Carbon–Nitrogen Management via Glucose and Urea Spraying at the Booting Stage Improves Lodging Resistance in Fragrant Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Descriptions
2.2. Experimental Design
2.3. Sampling and Measurements
2.3.1. Determination of the Lodging Index
2.3.2. Measurement of Internode Morphology and Dry Weights
2.4. Statistical Analysis Methods
3. Results
3.1. The Plant Height, Pushing Resistance Force, and Lodging Index
3.2. The Stem Internode Length
3.3. The Diameter of Stem Internodes
3.4. The Wall Thickness of Stem Internodes
3.5. The Dry Weights of the Stem Internodes
3.6. Correlation Analysis
3.7. Structural Equation Modeling and Random Forest Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muthayya, S.; Sugimoto, J.D.; Montgomery, S.; Maberly, G.F. An overview of global rice production, supply, trade, and consumption. Ann. N. Y. Acad. Sci. 2014, 1324, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.L.; Tang, X.R.; Wang, Y.L.; Chen, M.J.; Zhao, Z.K.; Duan, M.Y.; Pan, S.G. Effects of Increasing aroma cultivation on aroma and grain yield of aromatic rice and their mechanism. Sci. Agric. Sin. 2012, 45, 1054–1065. [Google Scholar] [CrossRef]
- Deng, S.Y.; Zheng, J.W.; Li, Y.H.; Yang, W.J.; Xu, D.T.S.; Pan, S.G.; Tang, X.R.; Li, W.; Mo, Z.W. Melatonin Mediates Trade-Off in Antioxidant Responses and Nitrogen Metabolism and Benefits the Growth of Fragrant Rice Seedlings Under Light-Nitrogen Levels. J. Soil Sci. Plant Nutr. 2024, 24, 8013–8034. [Google Scholar] [CrossRef]
- Zhang, X.J.; Li, H.J.; Li, W.J.; Xu, Z.J.; Chen, W.F.; Zhang, W.Z.; Wang, J.Y. The lodging resistance of erect panicle japonica rice in northern China. Sci. Agric. Sin. 2009, 42, 2305–2313. [Google Scholar] [CrossRef]
- Wang, X.F.; Lu, Z.H.; Liu, W.; Lu, D.B.; Wang, S.G.; Wu, H.X.; Fang, Z.Q.; He, X.Y. Advances in lodging resistance of rice since the “Green Revolution”. Guangdong Agric. Sci. 2022, 49, 1–13. [Google Scholar] [CrossRef]
- Mullangie, D.P.; Thiyagarajan, K.; Swaminathan, M.; Ramalingam, J.; Natarajan, S.; Govindan, S. Breeding resilience: Exploring lodging resistance mechanisms in rice. Rice Sci. 2024, 31, 659–672. [Google Scholar] [CrossRef]
- Wu, L.J.; Hu, F.; Pan, S.G. Characteristics of extreme rainfall in South China during the late rice growth period. Agron. J. 2020, 112, 5105–5114. [Google Scholar] [CrossRef]
- Weng, F.; Zhang, W.J.; Wu, X.R.; Xu, X.; Ding, Y.F.; Li, G.H.; Liu, Z.H.; Wang, S.H. Impact of low-temperature, overcast and rainy weather during the reproductive growth stage on lodging resistance of rice. Sci. Rep. 2017, 7, 9. [Google Scholar] [CrossRef]
- Luo, X.Y.; Wu, Z.F.; Fu, L.; Dan, Z.W.; Long, W.X.; Yuan, Z.Q.; Liang, T.; Zhu, R.S.; Hu, Z.L.; Wu, X.T. Responses of the lodging resistance of indica rice cultivars to temperature and solar radiation under field conditions. Agronomy 2022, 12, 2603. [Google Scholar] [CrossRef]
- Qi, L.C.; Zhou, G.X. Advances in rsearch on fctors influencing lodging resistance in rice. J. Anhui Agric. Sci. 2019, 47, 19–22. [Google Scholar] [CrossRef]
- Yang, S.M.; Xie, L.; Zheng, S.L.; Li, J.; Yuan, J.C. Effects of nitrogen rate and transplanting density on physical and chemical characteristics and lodging resistance of culms in hybrid rice. Acta Agron. Sin. 2009, 35, 93–103. [Google Scholar] [CrossRef]
- Lu, Y.Y.; Cui, J.H.; Bao, S.Y.; Liu, W.Y.; Geng, Y.Q.; Liang, X.H.; Li, S.Z.; Guo, L.Y.; Shao, X.W. Effects of nitrogen fertilizer application rate on lodging resistance for rice (Oryza sativa L.) stem. Sci. Rep. 2025, 15, 2149. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.Z.; Li, Y.H.; Umair, A.; Gui, R.F.; Wang, Z.M.; Hummera, N.; Tang, X.R.; Duan, M.Y.; Mo, Z.W. The application of liquid fertilizer with reduced nitrogen rate improves the lodging resistance in fragrant rice. J. Soil Sci. Plant Nutr. 2023, 23, 6071–6087. [Google Scholar] [CrossRef]
- Sekhon, R.S.; Joyner, C.N.; Ackerman, A.J.; McMahan, C.S.; Cook, D.D.; Robertson, D.J. Stalk bending strength is strongly associated with maize stalk lodging incidence across multiple environments. Field Crops Res. 2020, 249, 107737. [Google Scholar] [CrossRef]
- Zhang, W.J.; Wu, L.M.; Ding, Y.F.; Yao, X.; Wu, X.R.; Weng, F.; Li, G.H.; Liu, Z.H.; Tang, S.; Ding, C.Q.; et al. Nitrogen fertilizer application affects lodging resistance by altering secondary cell wall synthesis in japonica rice (Oryza sativa). J. Plant Res. 2017, 130, 859–871. [Google Scholar] [CrossRef]
- Liu, J.X.; Wu, Z.Z.; Zhou, C.C.; A, N.; Li, Y.M.; Wang, S. Research progress of lodging characters and lodging resistance pathways in rice. China Rice 2023, 29, 44–48. [Google Scholar] [CrossRef]
- Liu, W.Y.; Fan, X.H.; Liu, Y.Y.; Bao, S.Y.; Lu, Y.Y.; Gai, D.S.; Fu, X.K.; Du, J.; Guo, L.Y.; Zhang, Q.; et al. Relationship between characteristics of basal internodes and lodging and its physiological mechanism in direct-seeded rice. J. Agron. Crop Sci. 2023, 209, 632–650. [Google Scholar] [CrossRef]
- Pan, J.F.; Zhao, J.L.; Liu, Y.Z.; Huang, N.R.; Tian, K.; Shah, F.; Liang, K.M.; Zhong, X.H.; Liu, B. Optimized nitrogen management enhances lodging resistance of rice and its morpho-anatomical, mechanical, and molecular mechanisms. Sci. Rep. 2019, 9, 20274. [Google Scholar] [CrossRef]
- Zhou, T.Y.; Cui, R.L.; Shu, C.C.; Zhu, K.Y.; Zhang, W.Y.; Zhang, H.; Liu, L.J.; Wang, Z.Q.; Gu, J.F.; Yang, J.C. Combining urea and controlled release nitrogen fertilizer to enhance lodging resistance of rice (Oryza sativa L.) by altering accumulation of silicon and cell wall polymers at high yielding levels. Field Crops Res. 2024, 315, 109459. [Google Scholar] [CrossRef]
- Zhang, F.Z.; Jin, Z.X.; Ma, G.H.; Wan, Y.Z.; Liu, H.Y.; Xu, M.L. Correlation analysis between lodging resistance and morphological characters of physical and chemical components in rice’s culms. Crops 2010, 04, 15–19. [Google Scholar] [CrossRef]
- Liao, P.; Bell, S.M.; Chen, L.; Huang, S.; Wang, H.Y.; Miao, J.H.; Qi, Y.M.; Sun, Y.N.; Liao, B.; Zeng, Y.J.; et al. Improving rice grain yield and reducing lodging risk simultaneously: A meta-analysis. Eur. J. Agron. 2023, 143, 126709. [Google Scholar] [CrossRef]
- Yang, J.C.; Zhang, J.H.; Wang, Z.Q.; Zhu, Q.S.; Liu, L.J. Abscisic acid and cytokinins in the root exudates and leaves and their relationship to senescence and remobilization of carbon reserves in rice subjected to water stress during grain filling. Planta 2002, 215, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Shimono, H.; Okada, M.; Yamakawa, Y.; Nakamura, H.; Kobayashi, K.; Hasegawa, T. Lodging in rice can be alleviated by atmospheric CO2 enrichment. Agric. Ecosyst. Environ. 2007, 118, 223–230. [Google Scholar] [CrossRef]
- Hong, W.Y.; Chen, Y.J.; Huang, S.H.; Li, Y.Z.; Wang, Z.M.; Tang, X.R.; Pan, S.G.; Tian, H.; Mo, Z.W. Optimization of nitrogen-silicon (N-Si) fertilization for grain yield and lodging resistance of early-season indica fragrant rice under different planting methods. Eur. J. Agron. 2022, 136, 14. [Google Scholar] [CrossRef]
- Zhang, W.J.; Wu, L.M.; Wu, X.R.; Ding, Y.F.; Li, G.H.; Li, J.Y.; Weng, F.; Liu, Z.H.; Tang, S.; Ding, C.Q.; et al. Lodging resistance of Japonica rice (Oryza sativa L.): Morphological and anatomical traits due to top-dressing nitrogen application rates. Rice 2016, 9, 1. [Google Scholar] [CrossRef]
- Wu, J.; Liao, Q.S.; Shah, F.R.; Li, Z.J.; Tao, Y.; Wang, P.; Xiong, L.; Yuan, Q.H.; Wu, W. The potential role of nitrogen management in enhancing grain yield and lodging resistance of shanlan upland rice (Oryza sativa L.). Agronomy 2025, 15, 614. [Google Scholar] [CrossRef]
- Jiang, Z.; Yao, X.B.; Du, B.; Wang, X.Y.; Tang, X.R.; Pan, S.G.; Mo, Z.W. The biosynthesis of 2-acetyl-1-pyrroline is physiologically driven by carbon-nitrogen metabolism in fragrant rice. Eur. J. Agron. 2025, 164, 127476. [Google Scholar] [CrossRef]
- Huang, X.W.; Lin, J.J.; Xie, Q.H.; Shi, J.D.; Du, X.X.; Pan, S.G.; Tang, X.R.; Qi, J.Y. Soil Microbial Functions Linked Fragrant Rice 2-Acetyl-1-Pyrroline with Soil Active Carbon Pool: Evidence from Soil Metagenomic Sequencing of Tillage Practices. Agronomy 2024, 14, 1308. [Google Scholar] [CrossRef]
- Dai, L.; Ren, Y.; Ashraf, U.; Gui, R.F.; Wang, Z.M.; Tang, X.R.; Duan, M.Y.; Mo, Z.W. Optimized liquid fertilizer management increases 2-acetyl-1-pyrroline content and grain quality in aromatic rice. J. Food Compos. Anal. 2024, 133, 106433. [Google Scholar] [CrossRef]
- Zhou, P.; Zhou, K.; Liu, T.; Wu, W.; Sun, C.M. Progress in monitoring research on rice lodging. J. Chin. Agric. Mech. 2019, 40, 162–168. [Google Scholar] [CrossRef]
- Zhang, J.; Li, G.H.; Song, Y.P.; Liu, Z.H.; Yang, C.D.; Tang, S.; Zheng, C.Y.; Wang, S.H.; Ding, Y.F. Lodging resistance characteristics of high-yielding rice populations. Field Crop Res. 2014, 161, 64–74. [Google Scholar] [CrossRef]
- Zhang, W.J.; Wu, L.M.; Ding, Y.F.; Weng, F.; Wu, X.R.; Li, G.H.; Liu, Z.H.; Tang, S.; Ding, C.Q.; Wang, S.H. Top-dressing nitrogen fertilizer rate contributes to decrease culm physical strength by reducing structural carbohydrate content in japonica rice. J. Integr. Agric. 2016, 15, 992–1004. [Google Scholar] [CrossRef]
- Wu, M.K.; Jiang, H.; Wei, Z.H.; Li, W.C.; Gao, K.Y.; Wang, D.C.; Wei, X.S.; Tian, P.; Cui, J.J.; Di, Y.T.; et al. Influence of Nitrogen Application Rate on Stem Lodging Resistance Rice under Dry Cultivation. Agronomy 2023, 13, 426. [Google Scholar] [CrossRef]
- Liu, X.W.; Huang, Z.L.; Li, Y.Z.; Xie, W.J.; Li, W.; Tang, X.R.; Ashraf, U.; Kong, L.L.; Wu, L.M.; Wang, S.L.; et al. Selenium-silicon (Se-Si) induced modulations in physio-biochemical responses, grain yield, quality, aroma formation and lodging in fragrant rice. Ecotoxicol. Environ. Saf. 2020, 196, 9. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Zhou, N.; Lai, S.K.; Frei, M.; Wang, Y.X.; Yang, L.X. Elevated CO2 improves lodging resistance of rice by changing physicochemical properties of the basal internodes. Sci. Total Environ. 2019, 647, 223–231. [Google Scholar] [CrossRef]
- Zhu, M.C.; Lin, C.H.; Jiang, Z.R.; Yan, F.Y.; Li, Z.Y.; Tang, X.A.; Yang, F.; Ding, Y.F.; Li, W.W.; Liu, Z.H.; et al. Uniconazole enhances lodging resistance by increasing structural carbohydrate and sclerenchyma cell wall thickness of japonica rice (Oryza sativa L.) under shading stress. Environ. Exp. Bot. 2023, 206, 105145. [Google Scholar] [CrossRef]
- Okuno, A.; Hirano, K.; Asano, K.; Takase, W.; Masuda, R.; Morinaka, Y.; Ueguchi-Tanaka, M.; Kitano, H.; Matsuoka, M. New Approach to increasing rice lodging resistance and biomass yield through the use of high gibberellin producing varieties. PLoS ONE 2014, 9, e86870. [Google Scholar] [CrossRef]
- Kashiwagi, T.; Togawa, E.; Hirotsu, N.; Ishimaru, K. Improvement of lodging resistance with QTLs for stem diameter in rice (Oryza sativa L.). Theoretical and applied genetics. Theor. Angew. Genet. 2008, 117, 749–757. [Google Scholar] [CrossRef]
- Tian, B.H.; Liu, Y.L.; Zhang, L.X.; Li, H.J. Stem lodging parameters of the basal three internodes associated with plant population densities and developmental stages in foxtail millet (Setaria italica) cultivars differing in resistance to lodging. Crop Pasture Sci. 2017, 68, 349–357. [Google Scholar] [CrossRef]
Year | Mouth | Average Air Temperature (°C) | Maximum Temperature (°C) | Minimum Temperature (°C) | Precipitation (mm) | Sunshine Hours (h) | Relative Humidity (%) |
---|---|---|---|---|---|---|---|
2021 | July | 30.3 | 38.4 | 24.4 | 224.4 | 212.0 | 76.1 |
August | 29.0 | 36.0 | 23.6 | 304.7 | 154.7 | 83.1 | |
September | 30.1 | 36.3 | 25.0 | 37.1 | 208.0 | 76.3 | |
October | 24.5 | 35.5 | 15.0 | 90.8 | 145.0 | 75.2 | |
November | 20.3 | 31.2 | 11.6 | 14.6 | 168.7 | 63.9 | |
2022 | July | 30.5 | 38.3 | 24.7 | 307.7 | 206.3 | 75.6 |
August | 28.8 | 37.1 | 23.9 | 269.1 | 181.2 | 81.1 | |
September | 29.5 | 37.2 | 24.2 | 70.0 | 238.5 | 66.7 | |
October | 25.8 | 35.8 | 18.1 | 0.6 | 253.8 | 57.0 | |
November | 22.4 | 31.3 | 15.0 | 125.1 | 72.3 | 84.8 |
Year | Cultivar | Treatment | Plant Height (cm) | Pushing Resistance Force (N) | Lodging Index |
---|---|---|---|---|---|
2021 | Meixiangzhan 2 | CK | 114.00 ± 1.72 c | 0.36 ± 0.05 e | 46.16 ± 3.87 b |
T1 | 119.18 ± 1.07 a | 0.61 ± 0.06 bcd | 38.34 ± 4.46 b | ||
T2 | 118.23 ± 0.53 a | 0.42 ± 0.04 de | 55.20 ± 7.61 ab | ||
T3 | 117.88 ± 0.87 ab | 0.43 ± 0.02 cde | 73.88 ± 17.27 a | ||
T4 | 114.33 ± 1.01 bc | 0.66 ± 0.12 ab | 54.31 ± 2.4 ab | ||
T5 | 113.38 ± 1.17 c | 0.82 ± 0.08 a | 35.29 ± 3.22 b | ||
T6 | 118.50 ± 0.79 a | 0.49 ± 0.05 bcde | 71.79 ± 6.37 a | ||
T7 | 112.75 ± 1.09 c | 0.61 ± 0.02 bc | 42.03 ± 1.48 b | ||
T8 | 111.58 ± 2.18 c | 0.46 ± 0.09 cde | 54.37 ± 13.98 ab | ||
Xiangyaxiangzhan | CK | 122.98 ± 1.7 abcd | 0.40 ± 0.03 bc | 54.36 ± 14.30 c | |
T1 | 125.73 ± 2.27 ab | 0.38 ± 0.06 bc | 95.81 ± 2.52 ab | ||
T2 | 127.40 ± 1.71 a | 0.55 ± 0.06 ab | 71.13 ± 8.01 bc | ||
T3 | 125.48 ± 1.45 ab | 0.28 ± 0.03 c | 129.44 ± 15.98 a | ||
T4 | 122.80 ± 0.86 bcd | 0.47 ± 0.07 bc | 47.72 ± 8.40 c | ||
T5 | 119.40 ± 1.49 cd | 0.40 ± 0.01 bc | 79.78 ± 9.47 bc | ||
T6 | 125.03 ± 1.73 ab | 0.34 ± 0.06 bc | 118.43 ± 26.90 a | ||
T7 | 118.88 ± 0.59 d | 0.71 ± 0.19 a | 45.23 ± 3.69 c | ||
T8 | 123.65 ± 1.42 abc | 0.41 ± 0.02 bc | 49.17 ± 2.89 c | ||
2022 | Meixiangzhan 2 | CK | 105.25 ± 2.43 bc | 0.31 ± 0.02 ab | 70.42 ± 4.73 e |
T1 | 104.75 ± 1.25 c | 0.17 ± 0.01 d | 159.48 ± 10.35 a | ||
T2 | 109.00 ± 1.73 abc | 0.21 ± 0.01 cd | 131.44 ± 7.65 b | ||
T3 | 108.25 ± 2.56 abc | 0.25 ± 0.03 bc | 91.43 ± 12.38 cde | ||
T4 | 109.00 ± 0.41 abc | 0.25 ± 0.02 bc | 80.29 ± 7.47 de | ||
T5 | 108.75 ± 2.50 abc | 0.25 ± 0.02 bc | 91.25 ± 6.14 cde | ||
T6 | 111.00 ± 1.08 ab | 0.25 ± 0.02 bc | 97.43 ± 7.14 cd | ||
T7 | 107.25 ± 1.89 abc | 0.33 ± 0.04 a | 69.20 ± 9.26 e | ||
T8 | 112.25 ± 3.09 a | 0.19 ± 0.02 cd | 111.98 ± 10.55 bc | ||
Xiangyaxiangzhan | CK | 111.00 ± 0.71 abc | 0.18 ± 0.01 b | 135.12 ± 8.00 abc | |
T1 | 108.00 ± 0.71 bcd | 0.19 ± 0.01 b | 137.75 ± 7.47 ab | ||
T2 | 109.50 ± 0.87 bcd | 0.23 ± 0.04 ab | 106.41 ± 15.99 bc | ||
T3 | 109.75 ± 2.50 bc | 0.22 ± 0.02 ab | 111.69 ± 6.32 bc | ||
T4 | 107.00 ± 0.91 cd | 0.20 ± 0.01 b | 111.07 ± 6.75 bc | ||
T5 | 111.25 ± 1.03 abc | 0.22 ± 0.02 ab | 104.29 ± 8.71 c | ||
T6 | 112.00 ± 0.91 ab | 0.18 ± 0.01 b | 147.72 ± 15.36 a | ||
T7 | 105.25 ± 2.69 d | 0.27 ± 0.03 a | 104.11 ± 12.05 c | ||
T8 | 114.75 ± 1.49 a | 0.25 ± 0.03 ab | 121.36 ± 15.09 abc |
Year | Cultivar | Treatment | First Internode (cm) | Second Internode (cm) | Third Internode(cm) | Fourth Internode (cm) | Fifth Internode (cm) |
---|---|---|---|---|---|---|---|
2021 | Meixiangzhan 2 | CK | 32.88 ± 2.48 a | 20.43 ± 1.05 ab | 14.45 ± 1.82 b | 4.7 ± 0.54 ef | 1.18 ± 0.13 c |
T1 | 35.63 ± 1.65 a | 18.33 ± 0.6 bc | 14.80 ± 0.53 b | 6.93 ± 0.25 cd | 1.5 ± 0.31 bc | ||
T2 | 36.50 ± 0.79 a | 19.63 ± 0.64 abc | 13.60 ± 0.83 b | 10.75 ± 0.54 b | 4.25 ± 0.74 a | ||
T3 | 35.65 ± 1.48 a | 17.45 ± 0.85 cd | 12.13 ± 0.82 bc | 7.48 ± 0.82 c | 1.28 ± 0.15 bc | ||
T4 | 37.15 ± 1.14 a | 21.93 ± 1.43 a | 14.93 ± 0.87 ab | 13.20 ± 0.70 a | 1.73 ± 0.31 bc | ||
T5 | 34.78 ± 2.06 a | 14.83 ± 0.69 e | 12.98 ± 0.81 bc | 6.48 ± 0.35 cde | 2.33 ± 0.4 b | ||
T6 | 35.23 ± 1.99 a | 15.70 ± 0.68 de | 10.63 ± 0.53 c | 5.43 ± 0.43 def | 1.45 ± 0.21 bc | ||
T7 | 36.53 ± 1.42 a | 19.83 ± 0.71 abc | 17.75 ± 1.21 a | 9.40 ± 1.19 b | 1.58 ± 0.23 bc | ||
T8 | 32.75 ± 1.04 a | 15.63 ± 0.25 de | 12.80 ± 0.88 bc | 4.53 ± 0.41 f | 1.7 ± 0.38 bc | ||
Xiangyaxiangzhan | CK | 36.95 ± 0.06 a | 20.75 ± 0.26 ab | 14.95 ± 0.46 bcd | 7.85 ± 0.54 de | 1.48 ± 0.24 ab | |
T1 | 35.10 ± 0.99 ab | 17.55 ± 0.51 de | 14.43 ± 1.49 cd | 11.93 ± 0.77 b | 0.68 ± 0.11 c | ||
T2 | 33.48 ± 1.35 bc | 16.58 ± 0.84 e | 13.85 ± 1.79 d | 7.22 ± 0.87 de | 1.3 ± 0.32 abc | ||
T3 | 35.70 ± 0.94 ab | 21.40 ± 0.64 a | 16.63 ± 0.72 abc | 5.88 ± 0.89 e | 1.05 ± 0.34 bc | ||
T4 | 33.48 ± 0.80 bc | 20.98 ± 0.37 ab | 17.65 ± 0.8 ab | 14.60 ± 0.59 a | 1.38 ± 0.21 abc | ||
T5 | 33.10 ± 0.29 bc | 18.60 ± 0.57 cd | 17.28 ± 0.47 ab | 12.80 ± 0.39 ab | 1.63 ± 0.31 ab | ||
T6 | 34.13 ± 1.25 b | 17.40 ± 0.72 de | 17.05 ± 0.48 abc | 8.68 ± 0.32 cd | 1.95 ± 0.45 a | ||
T7 | 34.48 ± 1.55 ab | 20.68 ± 0.52 ab | 18.03 ± 0.81 a | 10.83 ± 1.23 bc | 1.03 ± 0.15 bc | ||
T8 | 30.93 ± 0.26 c | 19.68 ± 0.41 bc | 15.63 ± 0.18 abcd | 11.38 ± 0.77 b | 0.93 ± 0.09 bc | ||
2022 | Meixiangzhan 2 | CK | 33.73 ± 1.20 ab | 15.63 ± 0.44 ab | 10.43 ± 1.16 d | 5.58 ± 0.44 c | 2.08 ± 0.19 b |
T1 | 32.85 ± 0.46 b | 17.25 ± 1.05 a | 11.78 ± 0.6 abcd | 7.00 ± 0.56 b | 2.1 ± 0.54 b | ||
T2 | 35.63 ± 0.42 a | 16.60 ± 0.98 ab | 9.60 ± 0.19 d | 4.83 ± 0.19 cd | 1.25 ± 0.15 cd | ||
T3 | 34.55 ± 0.12 ab | 15.33 ± 0.60 abc | 13.35 ± 0.94 ab | 4.55 ± 0.32 d | 1.76 ± 0.23 bc | ||
T4 | 34.90 ± 0.98 ab | 14.50 ± 0.67 bcd | 10.85 ± 0.62 cd | 3.83 ± 0.32 d | 0.95 ± 0.05 d | ||
T5 | 34.90 ± 0.51 ab | 13.30 ± 1.05 cd | 10.83 ± 0.52 cd | 5.78 ± 0.41 c | 2.38 ± 0.38 b | ||
T6 | 34.35 ± 0.57 ab | 17.38 ± 0.71 a | 11.18 ± 0.82 bcd | 4.08 ± 0.21 d | 1.85 ± 0.26 bc | ||
T7 | 35.18 ± 1.03 a | 15.80 ± 0.65 ab | 12.85 ± 0.46 abc | 7.00 ± 0.25 b | 2.25 ± 0.19 b | ||
T8 | 34.53 ± 0.54 ab | 12.70 ± 0.61 d | 14.05 ± 1.39 a | 8.02 ± 0.28 a | 3.43 ± 0.17 a | ||
Xiangyaxiangzhan | CK | 30.20 ± 0.80 d | 17.63 ± 0.15 bc | 14.90 ± 0.29 cd | 7.33 ± 0.17 e | 2.75 ± 0.23 bcd | |
T1 | 31.08 ± 0.69 cd | 18.78 ± 0.44 a | 15.15 ± 0.29 bc | 10.18 ± 0.39 b | 2.38 ± 0.19 d | ||
T2 | 29.75 ± 0.13 d | 17.43 ± 0.15 c | 15.45 ± 0.38 bc | 9.28 ± 0.15 bc | 2.43 ± 0.34 d | ||
T3 | 33.88 ± 0.91 a | 18.60 ± 0.37 ab | 16.48 ± 0.28 a | 8.03 ± 0.51 de | 3.55 ± 0.61 ab | ||
T4 | 32.80 ± 0.29 abc | 17.75 ± 0.57 abc | 15.95 ± 0.49 ab | 11.40 ± 0.14 a | 4.03 ± 0.37 a | ||
T5 | 34.30 ± 1.11 a | 16.93 ± 0.33 cd | 13.70 ± 0.10 ef | 6.18 ± 0.24 f | 2.83 ± 0.41 bcd | ||
T6 | 33.50 ± 0.61 ab | 17.33 ± 0.13 c | 14.18 ± 0.51 de | 9.73 ± 0.19 b | 2.55 ± 0.3 cd | ||
T7 | 31.73 ± 0.43 bcd | 15.00 ± 0.54 e | 13.05 ± 0.15 f | 8.03 ± 0.34 de | 3.4 ± 0.07 abc | ||
T8 | 31.13 ± 0.89 cd | 16.25 ± 0.10 d | 14.20 ± 0.08 de | 8.4 ± 0.47 cd | 2 ± 0.19 d |
Year | Cultivar | Treatment | First Internode (mm) | Second Internode (mm) | Third Internode (mm) | Fourth Internode (mm) | Fifth Internode (mm) |
---|---|---|---|---|---|---|---|
2021 | Meixiangzhan 2 | CK | 2.49 ± 0.19 a | 3.57 ± 0.47 a | 3.91 ± 0.33 ab | 4.22 ± 0.18 b | 5.34 ± 0.3 a |
T1 | 2.50 ± 0.18 a | 3.35 ± 0.25 a | 4.29 ± 0.25 a | 4.92 ± 0.21 a | 4.98 ± 0.18 a | ||
T2 | 2.21 ± 0.17 a | 2.96 ± 0.26 a | 3.58 ± 0.14 ab | 4.65 ± 0.1 ab | 4.69 ± 0.15 a | ||
T3 | 2.58 ± 0.2 a | 3.01 ± 0.37 a | 4.10 ± 0.32 a | 4.68 ± 0.19 ab | 5.34 ± 0.21 a | ||
T4 | 2.25 ± 0.21 a | 3.21 ± 0.07 a | 4.14 ± 0.29 a | 4.50 ± 0.24 ab | 5.00 ± 0.45 a | ||
T5 | 2.29 ± 0.14 a | 2.86 ± 0.23 a | 3.27 ± 0.18 b | 4.32 ± 0.21 b | 5.17 ± 0.17 a | ||
T6 | 2.56 ± 0.08 a | 3.48 ± 0.04 a | 4.35 ± 0.36 a | 4.71 ± 0.12 ab | 4.74 ± 0.33 a | ||
T7 | 2.40 ± 0.22 a | 3.33 ± 0.24 a | 3.78 ± 0.14 ab | 4.51 ± 0.12 ab | 4.67 ± 0.22 a | ||
T8 | 2.36 ± 0.17 a | 3.51 ± 0.16 a | 4.3 ± 0.29 a | 4.87 ± 0.16 a | 5.18 ± 0.18 a | ||
Xiangyaxiangzhan | CK | 2.21 ± 0.11 a | 3.13 ± 0.27 ab | 3.82 ± 0.34 a | 4.22 ± 0.37 bc | 5 ± 0.21 a | |
T1 | 2.42 ± 0.13 a | 3.63 ± 0.08 ab | 4.31 ± 0.43 a | 4.59 ± 0.15 abc | 5.32 ± 0.2 a | ||
T2 | 2.48 ± 0.17 a | 3.67 ± 0.1 a | 4.19 ± 0.28 a | 4.9 ± 0.19 a | 5.3 ± 0.22 a | ||
T3 | 2.38 ± 0.11 a | 3.22 ± 0.17 ab | 3.87 ± 0.35 a | 4.06 ± 0.26 c | 5.19 ± 0.21 a | ||
T4 | 2.57 ± 0.27 a | 3.1 ± 0.11 ab | 4.27 ± 0.17 a | 4.74 ± 0.13 ab | 5.47 ± 0.19 a | ||
T5 | 2.62 ± 0.21 a | 3.05 ± 0.05 b | 4.32 ± 0.24 a | 4.73 ± 0.12 ab | 5.55 ± 0.19 a | ||
T6 | 2.62 ± 0.16 a | 3.4 ± 0.38 ab | 3.65 ± 0.19 a | 4.56 ± 0.27 abc | 5.2 ± 0.07 a | ||
T7 | 2.62 ± 0.07 a | 3.48 ± 0.19 ab | 4.1 ± 0.16 a | 4.68 ± 0.2 abc | 5.16 ± 0.28 a | ||
T8 | 2.44 ± 0.2 a | 3.26 ± 0.29 ab | 4.12 ± 0.26 a | 4.56 ± 0.17 abc | 5.44 ± 0.17 a | ||
2022 | Meixiangzhan 2 | CK | 2.58 ± 0.13 abc | 3.41 ± 0.17 ab | 3.78 ± 0.12 bcd | 4.61 ± 0.2 ab | 5.26 ± 0.09 a |
T1 | 2.76 ± 0.08 a | 3.55 ± 0.14 ab | 4.56 ± 0.24 a | 4.77 ± 0.14 a | 5.25 ± 0.15 a | ||
T2 | 2.71 ± 0.06 ab | 3.46 ± 0.21 ab | 4.09 ± 0.2 abc | 4.49 ± 0.17 ab | 5.23 ± 0.15 a | ||
T3 | 2.55 ± 0.07 abc | 3.67 ± 0.11 a | 3.61 ± 0.13 cd | 4.43 ± 0.22 ab | 5.41 ± 0.19 a | ||
T4 | 2.6 ± 0.2 abc | 3.1 ± 0.21 b | 3.37 ± 0.32 d | 4.3 ± 0.15 ab | 5.48 ± 0.18 a | ||
T5 | 2.48 ± 0.11 abc | 3.56 ± 0.14 ab | 3.7 ± 0.12 cd | 4.29 ± 0.12 b | 5.28 ± 0.1 a | ||
T6 | 2.41 ± 0.07 bc | 3.85 ± 0.12 a | 3.91 ± 0.08 bcd | 4.3 ± 0.2 ab | 5.14 ± 0.44 a | ||
T7 | 2.77 ± 0.05 a | 3.85 ± 0.23 a | 4.38 ± 0.26 ab | 4.49 ± 0.13 ab | 5.56 ± 0.18 a | ||
T8 | 2.38 ± 0.06 c | 3.5 ± 0.14 ab | 3.97 ± 0.28 abcd | 4.58 ± 0.15 ab | 5.19 ± 0.36 a | ||
Xiangyaxiangzhan | CK | 2.23 ± 0.07 b | 2.23 ± 0.07 c | 3.51 ± 0.14 bc | 4.38 ± 0.12 c | 4.65 ± 0.25 b | |
T1 | 2.62 ± 0.19 a | 3.33 ± 0.23 ab | 4.1 ± 0.29 ab | 4.55 ± 0.19 bc | 5.27 ± 0.09 a | ||
T2 | 2.41 ± 0.11 ab | 3.52 ± 0.17 a | 4.27 ± 0.12 a | 4.57 ± 0.28 bc | 5.24 ± 0.27 ab | ||
T3 | 2.27 ± 0.09 ab | 3.32 ± 0.17 ab | 3.16 ± 0.29 c | 4.57 ± 0.11 bc | 5.12 ± 0.27 ab | ||
T4 | 2.51 ± 0.13 ab | 3.54 ± 0.1 a | 3.87 ± 0.23 ab | 4.50 ± 0.21 bc | 5.19 ± 0.24 ab | ||
T5 | 2.41 ± 0.21 ab | 3.71 ± 0.2 a | 4.35 ± 0.24 a | 5.02 ± 0.32 ab | 5.53 ± 0.17 a | ||
T6 | 2.44 ± 0.07 ab | 3.02 ± 0.22 b | 4.01 ± 0.11 ab | 4.58 ± 0.18 bc | 5.23 ± 0.24 ab | ||
T7 | 2.53 ± 0.13 ab | 3.01 ± 0.13 b | 3.87 ± 0.11 ab | 4.23 ± 0.1 c | 5.29 ± 0.11 a | ||
T8 | 2.52 ± 0.14 ab | 3.53 ± 0.08 a | 4.36 ± 0.21 a | 5.55 ± 0.29 a | 5.54 ± 0.17 a |
Year | Cultivar | Treatment | First Internode (mm) | Second Internode (mm) | Third Internode (mm) | Fourth Internode (mm) | Fifth Internode (mm) |
---|---|---|---|---|---|---|---|
2021 | Meixiangzhan 2 | CK | 0.59 ± 0.02 c | 0.51 ± 0.04 b | 0.32 ± 0.02 d | 0.31 ± 0.05 a | 0.21 ± 0.04 c |
T1 | 0.7 ± 0.03 abc | 0.57 ± 0.04 ab | 0.52 ± 0.01 a | 0.41 ± 0.05 a | 0.27 ± 0.02 ab | ||
T2 | 0.69 ± 0.06 abc | 0.48 ± 0.02 b | 0.35 ± 0.02 d | 0.32 ± 0.06 a | 0.25 ± 0.02 abc | ||
T3 | 0.79 ± 0.02 a | 0.57 ± 0.02 ab | 0.51 ± 0.03 ab | 0.36 ± 0.02 a | 0.26 ± 0.01 abc | ||
T4 | 0.77 ± 0.08 a | 0.58 ± 0.01 ab | 0.46 ± 0.01 abc | 0.36 ± 0.02 a | 0.3 ± 0.01 a | ||
T5 | 0.7 ± 0.04 abc | 0.65 ± 0.06 a | 0.45 ± 0.01 bc | 0.35 ± 0.02 a | 0.25 ± 0.02 abc | ||
T6 | 0.62 ± 0.01 bc | 0.51 ± 0.06 b | 0.49 ± 0.04 abc | 0.41 ± 0.02 a | 0.21 ± 0.01 c | ||
T7 | 0.7 ± 0.04 abc | 0.56 ± 0.03 ab | 0.45 ± 0 bc | 0.37 ± 0.01 a | 0.23 ± 0.01 bc | ||
T8 | 0.73 ± 0.01 ab | 0.58 ± 0.02 ab | 0.45 ± 0.02 c | 0.34 ± 0.06 a | 0.26 ± 0.02 abc | ||
Xiangyaxiangzhan | CK | 0.66 ± 0.05 b | 0.51 ± 0.04 b | 0.45 ± 0.01 ab | 0.35 ± 0.02 ab | 0.16 ± 0.05 b | |
T1 | 0.71 ± 0.04 ab | 0.54 ± 0.02 ab | 0.46 ± 0.01 ab | 0.27 ± 0.02 b | 0.26 ± 0.02 a | ||
T2 | 0.75 ± 0.02 ab | 0.61 ± 0.02 a | 0.46 ± 0.02 a | 0.38 ± 0.02 a | 0.22 ± 0.01 a | ||
T3 | 0.68 ± 0.04 ab | 0.51 ± 0.02 b | 0.45 ± 0.01 ab | 0.17 ± 0.08 c | 0.26 ± 0.02 a | ||
T4 | 0.72 ± 0.03 ab | 0.54 ± 0.01 ab | 0.4 ± 0.02 c | 0.37 ± 0.03 a | 0.26 ± 0.01 a | ||
T5 | 0.67 ± 0.04 b | 0.51 ± 0.02 b | 0.47 ± 0.02 a | 0.38 ± 0.02 a | 0.26 ± 0.01 a | ||
T6 | 0.77 ± 0.05 a | 0.57 ± 0.03 ab | 0.42 ± 0.01 bc | 0.41 ± 0.01 a | 0.25 ± 0.01 a | ||
T7 | 0.67 ± 0.02 b | 0.54 ± 0.05 ab | 0.42 ± 0.02 bc | 0.34 ± 0.01 ab | 0.27 ± 0.01 a | ||
T8 | 0.73 ± 0.01 ab | 0.57 ± 0.01 ab | 0.47 ± 0.01 a | 0.38 ± 0.01 a | 0.24 ± 0.02 a | ||
2022 | Meixiangzhan 2 | CK | 0.49 ± 0.03 a | 0.45 ± 0.05 d | 0.29 ± 0.04 d | 0.20 ± 0.03 d | 0.16 ± 0.03 d |
T1 | 0.77 ± 0.03 ab | 0.7 ± 0.03 ab | 0.62 ± 0.03 ab | 0.47 ± 0.06 a | 0.23 ± 0.03 abc | ||
T2 | 0.76 ± 0.05 ab | 0.52 ± 0.05 cd | 0.6 ± 0.06 ab | 0.34 ± 0.08 abcd | 0.28 ± 0.03 ab | ||
T3 | 0.73 ± 0.02 ab | 0.57 ± 0.01 c | 0.39 ± 0.03 c | 0.23 ± 0.07 cd | 0.19 ± 0.03 cd | ||
T4 | 0.79 ± 0.05 ab | 0.72 ± 0.02 a | 0.63 ± 0.02 ab | 0.29 ± 0.03 bcd | 0.28 ± 0.03 ab | ||
T5 | 0.79 ± 0.05 ab | 0.77 ± 0.04 a | 0.54 ± 0.02 b | 0.28 ± 0.03 bcd | 0.23 ± 0.02 abcd | ||
T6 | 0.83 ± 0.02 ab | 0.73 ± 0.05 a | 0.69 ± 0.02 a | 0.41 ± 0.06 ab | 0.21 ± 0.03 bcd | ||
T7 | 0.77 ± 0.02 b | 0.6 ± 0.02 bc | 0.39 ± 0.04 c | 0.37 ± 0 abc | 0.3 ± 0.01 a | ||
T8 | 0.82 ± 0.03 c | 0.54 ± 0.02 cd | 0.42 ± 0.03 c | 0.47 ± 0.05 a | 0.25 ± 0.02 abc | ||
Xiangyaxiangzhan | CK | 0.7 ± 0.02 bcd | 0.61 ± 0.08 ab | 0.46 ± 0.05 bcd | 0.34 ± 0.02 b | 0.22 ± 0.03 c | |
T1 | 0.68 ± 0.04 cd | 0.52 ± 0.02 b | 0.48 ± 0.06 abcd | 0.41 ± 0.04 ab | 0.31 ± 0.04 ab | ||
T2 | 0.6 ± 0.06 d | 0.55 ± 0.05 b | 0.55 ± 0.04 abc | 0.37 ± 0.03 ab | 0.29 ± 0.02 abc | ||
T3 | 0.79 ± 0.03 abc | 0.7 ± 0.03 a | 0.58 ± 0.04 ab | 0.46 ± 0.02 a | 0.26 ± 0.02 bc | ||
T4 | 0.66 ± 0.06 d | 0.59 ± 0.03 ab | 0.44 ± 0.04 cd | 0.45 ± 0.02 a | 0.35 ± 0.01 a | ||
T5 | 0.81 ± 0.03 ab | 0.62 ± 0.03 ab | 0.42 ± 0.07 d | 0.42 ± 0.07 ab | 0.24 ± 0.05 bc | ||
T6 | 0.62 ± 0.04 d | 0.54 ± 0.05 b | 0.46 ± 0.04 bcd | 0.38 ± 0.01 ab | 0.27 ± 0.04 abc | ||
T7 | 0.82 ± 0.03 ab | 0.7 ± 0.06 a | 0.59 ± 0.01 a | 0.44 ± 0.01 a | 0.28 ± 0.03 abc | ||
T8 | 0.83 ± 0.03 a | 0.58 ± 0.03 ab | 0.56 ± 0.03 abc | 0.45 ± 0.02 a | 0.22 ± 0 c |
Year | Cultivar | Treatment | First Internode (g) | Second Internode (g) | Third Internode (g) | Fourth Internode (g) | Fifth Internode (g) |
---|---|---|---|---|---|---|---|
2021 | Meixiangzhan 2 | CK | 0.71 ± 0.19 cd | 0.73 ± 0.09 ab | 0.66 ± 0.04 abc | 0.52 ± 0.07 ab | 0.18 ± 0.03 bc |
T1 | 0.67 ± 0.09 d | 0.67 ± 0.08 abc | 0.65 ± 0.04 abcd | 0.40 ± 0.06 b | 0.27 ± 0.05 abc | ||
T2 | 1.06 ± 0.04 a | 0.83 ± 0.07 a | 0.78 ± 0.12 ab | 0.62 ± 0.07 a | 0.27 ± 0.03 abc | ||
T3 | 0.78 ± 0.1 bcd | 0.78 ± 0.08 ab | 0.84 ± 0.13 a | 0.60 ± 0.10 a | 0.31 ± 0.06 ab | ||
T4 | 0.86 ± 0.04 abcd | 0.80 ± 0.04 a | 0.58 ± 0.02 bcd | 0.35 ± 0.08 b | 0.27 ± 0.05 abc | ||
T5 | 0.83 ± 0.02 abcd | 0.60 ± 0.02 bc | 0.45 ± 0.01 d | 0.40 ± 0.01 b | 0.2 ± 0.04 bc | ||
T6 | 0.97 ± 0.08 abc | 0.79 ± 0.05 ab | 0.74 ± 0.06 ab | 0.38 ± 0.08 b | 0.37 ± 0.08 a | ||
T7 | 1.02 ± 0.07 ab | 0.83 ± 0.10 a | 0.70 ± 0.06 ab | 0.51 ± 0.04 ab | 0.34 ± 0.01 a | ||
T8 | 0.63 ± 0.02 d | 0.52 ± 0.04 c | 0.48 ± 0.08 cd | 0.34 ± 0.01 b | 0.16 ± 0.02 c | ||
Xiangyaxiangzhan | CK | 0.75 ± 0.02 d | 0.64 ± 0.02 e | 0.54 ± 0.01 e | 0.41 ± 0.01 e | 0.16 ± 0 bcd | |
T1 | 0.88 ± 0.04 c | 0.74 ± 0.05 cde | 0.75 ± 0.03 ab | 0.49 ± 0.04 ab | 0.24 ± 0.02 b | ||
T2 | 0.95 ± 0.04 c | 0.88 ± 0.03 ab | 0.65 ± 0.01 cd | 0.52 ± 0.02 cd | 0.21 ± 0.02 bc | ||
T3 | 1.13 ± 0.02 a | 0.94 ± 0.02 a | 0.80 ± 0.03 a | 0.61 ± 0.02 a | 0.45 ± 0.05 a | ||
T4 | 0.91 ± 0.07 c | 0.70 ± 0.04 de | 0.58 ± 0.06 de | 0.49 ± 0.00 de | 0.15 ± 0.01 cd | ||
T5 | 1.01 ± 0.02 abc | 0.76 ± 0.01 cd | 0.73 ± 0.01 abc | 0.38 ± 0.01 abc | 0.12 ± 0.02 d | ||
T6 | 0.97 ± 0.05 bc | 0.79 ± 0.04 bcd | 0.62 ± 0.05 de | 0.50 ± 0.02 de | 0.23 ± 0.03 bc | ||
T7 | 0.95 ± 0.05 c | 0.76 ± 0.02 cd | 0.66 ± 0.03 bcd | 0.40 ± 0.02 bcd | 0.22 ± 0.02 bc | ||
T8 | 1.09 ± 0.05 ab | 0.82 ± 0.07 bc | 0.66 ± 0.03 bcd | 0.43 ± 0.03 bcd | 0.18 ± 0.03 bcd | ||
2022 | Meixiangzhan 2 | CK | 0.81 ± 0.04 c | 0.66 ± 0.09 e | 0.58 ± 0.11 b | 0.38 ± 0.04 c | 0.10 ± 0.03 d |
T1 | 1.13 ± 0.05 ab | 0.67 ± 0.04 e | 0.83 ± 0.05 a | 0.48 ± 0.06 abc | 0.18 ± 0.04 cd | ||
T2 | 1.22 ± 0.07 a | 0.88 ± 0.04 bcd | 0.88 ± 0.03 a | 0.54 ± 0.11 abc | 0.22 ± 0.03 bc | ||
T3 | 0.98 ± 0.13 bc | 0.77 ± 0.11 de | 0.78 ± 0.15 ab | 0.47 ± 0.1 abc | 0.27 ± 0.04 bc | ||
T4 | 1.25 ± 0.12 a | 1.09 ± 0.03 a | 0.77 ± 0.03 ab | 0.51 ± 0.08 abc | 0.26 ± 0.05 bc | ||
T5 | 1.02 ± 0.1 abc | 0.99 ± 0.05 ab | 0.94 ± 0.04 a | 0.63 ± 0.08 ab | 0.60 ± 0.05 a | ||
T6 | 0.87 ± 0.05 c | 0.80 ± 0.05 cde | 0.78 ± 0.09 ab | 0.41 ± 0.02 bc | 0.26 ± 0.05 bc | ||
T7 | 0.92 ± 0.03 bc | 0.92 ± 0 bcd | 0.89 ± 0.04 a | 0.37 ± 0.03 c | 0.19 ± 0.03 cd | ||
T8 | 1.14 ± 0.06 ab | 0.95 ± 0.02 abc | 0.95 ± 0.08 a | 0.65 ± 0.12 a | 0.32 ± 0.03 b | ||
Xiangyaxiangzhan | CK | 0.91 ± 0.16 a | 0.87 ± 0.08 abc | 0.81 ± 0.05 a | 0.59 ± 0.12 ab | 0.31 ± 0.12 a | |
T1 | 0.93 ± 0.04 a | 0.89 ± 0.06 abc | 0.87 ± 0.09 a | 0.66 ± 0.05 ab | 0.22 ± 0.04 a | ||
T2 | 0.93 ± 0.01 a | 0.8 ± 0.04 bc | 0.82 ± 0.18 a | 0.65 ± 0.12 ab | 0.21 ± 0.02 a | ||
T3 | 0.87 ± 0.02 a | 0.74 ± 0.02 c | 0.72 ± 0.06 a | 0.66 ± 0.08 ab | 0.33 ± 0.10 a | ||
T4 | 0.93 ± 0.02 a | 0.90 ± 0.03 ab | 0.88 ± 0.01 a | 0.48 ± 0.08 b | 0.40 ± 0.18 a | ||
T5 | 0.99 ± 0.09 a | 0.98 ± 0.05 a | 0.85 ± 0.05 a | 0.74 ± 0.09 a | 0.41 ± 0.06 a | ||
T6 | 0.99 ± 0.08 a | 0.99 ± 0.09 a | 0.81 ± 0.03 a | 0.73 ± 0.07 a | 0.29 ± 0.05 a | ||
T7 | 0.94 ± 0.01 a | 0.8 ± 0.04 bc | 0.84 ± 0.08 a | 0.70 ± 0.09 ab | 0.30 ± 0.05 a | ||
T8 | 0.91 ± 0.02 a | 0.88 ± 0.02 abc | 0.71 ± 0.04 a | 0.48 ± 0.03 b | 0.25 ± 0.02 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, W.; Mai, Y.; Ma, Y.; Mo, Z. Carbon–Nitrogen Management via Glucose and Urea Spraying at the Booting Stage Improves Lodging Resistance in Fragrant Rice. Agriculture 2025, 15, 1155. https://doi.org/10.3390/agriculture15111155
Xie W, Mai Y, Ma Y, Mo Z. Carbon–Nitrogen Management via Glucose and Urea Spraying at the Booting Stage Improves Lodging Resistance in Fragrant Rice. Agriculture. 2025; 15(11):1155. https://doi.org/10.3390/agriculture15111155
Chicago/Turabian StyleXie, Wenjun, Yiming Mai, Yixian Ma, and Zhaowen Mo. 2025. "Carbon–Nitrogen Management via Glucose and Urea Spraying at the Booting Stage Improves Lodging Resistance in Fragrant Rice" Agriculture 15, no. 11: 1155. https://doi.org/10.3390/agriculture15111155
APA StyleXie, W., Mai, Y., Ma, Y., & Mo, Z. (2025). Carbon–Nitrogen Management via Glucose and Urea Spraying at the Booting Stage Improves Lodging Resistance in Fragrant Rice. Agriculture, 15(11), 1155. https://doi.org/10.3390/agriculture15111155