The Role of Agricultural Socialized Services in Mitigating Rural Labor Shortages: A Multi-Crop Analysis of Production Performance
Abstract
:1. Introduction
1.1. Background
1.2. Objective
2. Literature Review
2.1. The Evolution of Agricultural Socialized Services
2.2. Beyond Manual Labor: Technological Pathways to Agricultural Labor Substitution
2.3. Service-Driven Productivity: The Multidimensional Impact of Agricultural Socialized Services on Crop Production
2.4. Input–Output Relationships and Production Dynamics
2.4.1. Impact of Agricultural Socialized Service Inputs on Crop Outputs
2.4.2. Input–Output Elasticity of Agricultural Socialized Services and Labor Inputs
2.5. Substitution Elasticity Between Services and Labor
2.6. Nonlinear Threshold Effect of Farmland Operation Size on the Relationship Between Agricultural Socialized Services and Crop Production
3. Materials and Methods
3.1. Data Sources
3.2. Selection of Variables
3.3. Analytical Methods
3.3.1. Production Function Modeling
3.3.2. Calculation of Input–Output Elasticities
3.3.3. Technical Elasticity of Substitution Analysis
3.4. Threshold Effect Modeling
4. Results and Discussion
4.1. The Impact of Agricultural Socialized Services on Crop Output
4.1.1. The Impact of Agricultural Socialized Services on Total Crop Output
4.1.2. Impact of Agricultural Socialized Services on the Output of Different Crop Types
4.2. Robustness Test
4.3. Input–Output Elasticity of Agricultural Socialized Services and Labor Force
4.4. Substitution Intensity of Agricultural Socialized Services for Labor Force
4.4.1. Substitution Intensity of Agricultural Socialized Services for Labor in the Production Process of Total Crop Output
4.4.2. Substitution Intensity of Agricultural Socialized Services for Labor in the Production Process of Different Crop Types
4.5. Adequate Scale Farming Under the Objective of Increasing Crop Production
5. Conclusions and Recommendations
5.1. Conclusions
5.2. Recommendations
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Cohen, B. Urbanization in developing countries: Current trends, future projections, and key challenges for sustainability. Technol. Soc. 2006, 28, 63–80. [Google Scholar] [CrossRef]
- Greene, J.M.; Wallace, J.; Williams, R.B.; Leytem, A.B.; O’Neill, B.C.; Wise, M.A.; Zhao, X. Labour Market Evolution is a Key Determinant of Global Agroeconomic and Environmental Futures. Nat. Food 2025, 6, 123–135. [Google Scholar] [CrossRef]
- World Bank. Agriculture for Development: World Development Report 2008; World Bank: Washington, DC, USA, 2007. [Google Scholar] [CrossRef]
- Zhang, K.H.; Song, S. Rural-urban migration and urbanization in China: Evidence from time-series and cross-section analyses. China Econ. Rev. 2003, 14, 386–400. [Google Scholar] [CrossRef]
- Liu, J.; Wang, M.; Yang, L.; Rahman, S.; Sriboonchitta, S. Agricultural Productivity Growth and Its Determinants in South and Southeast Asian Countries. Sustainability 2020, 12, 4981. [Google Scholar] [CrossRef]
- Wang, X.; Yamauchi, F.; Huang, J. Rising wages, mechanization, and the substitution between capital and labor: Evidence from small scale farm system in China. Agric. Econ. 2016, 47, 309–317. [Google Scholar] [CrossRef]
- Bai, Y.; Wei, Y.; Liao, R.; Liu, J. The Role of Agricultural Socialized Services in Unlocking Agricultural Productivity in China: A Spatial and Threshold Analysis. Agriculture 2025, 15, 957. [Google Scholar] [CrossRef]
- Hu, R.; Yang, Z.; Kelly, P.; Huang, J. Agricultural Extension System Reform and Agent Time Allocation in China. China Econ. Rev. 2009, 20, 303–315. [Google Scholar] [CrossRef]
- Li, X.; Zhu, M. The Role of Agricultural Mechanization Services in Reducing Pesticide Input: Promoting Sustainable Agriculture and Public Health. Front. Public Health 2023, 11, 1242346. [Google Scholar] [CrossRef]
- Lin, J.Y. Rural Reforms and Agricultural Growth in China. Am. Econ. Rev. 1992, 82, 34–51. Available online: https://www.jstor.org/stable/2117601 (accessed on 15 April 2025).
- Deininger, K.; Jin, S. The Potential of Land Rental Markets in the Process of Economic Development: Evidence from China. J. Dev. Econ. 2005, 78, 241–270. [Google Scholar] [CrossRef]
- Chen, T.; Rizwan, M.; Abbas, A. Exploring the Role of Agricultural Services in Production Efficiency in Chinese Agriculture: A Case of the Socialized Agricultural Service System. Land 2022, 11, 347. [Google Scholar] [CrossRef]
- Autor, D.H. Why Are There Still So Many Jobs? The History and Future of Workplace Automation. J. Econ. Perspect. 2015, 29, 3–30. [Google Scholar] [CrossRef]
- Fuglie, K.; Gautam, M.; Goyal, A.; Maloney, W.F. Harvesting Prosperity: Technology and Productivity Growth in Agriculture; World Bank: Washington, DC, USA, 2020. [Google Scholar] [CrossRef]
- Barrett, C.B.; Christiaensen, L.; Sheahan, M.; Shimeles, A. On the Structural Transformation of Rural Africa. J. Afr. Econ. 2017, 26, i11–i35. [Google Scholar] [CrossRef]
- Reardon, T.; Echeverria, R.; Berdegué, J.; Minten, B.; Liverpool-Tasie, S.; Tschirley, D.; Zilberman, D. Rapid Transformation of Food Systems in Developing Regions: Highlighting the Role of Agricultural Research & Innovations. Agric. Syst. 2019, 172, 47–59. [Google Scholar] [CrossRef]
- Olmstead, A.L.; Rhode, P.W. Reshaping the landscape: The impact and diffusion of the tractor in American agriculture, 1910–1960. J. Econ. Hist. 2001, 61, 663–698. [Google Scholar] [CrossRef]
- Ogunyiola, A.; Stock, R.; Gardezi, M. Precision agriculture and the future of agrarian labor in the US food system. Agric. Hum. Values 2025, 42, 383–403. [Google Scholar] [CrossRef]
- Paudel, G.P.; Nguyen, T.T.; Grote, U. Trade-offs between labour migration and agricultural productivity: Evidence from smallholder wheat systems in Nepal. J. Int. Dev. 2025, 37, 202–229. [Google Scholar] [CrossRef]
- Kołodziejczak, M. The Use of Agricultural Services in European Union Regions Differing in Selected Agricultural Characteristics. Agriculture 2024, 14, 2346. [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment. Am. Econ. Rev. 2018, 108, 1488–1542. [Google Scholar] [CrossRef]
- Torma, G.; Aschemann-Witzel, J. Social Acceptance of Dual Land Use Approaches: Stakeholders' Perceptions of the Drivers and Barriers Confronting Agrivoltaics Diffusion. J. Rural Stud. 2023, 97, 610–625. [Google Scholar] [CrossRef]
- Poulton, C.; Dorward, A.; Kydd, J. The Future of Small Farms: New Directions for Services, Institutions, and Intermediation. World Dev. 2010, 38, 1413–1428. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Zhou, Y. Spatio-temporal Patterns of Rural Poverty in China and Targeted Poverty Alleviation Strategies. J. Rural Stud. 2017, 52, 66–75. [Google Scholar] [CrossRef]
- Yi, F.; Sun, D.; Zhou, Y. Grain Subsidy, Liquidity Constraints and Food Security—Impact of the Grain Subsidy Program on the Grain-Sown Areas in China. Food Policy 2015, 50, 114–124. [Google Scholar] [CrossRef]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing Nitrogen for Sustainable Development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef]
- Pretty, J.; Bharucha, Z.P. Sustainable Intensification in Agricultural Systems. Ann. Bot. 2014, 114, 1571–1596. [Google Scholar] [CrossRef]
- Schimmelpfennig, D. Farm Profits and Adoption of Precision Agriculture; ERR-217; U.S. Department of Agriculture, Economic Research Service: Washington, DC, USA, 2016. [Google Scholar] [CrossRef]
- Zenbaba, O.S.; Ketema, M.; Jaleta, M.; Jemal, K. Impact of wheat production technology packages adoption on smallholder farmers' food security and income in Horo Guduru Wollega Zone, Ethiopia. J. Innov. Entrep. 2025, 14, 48. [Google Scholar] [CrossRef]
- Asante, B.O.; Prah, S.; Addai, K.N.; Anang, B.; Ng'ombe, J.N. Agricultural services and rural household welfare: Empirical evidence from Ghana. Int. J. Soc. Econ. 2025, 52, 157–176. [Google Scholar] [CrossRef]
- Zhou, K.; Zheng, X. How Does the Growth of Digital Technology Influence Farmland Abandonment? Evidence from Rural China. Sustainability 2025, 17, 2227. [Google Scholar] [CrossRef]
- Xu, Y.; Lyu, J.; Yuan, D.; Yin, G.; Zhang, J. The Impact of Agricultural Machinery Services on Food Loss at the Producer Level: Evidence from China. Agriculture 2025, 15, 263. [Google Scholar] [CrossRef]
- Xu, K.; Yi, X.; Zhou, L. Impacts of agricultural production services on green grain production efficiency: Factors allocation perspective. J. Environ. Manage 2025, 380, 125136. [Google Scholar] [CrossRef]
- Cai, B.; Liao, W.; Shi, F.; Abate, M.; Geremew, B.; Addis, A. Agricultural socialized services and Chinese food security: Examining the threshold effect of land tenure change. Front. Sustain. Food Syst. 2024, 8, 1371520. [Google Scholar] [CrossRef]
- Kostov, P.; Davidova, S.; Nikulina, Y.; Arefieva, V. Subsidies and Employment: Exploring the Experience of Corporate and Family Farms in Russia. East. Eur. Econ. 2023, 63, 537–563. [Google Scholar] [CrossRef]
- Megbowon, E.; Zerihun, M. Sectoral Labour Productivity and Unemployment in South Africa. Int. J. Bus. Ecosyst. Strategy 2025, 7, 131–141. [Google Scholar] [CrossRef]
- Foster, A.D.; Rosenzweig, M.R. Agricultural Productivity Growth, Rural Economic Diversity, and Economic Reforms: India, 1970–2000. Econ. Dev. Cult. Change 2004, 52, 509–542. [Google Scholar] [CrossRef]
- Zhang, Z.; Ding, J.; Zhang, K.; Deng, X. Impact of Aging on Farmland Abandonment: Evidence from Rural China. Land 2025, 14, 393. [Google Scholar] [CrossRef]
- Hammelman, C.; Chen, G.; Tontisirin, N.; Anantsuksomsri, S.; Moore, F.; Ly, S.; Birla, S.; Archambault, Z.; Fleming, E.; Gwanfogbe, J.; et al. The COVID-19 Pandemic's lasting consequences for tropical crop cultivation in Eastern Thailand. Appl. Geogr. 2025, 179, 103636. [Google Scholar] [CrossRef]
- Lowenberg-DeBoer, J.; Erickson, B. Setting the Record Straight on Precision Agriculture Adoption. Agron. J. 2019, 111, 1552–1569. [Google Scholar] [CrossRef]
- Okumu, B.; Radeny, M.; Cramer, L. Welfare Effects and Gender Dimensions of Adoption of Climate Smart Agriculture Practices: Evidence from Kenyan Small-Scale Farmers. World Dev. Sustain. 2025, 6, 100204. [Google Scholar] [CrossRef]
- Walter, A.; Finger, R.; Huber, R.; Buchmann, N. Smart Farming is Key to Developing Sustainable Agriculture. Proc. Natl. Acad. Sci. USA 2017, 114, 6148–6150. [Google Scholar] [CrossRef]
- Yamashita, R.; Kidoguchi, K.; Oshima, T.; Ishigaki, A. Sustainable paddy farming in rural Japan: Leveraging farmer integration and agricultural UAVs for synergistic solutions. J. Clean. Prod. 2024, 475, 143685. [Google Scholar] [CrossRef]
- Lee, Y.-G.; Han, K.; Chung, C.; Ji, I. Effects of Smart Farming on the Productivity of Korean Dairy Farms: A Case Study of Robotic Milking Systems. Sustainability 2024, 16, 9991. [Google Scholar] [CrossRef]
- de Janvry, A.; Sadoulet, E. Agricultural Growth and Poverty Reduction: Additional Evidence. World Bank Res. Obs. 2010, 25, 1–20. [Google Scholar] [CrossRef]
- Ragasa, C.; Mazunda, J. The Impact of Agricultural Extension Services in the Context of a Heavily Subsidized Input System: The Case of Malawi. World Dev. 2018, 105, 25–47. [Google Scholar] [CrossRef]
- Fabregas, R.; Kremer, M.; Schilbach, F. Realizing the Potential of Digital Development: The Case of Agricultural Advice. Science 2019, 366, eaay3038. [Google Scholar] [CrossRef]
- Birner, R.; Davis, K.; Pender, J.; Nkonya, E.; Anandajayasekeram, P.; Ekboir, J.; Mbabu, A.; Spielman, D.J. From Best Practice to Best Fit: A Framework for Designing and Analyzing Pluralistic Agricultural Advisory Services Worldwide. J. Agric. Educ. Ext. 2009, 15, 341–355. [Google Scholar] [CrossRef]
- Anderson, J.R.; Feder, G. Agricultural Extension: Good Intentions and Hard Realities. World Bank Res. Obs. 2004, 19, 41–60. [Google Scholar] [CrossRef]
- Barrett, C.B.; Carter, M.R.; Timmer, C.P. A Century-Long Perspective on Agricultural Development. Am. J. Agric. Econ. 2010, 92, 447–468. [Google Scholar] [CrossRef]
- Massrie, K.D. Why is the price of coffee rising globally? Future prospects for Ethiopian coffee. Front. Sustain. Food Syst. 2025, 9, 1545168. [Google Scholar] [CrossRef]
- Gouta, P.; Konstantidelli, V.; Henderson, S.; Tzouramani, I. Mapping stakeholders' perceptions of agroecological farming practices adoption in Crete, Greece. Environ. Sci. Policy 2025, 167, 104030. [Google Scholar] [CrossRef]
- Birthal, P.S.; Kumar, S.; Negi, D.S.; Roy, D. The Impacts of Information on Returns from Farming: Evidence from a Nationally Representative Farm Survey in India. Agric. Econ. 2015, 46, 549–561. [Google Scholar] [CrossRef]
- Tang, R.; Liu, Q.; Ou, Y. The Construction of a Socialized Service Platform and System for “Internet + Agriculture” in China. Platforms 2024, 2, 211–220. [Google Scholar] [CrossRef]
- Wang, X.; Yamauchi, F.; Huang, J.; Rozelle, S. What Constrains Mechanization in Chinese Agriculture? Role of Farm Size and Fragmentation. China Econ. Rev. 2020, 62, 101221. [Google Scholar] [CrossRef]
- Pingali, P. Agricultural Mechanization: Adoption Patterns and Economic Impact. Handb. Agric. Econ. 2007, 3, 2779–2805. [Google Scholar] [CrossRef]
- Diao, X.; Magalhaes, E.; Silver, J. Cities and Rural Transformation: A Spatial Analysis of Rural Livelihoods in Ghana. World Dev. 2019, 121, 141–157. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, J.; Wang, S. China Has Reached the Lewis Turning Point. China Econ. Rev. 2011, 22, 542–554. [Google Scholar] [CrossRef]
- Fan, S.; Chan-Kang, C. Is Small Beautiful? Farm Size, Productivity, and Poverty in Asian Agriculture. Agric. Econ. 2005, 32, 135–146. [Google Scholar] [CrossRef]
- Huang, J.; Rozelle, S. Technological Change: Rediscovering the Engine of Productivity Growth in China's Rural Economy. J. Dev. Econ. 1996, 49, 337–369. [Google Scholar] [CrossRef]
- Benjamin, D.; Brandt, L. Property Rights, Labour Markets, and Efficiency in a Transition Economy: The Case of Rural China. Can. J. Econ. 2002, 35, 689–716. [Google Scholar] [CrossRef]
- Rozelle, S.; Taylor, J.E.; DeBrauw, A. Migration, Remittances, and Agricultural Productivity in China. Am. Econ. Rev. 1999, 89, 287–291. [Google Scholar] [CrossRef]
- Carter, M.R.; Yao, Y. Local versus Global Separability in Agricultural Household Models: The Factor Price Equalization Effect of Land Transfer Rights. Am. J. Agric. Econ. 2002, 84, 702–715. [Google Scholar] [CrossRef]
- Huang, J.; Rozelle, S. Environmental Stress and Grain Yields in China. Am. J. Agric. Econ. 1995, 77, 853–864. [Google Scholar] [CrossRef]
- Li, T.; Long, H.; Zhang, Y.; Tu, S.; Ge, D.; Li, Y.; Hu, B. Analysis of the Spatial Mismatch of Grain Production and Farmland Resources in China Based on the Potential-Cropping System. Land Use Policy 2017, 60, 26–36. [Google Scholar] [CrossRef]
- Huang, J.; Ding, J. Institutional Innovation and Policy Support to Facilitate Small-Scale Farming Transformation in China. Agric. Econ. 2016, 47, 227–237. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, J.; Thomas, R. Mechanization Outsourcing Clusters and Division of Labor in Chinese Agriculture. China Econ. Rev. 2017, 43, 184–195. [Google Scholar] [CrossRef]
- Liu, Y.; Barrett, C.B.; Pham, T.; Violette, W. The Intertemporal Evolution of Agriculture and Labor over a Rapid Structural Transformation: Lessons from Vietnam. Food Policy 2020, 94, 101913. [Google Scholar] [CrossRef]
- Li, L.; Wang, C.; Segarra, E.; Nan, Z. Migration, Remittances, and Agricultural Productivity in Small Farming Systems in Northwest China. China Agric. Econ. Rev. 2013, 5, 5–23. [Google Scholar] [CrossRef]
- Deininger, K.; Jin, S.; Xia, F.; Huang, J. Moving Off the Farm: Land Institutions to Facilitate Structural Transformation and Agricultural Productivity Growth in China. World Dev. 2014, 59, 505–520. [Google Scholar] [CrossRef]
- Coelli, T.J.; Rao, D.S.P.; O'Donnell, C.J.; Battese, G.E. An Introduction to Efficiency and Productivity Analysis, 2nd ed.; Springer: New York, NY, USA, 2005. [Google Scholar] [CrossRef]
- Yang, J.; Huang, Z.; Zhang, X.; Reardon, T. The Rapid Rise of Cross-Regional Agricultural Mechanization Services in China. Am. J. Agric. Econ. 2013, 95, 1245–1251. [Google Scholar] [CrossRef]
- Otsuka, K.; Liu, Y.; Yamauchi, F. Growing Advantage of Large Farms in Asia and Its Implications for Global Food Security. Glob. Food Secur. 2016, 11, 5–10. [Google Scholar] [CrossRef]
- Liao, R.; Chen, Z.; Sirisrisakulchai, J.; Liu, J. Enhancing Rural Economic Sustainability in China Through Agricultural Socialization Services: A Novel Perspective on Spatial-Temporal Dynamics. Agriculture 2025, 15, 267. [Google Scholar] [CrossRef]
- Taylor, J.E.; Rozelle, S.; de Brauw, A. Migration and Incomes in Source Communities: A New Economics of Migration Perspective from China. Econ. Dev. Cult. Change 2003, 52, 75–101. [Google Scholar] [CrossRef]
- Fan, S.; Zhang, X.; Robinson, S. Structural Change and Economic Growth in China. Rev. Dev. Econ. 2003, 7, 360–377. [Google Scholar] [CrossRef]
- Ji, C.; Guo, H.; Jin, S.; Yang, J. Outsourcing agricultural production: Evidence from rice farmers in Zhejiang Province. PLoS ONE 2017, 12, e0170861. [Google Scholar] [CrossRef]
- Li, X.; Lee, H. An Analysis on the Determining Factors of Farmers’ Land-Scale Management: Empirical Analysis Based on the Micro-Perspective of Farmers in China. Land 2022, 11, 1278. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, Y.; Zou, C. How Does Agricultural Specialization Affect Carbon Emissions in China? J. Clean. Prod. 2022, 370, 133463. [Google Scholar] [CrossRef]
- Li, B.; Qian, Y.; Kong, F. Does Outsourcing Service Reduce the Excessive Use of Chemical Fertilizers in Rural China? The Moderating Effects of Farm Size and Plot Size. Agriculture 2023, 13, 1869. [Google Scholar] [CrossRef]
- Diao, X.; Cossar, F.; Houssou, N.; Kolavalli, S. Mechanization in Ghana: Emerging Demand and the Search for Alternative Supply Models. Food Policy 2014, 48, 168–181. [Google Scholar] [CrossRef]
- Jin, S.; Ma, H.; Huang, J.; Hu, R.; Rozelle, S. Productivity, Efficiency and Technical Change: Measuring the Performance of China's Transforming Agriculture. J. Prod. Anal. 2010, 33, 191–207. [Google Scholar] [CrossRef]
- Christensen, L.R.; Jorgenson, D.W.; Lau, L.J. Transcendental Logarithmic Production Frontiers. Rev. Econ. Stat. 1973, 55, 28–45. [Google Scholar] [CrossRef]
- Dewan, S.; Min, C. The Substitution of Information Technology for Other Factors of Production: A Firm Level Analysis. Manag. Sci. 1997, 43, 1660–1675. [Google Scholar] [CrossRef]
- Winarno, K.; Sustiyo, J.; Aziz, A.A.; Permani, R. Unlocking Agricultural Mechanisation Potential in Indonesia: Barriers, Drivers, and Pathways for Sustainable Agri-Food Systems. Agric. Syst. 2025, 226, 104305. [Google Scholar] [CrossRef]
- Ma, W.; Liu, T.; Li, W.; Yang, H. The Role of Agricultural Machinery in Improving Green Grain Productivity in China: Towards Trans-Regional Operation and Low-Carbon Practices. Heliyon 2023, 9, e20279. [Google Scholar] [CrossRef] [PubMed]
- Zou, B.; Chen, Y.; Mishra, A.K.; Hirsch, S. Agricultural Mechanization and the Performance of the Local Chinese Economy. Food Policy 2024, 125, 102648. [Google Scholar] [CrossRef]
- Xu, G.; Ma, Y.; Qin, G.; Wang, Z.; Zhao, M.; Zhou, Y. Why Chinese Farmers Are Reluctant to Transfer Their Land in the Context of Non-Agricultural Employment: Insights from Agricultural Mechanization. Humanit. Soc. Sci. Commun. 2025, 12, 428. [Google Scholar] [CrossRef]
- Zhang, W. The Impact of Agricultural Machinery Services on Farmland Transfer: An Analytical Perspective Based on the Profitability of Grain Production. Front. Sustain. Food Syst. 2024, 8, 1431005. [Google Scholar] [CrossRef]
- Han, G.; Cui, W.; Chen, X.; Gao, Q. The Sustainability of Grain Production: The Impact of Agricultural Productive Services on Farmers' Grain Profits. Front. Sustain. Food Syst. 2024, 8, 1430643. [Google Scholar] [CrossRef]
- Zerihun, M.F.; Muchie, M.; Worku, Z. Determinants of Agroforestry Technology Adoption in Eastern Cape Province, South Africa. Dev. Stud. Res. 2014, 1, 382–394. [Google Scholar] [CrossRef]
Nationwide | Major Production Areas | Non-Major Production Areas | ||||
---|---|---|---|---|---|---|
Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. | |
Total crop production (10,000 tons) | 2167.198 | 1869.087 | 3921.569 | 1496.738 | 832.503 | 580.015 |
Cereal crop production (10,000 tons) | 2010.134 | 1781.818 | 3691.66 | 1404.756 | 724.261 | 522.925 |
Legume crop production (10,000 tons) | 60.906 | 120.856 | 111.789 | 168.198 | 21.995 | 26.800 |
Tubers crop production (10,000 tons) | 95.859 | 108.167 | 109.470 | 126.015 | 85.451 | 91.186 |
Agricultural mechanization service socialization service professional households (number of households) | 63,708.540 | 92,333.910 | 1,199,214.2 | 116,746.5 | 21,263.02 | 22,185.42 |
Total power of agricultural mechanization (10,000 kilowatts) | 3443.849 | 2927.131 | 5781.636 | 2927.987 | 1656.129 | 1093.113 |
Number of people working in agriculture (10,000 units) | 877.363 | 642.562 | 1224.385 | 643.840 | 611.993 | 500.354 |
Crops sown (1000 hectares) | 5514.603 | 3902.297 | 8867.153 | 3013.900 | 2950.888 | 2179.93 |
Agricultural fertilizer inputs (10,000 tons) | 188.278 | 143.095 | 290.614 | 137.820 | 110.021 | 86.637 |
Nationwide | Major Production Areas | Non-Major Production Areas | |
lnS | 0.544 *** | −4.935 *** | 2.142 *** |
(0.164) | (1.403) | (0.225) | |
lnM | −2.158 *** | 1.810 | −2.193 *** |
(0.526) | (2.726) | (0.760) | |
lnL | 1.104 *** | −7.321 *** | 1.008 * |
(0.289) | (2.395) | (0.568) | |
lnT | 1.407 *** | −5.271 * | 1.724 ** |
(0.448) | (2.974) | (0.713) | |
lnE | −0.413 | 9.126 *** | 0.109 |
(0.505) | (2.412) | (0.585) | |
lnS2 | −0.119 *** | 0.027 | −0.151 *** |
(0.032) | (0.043) | (0.028) | |
lnM2 | 0.087 | −0.604 *** | 1.048 *** |
(0.183) | (0.226) | (0.204) | |
lnL2 | −0.634 *** | −0.088 | −0.815 *** |
(0.211) | (0.261) | (0.280) | |
lnT2 | −0.689 *** | 0.655 | −0.697 * |
(0.289) | (0.678) | (0.358) | |
lnE2 | −0.592 *** | −0.401 | −0.672 *** |
(0.132) | (0.372) | (0.130) | |
lnS × lnL | −0.152 *** | −0.394 *** | 0.066 |
(0.054) | (0.144) | (0.063) | |
lnS × lnM | 0.287 *** | 0.031 | −0.073 |
(0.048) | (0.105) | (0.047) | |
lnS × lnT | 0.012 | 1.021 *** | 0.061 |
(0.076) | (0.207) | (0.065) | |
lnS × lnE | −0.100 * | −0.352 ** | −0.214 *** |
(0.0.060) | (0.143) | (0.069) | |
lnM × lnL | −0.248 ** | 0.316 * | −0.391 *** |
(0.103) | (0.181) | (0.133) | |
lnM × lnT | 0.133 | −0.523 | −0.093 |
(0.132) | (0.323) | (0.155) | |
lnM × lnE | −0.175 | 0.983 *** | −0.391 ** |
(0.170) | (0.257) | (0.152) | |
lnL × lnT | 0.430 *** | 0.537 ** | 0.401 *** |
(0.099) | (0.225) | (0.087) | |
lnL × lnE | 0.515 *** | 0.842 ** | 0.642 ** |
(0.163) | (0.342) | (0.250) | |
lnT × lnE | 0.297 * | −1.915 *** | 0.516 ** |
(0.160) | (0.524) | (0.213) | |
dv × lnS | −0.015 | −0.018 | −0.024 |
(0.028) | (0.051) | (0.037) | |
dv × lnM | 0.007 | 0.148 ** | −0.067 |
(0.064) | (0.058) | (0.088) | |
dv × lnL | 0.114 | 0.299 ** | 0.820 ** |
(0.094) | (0.128) | (0.332) | |
dv × lnT | −0.057 | −0.410 ** | −0.435 ** |
(0.102) | (0.176) | (0.194) | |
dv × lnE | −0.050 | 0.071 | −0.276 * |
(0.063) | (0.101) | (0.146) | |
_con | −0.357 | 48.821 *** | −9.063 *** |
(0.878) | (9.631) | (1.575) | |
Year FE | Yes | Yes | Yes |
Province FE | Yes | Yes | Yes |
N | 360 | 360 | 360 |
R2 | 0.986 | 0.964 | 0.994 |
Prob > F | 0.000 | 0.000 | 0.000 |
Nationwide | Major Production Areas | Non-Major Production Areas | |||||||
---|---|---|---|---|---|---|---|---|---|
Cereals Crops | Legumes Crops | Tubers Crops | Cereals Crops | Legumes Crops | Tubers Crops | Cereals Crops | Legumes Crops | Tubers Crops | |
lnS | 0.650 *** | 1.708 *** | −0.222 | 2.390 *** | 3.691 *** | 0.817 | −5.311 *** | −1.734 | −1.905 |
(0.213) | (0.458) | (0.819) | (0.255) | (0.802) | (1.196) | (1.619) | (4.206) | (8.024) | |
lnM | −3.346 *** | −0.792 | 4.671 | −3.538 *** | −4.683 | −2.580 | 0.725 | 8.902 | 7.372 |
(0.673) | (2.022) | (3.009) | (0.934) | (3.295) | (3.707) | (2.986) | (7.246) | (13.394) | |
lnL | 1.137 *** | 8.740 *** | −0.396 | 0.293 | 3.675 ** | 19.279 *** | −6.374 ** | −8.883 | −4.225 |
(0.352) | (1.051) | (1.698) | (0.652) | (1.684) | (2.984) | (2.631) | (5.999) | (10.657) | |
lnT | 1.848 *** | −4.170 *** | 2.107 | 2.159 *** | 3.956 * | −5.362 ** | −2.195 | −16.320 ** | −24.939 * |
(0.566) | (1.514) | (2.311) | (0.824) | (2.370) | (2.554) | (3.220) | (6.487) | (14.224) | |
lnE | −0.198 | −2.128 | −1.070 | 0.906 | −0.469 | −2.324 | 7.967 *** | 10.858 * | −16.903 |
(0.710) | (1.511) | (2.159) | (0.778) | (1.179) | (1.689) | (2.700) | (5.821) | (10.530) | |
lnS2 | −0.192 *** | 0.042 | 0.407 *** | −0.227 *** | −0.076 | 0.134 | 0.005 | 0.415 ** | −0.009 |
(0.038) | (0.074) | (0.105) | (0.040) | (0.082) | (0.169) | (0.046) | (0.160) | (0.270) | |
lnM2 | 0.204 | 1.284 * | −0.639 | 1.691 *** | 2.923 *** | −6.155 *** | −0.853 *** | −2.251 ** | 6.436 *** |
(0.241) | (0.680) | (1.122) | (0.277) | (0.930) | (1.339) | (0.262) | (0.885) | (1.759) | |
lnL2 | −0.789 *** | −2.747 *** | 2.016 ** | −0.961 *** | −4.033 *** | 2.009 | −0.108 | −2.411 *** | 7.353 *** |
(0.245) | (0.584) | (0.828) | (0.326) | (0.699) | (1.232) | (0.289) | (0.828) | (1.537) | |
lnT2 | −1.007 *** | 4.277 *** | 0.112 | −0.994 ** | 1.888 | 0.232 | −0.157 | 0.079 | 11.479 *** |
(0.257) | (0.876) | (1.113) | (0.395) | (1.249) | (1.428) | (0.755) | (1.651) | (3.251) | |
lnE2 | −0.737 *** | −0.942 *** | 0.453 | −0.784 *** | −0.139 | −0.110 | −0.535 | −3.461 *** | 3.969 * |
(0.182) | (0.317) | (0.466) | (0.180) | (0.260) | (0.499) | (0.421) | (1.167) | (2.111) | |
lnS × lnL | −0.227 *** | −0.678 *** | 0.792 *** | 0.175 ** | −1.039 *** | −1.745 *** | −0.426 *** | 0.321 | 0.400 |
(0.062) | (0.141) | (0.201) | (0.068) | (0.204) | (0.428) | (0.153) | (0.377) | (0.666) | |
lnS × lnM | 0.420 *** | 0.586 *** | −1.395 *** | −0.080 | 0.554 ** | 0.542 ** | −0.041 | 0.357 | 0.641 |
(0.058) | (0.159) | (0.252) | (0.056) | (0.275) | (0.243) | (0.114) | (0.313) | (0.587) | |
lnS × lnT | 0.067 | −0.584 *** | −0.244 | 0.117 | −0.591 ** | −0.245 | 1.264 *** | −0.531 | −2.891 *** |
(0.088) | (0.177) | (0.261) | (0.074) | (0.230) | (0.371) | (0.239) | (0.559) | (1.095) | |
lnS × lnE | −0.171 ** | 0.558 *** | 0.758 *** | −0.352 *** | 0.961 *** | 1.587 *** | −0.477 *** | −0.630 | 3.411 *** |
(0.079) | (0.175) | (0.272) | (0.081) | (0.193) | (0.330) | (0.155) | (0.464) | (0.799) | |
lnM × lnL | −0.186 | 1.560 *** | 0.443 | −0.573 *** | 3.281 *** | 1.830 ** | 0.518 ** | −1.656 *** | −0.629 |
(0.125) | (0.465) | (0.632) | (0.147) | (0.579) | (0.770) | (0.200) | (0.493) | (1.099) | |
lnM × lnT | 0.066 | −2.133 *** | 1.866 * | −0.231 | −3.540 *** | 4.929 *** | −0.233 | 0.667 | −6.083 *** |
(0.166) | (0.634) | (1.009) | (0.187) | (0.679) | (0.813) | (0.371) | (0.756) | (1.724) | |
lnM × lnE | −0.361 * | −1.719 *** | −0.784 | −0.624 *** | −3.506 *** | −1.976 *** | 0.984 *** | 2.062 ** | −1.829 |
(0.216) | (0.563) | (0.820) | (0.192) | (0.601) | (0.721) | (0.290) | (0.940) | (1.634) | |
lnL × lnT | 0.533 *** | −0.874 ** | −2.293 *** | 0.567 *** | 0.836 ** | −4.057 *** | 0.192 | 3.507 *** | −0.900 |
(0.120) | (0.352) | (0.541) | (0.105) | (0.338) | (0.573) | (0.244) | (0.665) | (1.293) | |
lnL × lnE | 0.576 *** | 2.245 *** | −0.700 | 0.760 ** | 0.248 | 0.974 | 1.008 ** | 0.611 | −6.621 *** |
(0.181) | (0.358) | (0.501) | (0.292) | (0.573) | (0.885) | (0.387) | (0.859) | (1.854) | |
lnT × lnE | 0.591 *** | −0.099 | 0.052 | 0.797 *** | 2.023 *** | −0.722 | −1.676 *** | −0.772 | 2.136 |
(0.186) | (0.514) | (0.706) | (0.237) | (0.729) | (0.746) | (0.583) | (1.590) | (2.801) | |
dv × lnS | 0.064 * | −0.168 | −0.736 *** | 0.048 | −0.343 ** | −0.124 | 0.007 | 0.063 | −0.760 *** |
(0.035) | (0.118) | (0.148) | (0.051) | (0.168) | (0.233) | (0.054) | (0.176) | (0.282) | |
dv × lnM | −0.113 | 0.504 * | 0.820 ** | −0.084 | 1.192 *** | −0.266 | 0.189 *** | −0.054 | −0.243 |
(0.076) | (0.257) | (0.378) | (0.116) | (0.394) | (0.550) | (0.064) | (0.196) | (0.426) | |
dv × lnL | 0.179 * | 0.501 * | −1.392 *** | 0.613 | −6.170 *** | −2.884 | 0.340 ** | 1.079 *** | −2.650 *** |
(0.103) | (0.287) | (0.386) | (0.442) | (1.136) | (1.862) | (0.140) | (0.369) | (0.658) | |
dv × lnT | −0.078 | −0.532 * | 0.998 ** | −0.379 | 3.040 *** | 1.930 * | −0.536 *** | −0.727 | 4.148 *** |
(0.121) | (0.313) | (0.433) | (0.257) | (0.674) | (1.074) | (0.193) | (0.503) | (0.848) | |
dv × lnE | −0.073 | −0.251 | 0.384 | −0.203 | 2.393 *** | 1.548 * | 0.111 | −0.299 | −1.332 *** |
(0.073) | (0.211) | (0.252) | (0.193) | (0.529) | (0.839) | (0.110) | (0.233) | (0.462) | |
_con | 1.168 | −14.445 *** | −21.498 *** | −6.712 *** | −26.702 *** | −26.705 *** | 41.876 *** | 39.386 | 154.508 *** |
(1.175) | (3.134) | (4.602) | (1.928) | (5.415) | (6.004) | (10.441) | (28.860) | (54.207) | |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Province FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
N | 360 | 360 | 360 | 204 | 204 | 204 | 156 | 156 | 156 |
R2 | 0.982 | 0.931 | 0.829 | 0.991 | 0.969 | 0.951 | 0.956 | 0.943 | 0.759 |
Prob > F | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Replace Explanatory Variables | Replace Regression Model | |||||||
---|---|---|---|---|---|---|---|---|
Total Crop Output | Cereals Crops | Legumes Crops | Tubers Crops | Total Crop Output | Cereals Crops | Legumes Crops | Tubers Crops | |
lnS | 0.108 *** | 0.097 ** | 0.468 *** | 0.119 | 0.176 *** | 0.201 *** | 0.226 *** | −0.278 *** |
(0.038) | (0.043) | (0.073) | (0.121) | (0.014) | (0.018) | (0.056) | (0.069) | |
lnM | −1.349 *** | −2.465 *** | 2.089 | 4.772 | 0.080 ** | 0.101 ** | −0.324 ** | −0.243 |
(0.487) | (0.622) | (1.860) | (2.974) | (0.033) | (0.049) | (0.140) | (0.234) | |
lnL | 0.792 ** | 0.849 ** | 7.432 *** | −0.688 | −0.390 *** | −0.499 *** | −0.016 | 1.458 *** |
(0.314) | (0.376) | (1.086) | (1.786) | (0.022) | (0.025) | (0.099) | (0.122) | |
lnT | 2.147 *** | 2.611 *** | −1.371 | 2.407 | 0.859 *** | 0.733 *** | 1.773 *** | 1.510 *** |
(0.438) | (0.568) | (1.465) | (2.163) | (0.024) | (0.031) | (0.144) | (0.156) | |
lnE | −0.959 * | −0.780 | −4.125 *** | −1.203 | 0.325 *** | 0.522 *** | −0.383 *** | −1.231 *** |
(0.522) | (0.737) | (1.520) | (2.067) | (0.033) | (0.044) | (0.075) | (0.117) | |
lnS2 | −0.034 | −0.110 *** | 0.387 *** | 0.471 *** | ||||
(0.033) | (0.040) | (0.093) | (0.120) | |||||
lnM2 | −0.280 | −0.159 | −0.170 | −0.869 | ||||
(0.189) | (0.238) | (0.689) | (1.127) | |||||
lnL2 | −0.429 ** | −0.577 ** | −1.979 *** | 2.092 *** | ||||
(0.204) | (0.242) | (0.586) | (0.793) | |||||
lnT2 | −0.667 *** | −0.974 *** | 4.324 *** | 0.074 | ||||
(0.223) | (0.252) | (0.821) | (1.110) | |||||
lnE2 | −0.655 *** | −0.814 *** | −1.126 *** | 0.492 | ||||
(0.133) | (0.184) | (0.312) | (0.456) | |||||
lnS × lnL | −0.075 | −0.148 *** | −0.388 *** | 0.824 *** | ||||
(0.047) | (0.054) | (0.149) | (0.188) | |||||
lnS × lnM | 0.320 *** | 0.469 *** | 0.653 *** | −1.453 *** | ||||
(0.055) | (0.066) | (0.150) | (0.236) | |||||
lnS × lnT | −0.081 | −0.009 | −1.011 *** | −0.377 | ||||
(0.080) | (0.093) | (0.214) | (0.290) | |||||
lnS × lnE | −0.178 *** | −0.273 *** | 0.350 ** | 0.834 *** | ||||
(0.050) | (0.064) | (0.149) | (0.222) | |||||
lnM × lnL | −0.316 *** | −0.258 ** | 1.310 *** | 0.423 | ||||
(0.101) | (0.123) | (0.457) | (0.628) | |||||
lnM × lnT | 0.225 | 0.119 | −1.619 ** | 2.114 ** | ||||
(0.140) | (0.171) | (0.647) | (0.972) | |||||
lnM × lnE | 0.114 | −0.054 | −0.661 | −0.709 | ||||
(0.144) | (0.184) | (0.602) | (0.784) | |||||
lnL × lnT | 0.313 *** | 0.405 *** | −1.289 *** | −2.306 *** | ||||
(0.093) | (0.111) | (0.358) | (0.535) | |||||
lnL × lnE | 0.450 *** | 0.515 *** | 1.971 *** | −0.761 | ||||
(0.154) | (0.174) | (0.374) | (0.500) | |||||
lnT × lnE | 0.284 * | 0.599 *** | −0.234 | −0.062 | ||||
(0.148) | (0.175) | (0.504) | (0.737) | |||||
dv × lnS | −0.107 *** | −0.034 | −0.505 *** | −0.761 *** | ||||
(0.029) | (0.033) | (0.097) | (0.122) | |||||
dv × lnM | 0.053 | −0.066 | 0.681 *** | 0.842 ** | ||||
(0.073) | (0.087) | (0.244) | (0.380) | |||||
dv × lnL | −0.004 | 0.061 | 0.044 | −1.455 *** | ||||
(0.086) | (0.096) | (0.264) | (0.380) | |||||
dv × lnT | 0.128 | 0.118 | 0.150 | 1.049 *** | ||||
(0.092) | (0.109) | (0.296) | (0.397) | |||||
dv × lnE | −0.082 | −0.112 | −0.343 | 0.404 | ||||
(0.058) | (0.069) | (0.211) | (0.250) | |||||
_con | −1.653 | 0.058 | −20.242 *** | −23.157 *** | −1.032 *** | −0.741 *** | −8.671 *** | −7.791 *** |
(1.070) | (1.405) | (3.252) | (4.510) | (0.096) | (0.129) | (0.425) | (0.588) | |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Province FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
N | 360 | 360 | 360 | 360 | 360 | 360 | 360 | 360 |
R2 | 0.987 | 0.982 | 0.936 | 0.830 | 0.979 | 0.969 | 0.851 | 0.690 |
Prob > F | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Nationwide | Major Production Areas | Non-Major Production Areas | |
---|---|---|---|
2011 | 0.115 | −0.153 | 0.046 |
2012 | 0.115 | −0.122 | 0.013 |
2013 | 0.111 | −0.031 | −0.008 |
2014 | 0.111 | −0.027 | −0.026 |
2015 | 0.114 | −0.041 | −0.032 |
2016 | 0.087 | 0.044 | −0.021 |
2017 | 0.091 | 0.064 | −0.017 |
2018 | 0.098 | 0.080 | 0.002 |
2019 | 0.107 | 0.092 | 0.010 |
2020 | 0.115 | 0.083 | 0.017 |
2021 | 0.121 | 0.071 | 0.019 |
2022 | 0.125 | 0.059 | 0.020 |
Nationwide | Major Production Areas | Non-Major Production Areas | |||||||
---|---|---|---|---|---|---|---|---|---|
Cereals Crops | Legumes Crops | Tubers Crops | Cereals Crops | Legumes Crops | Tubers Crops | Cereals Crops | Legumes Crops | Tubers Crops | |
2011 | 0.104 | 0.014 | −0.047 | −0.502 | 0.153 | −0.067 | 0.741 | −0.070 | 0.121 |
2012 | 0.099 | 0.000 | −0.059 | −0.247 | 0.181 | 0.130 | 0.735 | −0.056 | 0.113 |
2013 | 0.088 | 0.006 | −0.093 | 0.034 | 0.247 | 0.423 | 0.732 | −0.043 | 0.108 |
2014 | 0.086 | −0.010 | −0.087 | 0.112 | 0.246 | 0.539 | 0.727 | −0.036 | 0.103 |
2015 | 0.089 | −0.029 | −0.067 | 0.127 | 0.219 | 0.610 | 0.720 | −0.037 | 0.099 |
2016 | 0.041 | 0.034 | −0.256 | 0.324 | −0.087 | 1.106 | 0.738 | −0.064 | 0.102 |
2017 | 0.047 | 0.035 | −0.218 | 0.286 | 1.482 | 1.171 | 0.742 | −0.055 | 0.105 |
2018 | 0.059 | 0.038 | −0.165 | 0.192 | −2.169 | 1.228 | 0.751 | −0.054 | 0.111 |
2019 | 0.074 | 0.041 | −0.104 | 0.013 | 0.308 | 1.391 | 0.762 | −0.038 | 0.117 |
2020 | 0.087 | 0.042 | −0.057 | −0.141 | 0.149 | 1.515 | 0.770 | −0.031 | 0.121 |
2021 | 0.097 | 0.042 | −0.024 | −0.297 | 0.110 | 1.588 | 0.779 | −0.023 | 0.123 |
2022 | 0.104 | 0.041 | −0.002 | −0.416 | 0.100 | 1.466 | 0.785 | −0.014 | 0.125 |
Threshold | RSS | MSE | Fstat | Prob | Crit10 | Crit5 | Crit1 |
---|---|---|---|---|---|---|---|
Single | 0.937 | 0.003 | 45.97 | 0.041 | 30.040 | 41.596 | 74.993 |
Double | 0.891 | 0.003 | 17.95 | 0.220 | 23.182 | 28.424 | 37.031 |
lnY | |
---|---|
lnS × I (lnO ≤ 4.117) | 0.063 *** |
(0.021) | |
lnS × I (lnO ≥ 4.117) | 0.073 *** |
(0.021) | |
_cons | −0.457 |
(2.084) | |
Controls | YES |
N | 360 |
R2 | 0.779 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Wei, Y.; Liao, R.; Liu, J. The Role of Agricultural Socialized Services in Mitigating Rural Labor Shortages: A Multi-Crop Analysis of Production Performance. Agriculture 2025, 15, 1151. https://doi.org/10.3390/agriculture15111151
Liu Z, Wei Y, Liao R, Liu J. The Role of Agricultural Socialized Services in Mitigating Rural Labor Shortages: A Multi-Crop Analysis of Production Performance. Agriculture. 2025; 15(11):1151. https://doi.org/10.3390/agriculture15111151
Chicago/Turabian StyleLiu, Zhixiong, Yuheng Wei, Ruofan Liao, and Jianxu Liu. 2025. "The Role of Agricultural Socialized Services in Mitigating Rural Labor Shortages: A Multi-Crop Analysis of Production Performance" Agriculture 15, no. 11: 1151. https://doi.org/10.3390/agriculture15111151
APA StyleLiu, Z., Wei, Y., Liao, R., & Liu, J. (2025). The Role of Agricultural Socialized Services in Mitigating Rural Labor Shortages: A Multi-Crop Analysis of Production Performance. Agriculture, 15(11), 1151. https://doi.org/10.3390/agriculture15111151