡ | 5.91 | 0.114 | ||
D | 2010 | CF † | 4.31 | 0.085 |
VF ‡ | 4.23 | 0.078 | ||
E | 2010 | CF † | 4.08 | 0.165 |
VF ‡ | 4.29 | 0.130 | ||
F | 2011 | CF † | 6.17 | 0.055 |
VF ‡ | 6.89 | 0.040 | ||
Average | CF † | 5.44 | 0.127 | |
VF ‡ | 5.73 | 0.106 |
Field | Maximum | Minimum | Average | CV ¶ |
---|---|---|---|---|
A † | 110 | 45 | 77 | 0.257 |
B ‡ | 145 | 76 | 100 | 0.202 |
Field | Color | R2 † | Slope | p-Value |
---|---|---|---|---|
A | Red | 0.42 | −1.08 | 0.007 |
Green | 0.44 | −0.97 | 0.005 | |
Blue | 0.47 | −1.33 | 0.003 | |
B | Red | 0.79 | −0.82 | 0.001 |
Green | 0.78 | −0.84 | 0.002 | |
Blue | 0.75 | −1.04 | 0.003 |
Field | Average N Application Rates 1 (kg N ha−1) | Sugar Beet Yields 2 (Mg ha−1) | ||||
---|---|---|---|---|---|---|
VF 3 | CF 4 | Ratio (%; VF/CF) | VF 3 | CF 4 | Ratio (%; VF/CF) | |
A | 158 | 184 | 14.1 | 13.3 ± 0.7 | 12.2 ± 1.1 | 9.0 |
B | 68 | 151 | 55.0 | 14.6 | 13.2 | 10.3 |
C | 108 | 114 | 5.3 | 12.5 ± 0.6 | 11.7 ± 0.5 | 6.7 |
Average | 111 | 150 | 24.8 | 13.5 | 12.4 | 8.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishikura, K.; Fueki, N.; Niwa, K. Progress in “Clean Agriculture” for Nitrogen Management to Enhance the Soil Health of Arable Fields and Its Application by Remote Sensing in Hokkaido, Japan. Agriculture 2025, 15, 1192. https://doi.org/10.3390/agriculture15111192
Ishikura K, Fueki N, Niwa K. Progress in “Clean Agriculture” for Nitrogen Management to Enhance the Soil Health of Arable Fields and Its Application by Remote Sensing in Hokkaido, Japan. Agriculture. 2025; 15(11):1192. https://doi.org/10.3390/agriculture15111192
Chicago/Turabian StyleIshikura, Kiwamu, Nobuhiko Fueki, and Katsuhisa Niwa. 2025. "Progress in “Clean Agriculture” for Nitrogen Management to Enhance the Soil Health of Arable Fields and Its Application by Remote Sensing in Hokkaido, Japan" Agriculture 15, no. 11: 1192. https://doi.org/10.3390/agriculture15111192
APA StyleIshikura, K., Fueki, N., & Niwa, K. (2025). Progress in “Clean Agriculture” for Nitrogen Management to Enhance the Soil Health of Arable Fields and Its Application by Remote Sensing in Hokkaido, Japan. Agriculture, 15(11), 1192. https://doi.org/10.3390/agriculture15111192