Characterization of Cowpea Genotypes for Traits Related to Early-Season Drought Tolerance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stress Treatment
2.2. Data Collection
2.2.1. Leaf Physiology, Pigments, and Spectral Reflectance Properties
2.2.2. Aboveground Traits
2.2.3. Root Morphology
2.2.4. Statistical Analysis
- Ys represents the phenotypic mean of a given genotype under drought for a given trait;
- Yc represents the phenotypic mean of a given genotype under control for a given trait;
- Xc represents the mean of all genotypes under control for a given trait.
3. Results
3.1. Physiological Traits
3.2. Leaf Pigments and Reflectance
3.3. Shoot Traits
3.4. Shoot and Root Biomass
3.5. Root Traits
3.6. Principal Component Analysis and Drought Stress Tolerance
4. Discussion
4.1. Distinct Genotypic Response for Physiology and Pigments
4.2. Leaf Biophysical Properties Association with Drought Tolerance
4.3. Response of Specific and Total Leaf Area Under Drought
4.4. Root Traits and Biomass Partitioning
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bolan, S.; Padhye, L.P.; Jasemizad, T.; Govarthanan, M.; Karmegam, N.; Wijesekara, H.; Amarasiri, D.; Hou, D.; Zhou, P.; Biswal, B.K.; et al. Impacts of Climate Change on the Fate of Contaminants Through Extreme Weather Events. Sci. Total Environ. 2024, 909, 168388. [Google Scholar] [CrossRef] [PubMed]
- Cook, B.I.; Mankin, J.S.; Anchukaitis, K.J. Climate Change and Drought: From Past to Future. Curr. Clim. Change Rep. 2018, 4, 164–179. [Google Scholar] [CrossRef]
- FAO. The Impact of Disasters and Crises on Agriculture and Food Security: 2021; FAO: Rome, Italy, 2021; ISBN 978-92-5-134071-4.
- NCEI U.S. Billion-Dollar Weather and Climate Disasters (2025); NCEI U.S.: Asheville, NC, USA, 2025.
- Wu, B.; Tian, F.; Zhang, M.; Piao, S.; Zeng, H.; Zhu, W.; Liu, J.; Elnashar, A.; Lu, Y. Quantifying Global Agricultural Water Appropriation with Data Derived from Earth Observations. J. Clean. Prod. 2022, 358, 131891. [Google Scholar] [CrossRef]
- Falcon, W.P.; Naylor, R.L.; Shankar, N.D. Rethinking Global Food Demand for 2050. Popul. Dev. Rev. 2022, 48, 921–957. [Google Scholar] [CrossRef]
- Chaturvedi, V.; Hejazi, M.; Edmonds, J.; Clarke, L.; Kyle, P.; Davies, E.; Wise, M. Climate Mitigation Policy Implications for Global Irrigation Water Demand. Mitig. Adapt. Strateg. Glob. Change 2015, 20, 389–407. [Google Scholar] [CrossRef]
- Gleick, P.H. The World’s Water 2000–2001: The Biennial Report on Freshwater Resources; Island Press: Washington, DC, USA, 2000; ISBN 978-1-59726-284-2. [Google Scholar]
- Dutta, A.; Trivedi, A.; Nath, C.P.; Gupta, D.S.; Hazra, K.K. A comprehensive review on grain legumes as climate-smart crops: Challenges and prospects. Environ. Chall. 2022, 7, 100479. [Google Scholar] [CrossRef]
- de Frota, K.M.G.; Soares, R.A.M.; Arêas, J.A.G. Chemical Composition of Cowpea (Vigna unguiculata L. Walp), Brs-Milênio Cultivar. Food Sci. Technol. 2008, 28, 470–476. [Google Scholar] [CrossRef]
- Iqbal, A.; Khalil, I.A.; Ateeq, N.; Sayyar Khan, M. Nutritional quality of important food legumes. Food Chem. 2006, 97, 331–335. [Google Scholar] [CrossRef]
- Singh, A.K.; Elango, D.; Raigne, J.; Van der Laan, L.; Rairdin, A.; Soregaon, C.; Singh, A. Plant-Based Protein Crops and Their Improvement: Current Status and Future Perspectives. Crop Sci. 2025, 65, e21389. [Google Scholar] [CrossRef]
- Singh, B.B.; Ajeigbe, H.A.; Tarawali, S.A.; Fernandez-Rivera, S.; Abubakar, M. Improving the Production and Utilization of Cowpea as Food and Fodder. Field Crops Res. 2003, 84, 169–177. [Google Scholar] [CrossRef]
- da Silva, A.C.; da Santos, D.C.; Junior, D.L.T.; da Silva, P.B.; Santos, R.C.D.; Siviero, A. Cowpea: A Strategic Legume Species for Food Security and Health. In Legume Seed Nutraceutical Research; IntechOpen: London, UK, 2018; ISBN 978-1-78985-398-8. [Google Scholar]
- Ezin, V.; Tosse, A.G.C.; Chabi, I.B.; Ahanchede, A. Adaptation of Cowpea (Vigna unguiculata L. Walp.) to Water Deficit During Vegetative and Reproductive Phases Using Physiological and Agronomic Characters. Int. J. Agron. 2021, 2021, 9665312. [Google Scholar] [CrossRef]
- Farooq, M.; Gogoi, N.; Barthakur, S.; Baroowa, B.; Bharadwaj, N.; Alghamdi, S.S.; Siddique, K.H.M. Drought Stress in Grain Legumes during Reproduction and Grain Filling. J. Agron. Crop Sci. 2017, 203, 81–102. [Google Scholar] [CrossRef]
- Ravelombola, W.; Shi, A.; Chen, S.; Xiong, H.; Yang, Y.; Cui, Q.; Olaoye, D.; Mou, B. Evaluation of Cowpea for Drought Tolerance at Seedling Stage. Euphytica 2020, 216, 123. [Google Scholar] [CrossRef]
- Anjum, S.; Ashraf, U.; Zohaib, A.; Tanveer, M.; Naeem, M.; Ali, I.; Tabassum, T.; Nazir, U. Growth and developmental responses of crop plants under drought stress: A review. Zemdirb.-Agric. 2017, 104, 267–276. [Google Scholar] [CrossRef]
- Tricot, F.; Crozat, Y.; Pellerin, S. Root System Growth and Nodule Establishment on Pea (Pisum sativum). J. Exp. Bot. 1997, 48, 1935–1941. [Google Scholar] [CrossRef]
- Olorunwa, O.J.; Shi, A.; Barickman, T.C. Varying Drought Stress Induces Morpho-Physiological Changes in Cowpea (Vigna unguiculata L.) Genotypes Inoculated with Bradyrhizobium japonicum. Plant Stress 2021, 2, 100033. [Google Scholar] [CrossRef]
- Singh, S.; Reddy, K.R. Regulation of Photosynthesis, Fluorescence, Stomatal Conductance and Water-Use Efficiency of Cowpea (Vigna unguiculata L. Walp.) Under Drought. J. Photochem. Photobiol. B 2011, 105, 40–50. [Google Scholar] [CrossRef]
- Aslam, M.M.; Waseem, M.; Jakada, B.H.; Okal, E.J.; Lei, Z.; Saqib, H.S.A.; Yuan, W.; Xu, W.; Zhang, Q. Mechanisms of Abscisic Acid-Mediated Drought Stress Responses in Plants. Int. J. Mol. Sci. 2022, 23, 1084. [Google Scholar] [CrossRef]
- Nunes, C.; Moreira, R.; Pais, I.; Semedo, J.; Simões, F.; Veloso, M.M.; Scotti-Campos, P. Cowpea Physiological Responses to Terminal Drought—Comparison between Four Landraces and a Commercial Variety. Plants 2022, 11, 593. [Google Scholar] [CrossRef]
- Biriah, N.; Chemining’wa, G.; Olubayo, F.; Saha, H. Effect of Drought Stress on Canopy Temperature, Growth and Yield Performance of Cowpea Varieties. Int. J. Plant Soil. Sci. 2016, 9, 1–12. [Google Scholar] [CrossRef]
- Lima, J.; Lobato, A. Brassinosteroids Improve Photosystem II Efficiency, Gas Exchange, Antioxidant Enzymes and Growth of Cowpea Plants Exposed to Water Deficit. Physiol. Mol. Biol. Plants 2017, 23, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Ritte, I.P.; Egnin, M.; Bernard, G.C.; Mortley, D.; Idehen, O.; Okoma, M.P.; Bonsi, C. Morpho-Physiological and Molecular Responses to Seedling-Stage Drought Stress in Different Cowpea Cultivars. Int. J. Plant Biol. 2025, 16, 25. [Google Scholar] [CrossRef]
- Walne, C.H.; Thenveettil, N.; Ramamoorthy, P.; Bheemanahalli, R.; Reddy, K.N.; Reddy, K.R. Unveiling Drought-Tolerant Corn Hybrids for Early-Season Drought Resilience Using Morpho-Physiological Traits. Agriculture 2024, 14, 425. [Google Scholar] [CrossRef]
- Cui, Q.; Xiong, H.; Yufeng, Y.; Eaton, S.; Imamura, S.; Santamaria, J.; Ravelombola, W.; Mason, R.E.; Wood, L.; Mozzoni, L.A.; et al. Evaluation of Drought Tolerance in Arkansas Cowpea Lines at Seedling Stage. HortScience 2020, 55, 1132–1143. [Google Scholar] [CrossRef]
- Ravelombola, W.; Shi, A.; Qin, J.; Weng, Y.; Bhattarai, G.; Zia, B.; Zhou, W.; Mou, B. Investigation on Various Aboveground Traits to Identify Drought Tolerance in Cowpea Seedlings. HortScience 2018, 53, 1757–1765. [Google Scholar] [CrossRef]
- Galieni, A.; D’Ascenzo, N.; Stagnari, F.; Pagnani, G.; Xie, Q.; Pisante, M. Past and Future of Plant Stress Detection: An Overview from Remote Sensing to Positron Emission Tomography. Front. Plant Sci. 2021, 11, 609155. [Google Scholar] [CrossRef]
- Ogawa, T.; Tamaki, M.; Usui, T.; Hikosaka, K. Hyperspectral Image Extraction to Evaluate the Photosynthetic and Stress Status of Plants, Using a Photochemical Reflectance Index (pri). Sci. Hortic. 2024, 336, 113349. [Google Scholar] [CrossRef]
- Bheemanahalli, R.; Krishnan, B.S.; Wijewardane, N.K.; Samiappan, S.; Reddy, K.R. Remote sensing algorithms and their applications in plant phenotyping. In Translating Physiological Tools to Augment Crop Breeding; Springer Nature: Singapore, 2023; pp. 337–353. [Google Scholar] [CrossRef]
- Poudel, S.; Vennam, R.R.; Shrestha, A.; Reddy, K.R.; Wijewardane, N.K.; Reddy, K.N.; Bheemanahalli, R. Resilience of soybean cultivars to drought stress during flowering and early-seed setting stages. Sci. Rep. 2023, 13, 1277. [Google Scholar] [CrossRef]
- Pintó-Marijuan, M.; Munné-Bosch, S. Photo-Oxidative Stress Markers as a Measure of Abiotic Stress-Induced Leaf Senescence: Advantages and Limitations. J. Exp. Bot. 2014, 65, 3845–3857. [Google Scholar] [CrossRef]
- Ranjan, S.; Singh, R.; Singh, M.; Pathre, U.; Shirke, P. Characterizing Photoinhibition and Photosynthesis in Juvenile-Red Versus Mature-Green Leaves of Jatropha curcas L. Plant Physiol. Biochem. 2014, 79, 48–59. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Zur, Y.; Chivkunova, O.B.; Merzlyak, M.N. Assessing Carotenoid Content in Plant Leaves with Reflectance Spectroscopy. Photochem. Photobiol. 2002, 75, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Tengey, T.K.; Gyamfi, R.A.; Sallah, E.K.; Issahaku, M.; Ndela, D.N.; Seidu, M.; Senyabor, A.F.; Affram, E.I.; Amoako, O.A.; Naapoal, C. Seedling Stage Drought Screening of Candidate Cowpea (Vigna unguiculata L. Walp.) Genotypes. Cogent Food Agric. 2023, 9, 2212463. [Google Scholar] [CrossRef]
- Awasthi, R.; Gaur, P.; Turner, N.; Vadez, V.; Siddique, K.; Nayyar, H. Effects of Individual and Combined Heat and Drought Stress During Seed Filling on the Oxidative Metabolism and Yield of Chickpea (Cicer arietinum) Genotypes Differing in Heat and Drought Tolerance. Crop Pasture Sci. 2017, 68, 823–841. [Google Scholar] [CrossRef]
- Chakravaram, A.; Sankarapillai, L.V.; Poudel, S.; Bheemanahalli, R. Interactive Effects of Drought and High Night Temperature on Physiology And Yield Components of Cowpea (Vigna unguiculata (L.) Walp.). J. Agric. Food Res. 2025, 21, 101844. [Google Scholar] [CrossRef]
- Kalra, A.; Goel, S.; Elias, A.A. Understanding Role of Roots in Plant Response to Drought: Way Forward to Climate-Resilient Crops. Plant Genome 2024, 17, e20395. [Google Scholar] [CrossRef]
- Ma, Z.; Guo, D.; Xu, X.; Lu, M.; Bardgett, R.D.; Eissenstat, D.M.; McCormack, M.L.; Hedin, L.O. Evolutionary History Resolves Global Organization of Root Functional Traits. Nature 2018, 555, 94–97. [Google Scholar] [CrossRef]
- Ramamoorthy, P.; Lakshmanan, K.; Upadhyaya, H.D.; Vadez, V.; Varshney, R.K. Root Traits Confer Grain Yield Advantages Under Terminal Drought in Chickpea (Cicer arietinum L.). Field Crops Res. 2017, 201, 146–161. [Google Scholar] [CrossRef]
- Amy Lydia, L. Evaluation of Root Traits Associated with Drought Tolerance in Dry Bean (Phaseolus vulgaris L.). Master’s Thesis, Michigan State University, East Lansing, MI, USA, 2013. [Google Scholar]
- Abdel-Haleem, H.; Lee, G.-J.; Boerma, R.H. Identification of QTL for Increased Fibrous Roots in Soybean. Theor. Appl. Genet. 2011, 122, 935–946. [Google Scholar] [CrossRef] [PubMed]
- Adu, M.O.; Asare, P.A.; Yawson, D.O.; Dzidzienyo, D.K.; Nyadanu, D.; Asare-Bediako, E.; Afutu, E.; Tachie-Menson, J.W.; Amoah, M.N. Identifying Key Contributing Root System Traits to Genetic Diversity in Field-Grown Cowpea (Vigna unguiculata L. Walp.) Genotypes. Field Crops Res. 2019, 232, 106–118. [Google Scholar] [CrossRef]
- Nkomo, G.V.; Sedibe, M.M.; Mofokeng, M.A. Phenotyping cowpea accessions at the seedling stage for drought tolerance in controlled environments. Open Agric. 2022, 7, 433–444. [Google Scholar] [CrossRef]
- Strock, C.F.; Burridge, J.; Massas, A.S.F.; Beaver, J.; Beebe, S.; Camilo, S.A.; Fourie, D.; Jochua, C.; Miguel, M.; Miklas, P.N.; et al. Seedling root architecture and its relationship with seed yield across diverse environments in Phaseolus vulgaris. Field Crops Res. 2019, 237, 53–64. [Google Scholar] [CrossRef]
- Zhao, J.; Bodner, G.; Rewald, B.; Leitner, D.; Nagel, K.A.; Nakhforoosh, A. Root Architecture Simulation Improves the Inference from Seedling Root Phenotyping Towards Mature Root Systems. J. Exp. Bot. 2017, 68, 965–982. [Google Scholar] [CrossRef] [PubMed]
- Lilley, J.M.; Kirkegaard, J.A. Benefits of increased soil exploration by wheat roots. Field Crops Res. 2011, 122, 118–130. [Google Scholar] [CrossRef]
- Narayana, N.K.; Wijewardana, C.; Alsajri, F.A.; Reddy, K.R.; Stetina, S.R.; Bheemanahalli, R. Resilience of Soybean Genotypes to Drought Stress During the Early Vegetative Stage. Sci. Rep. 2024, 14, 17365. [Google Scholar] [CrossRef]
- Klein, S.P.; Schneider, H.M.; Perkins, A.C.; Brown, K.M.; Lynch, J.P. Multiple Integrated Root Phenotypes Are Associated with Improved Drought Tolerance. Plant Physiol. 2020, 183, 1011–1025. [Google Scholar] [CrossRef]
- Polania, J.; Poschenrieder, C.; Rao, I.; Beebe, S. Root traits and their potential links to plant ideotypes to improve drought resistance in common bean. Theor. Exp. Plant Physiol. 2017, 29, 143–154. [Google Scholar] [CrossRef]
- Franzoni, G.; Ferrante, A. Plant Extract Improves Quality Traits of Green and Red Lettuce Cultivars. Heliyon 2024, 10, e39224. [Google Scholar] [CrossRef]
- Gamon, J.A.; Serrano, L.; Surfus, J.S. The Photochemical Reflectance Index: An Optical Indicator of Photosynthetic Radiation Use Efficiency Across Species, Functional Types, and Nutrient Levels. Oecologia 1997, 112, 492–501. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N.; Chivkunova, O.B. Optical Properties and Nondestructive Estimation of Anthocyanin Content in Plant Leaves. Photochem. Photobiol. 2001, 74, 38–45. [Google Scholar] [CrossRef]
- Seethepalli, A.; Dhakal, K.; Griffiths, M.; Guo, H.; Freschet, G.T.; York, L.M. RhizoVsion Explorer: Open-Source Software for Root Image Analysis and Measurement Standardization. AoB PLANTS 2021, 13, plab056. [Google Scholar] [CrossRef]
- Fernandez, G.C.J. Stress Tolerance Index- a New Indicator of Tolerance. HortScience 1992, 27, 626d–626. [Google Scholar] [CrossRef]
- Anjum, S.; Xie, X.; Wang, L.; Saleem, M.; Man, C.; Lei, W. Morphological, Physiological and Biochemical Responses of Plants to Drought Stress. Afr. J. Agric. Res. 2011, 6, 2026–2032. [Google Scholar] [CrossRef]
- Asif, Z.; Chen, Z.; Sadiq, R.; Zhu, Y. Climate Change Impacts on Water Resources and Sustainable Water Management Strategies in North America. Water Resour. Manag. 2023, 37, 2771–2786. [Google Scholar] [CrossRef]
- Goufo, P.; Moutinho-Pereira, J.M.; Jorge, T.F.; Correia, C.M.; Oliveira, M.R.; Rosa, E.A.S.; António, C.; Trindade, H. Cowpea (Vigna unguiculata L. Walp.) Metabolomics: Osmoprotection as a Physiological Strategy for Drought Stress Resistance and Improved Yield. Front. Plant Sci. 2017, 8, 586. [Google Scholar] [CrossRef]
- Carvalho, M.; Castro, I.; Moutinho-Pereira, J.; Correia, C.; Egea-Cortines, M.; Matos, M.; Rosa, E.; Carnide, V.; Lino-Neto, T. Evaluating stress responses in cowpea under drought stress. J. Plant Physiol. 2019, 241, 153001. [Google Scholar] [CrossRef]
- Carvalho, M.; Lino-Neto, T.; Rosa, E.; Carnide, V. Cowpea: A legume crop for a challenging environment. J. Sci. Food Agric. 2017, 97, 4273–4284. [Google Scholar] [CrossRef]
- Golldack, D.; Li, C.; Mohan, H.; Probst, N. Tolerance to drought and salt stress in plants: Unraveling the signaling networks. Front. Plant Sci. 2014, 5, 151. [Google Scholar] [CrossRef] [PubMed]
- Mazur, M.; Matoša Kočar, M.; Jambrović, A.; Sudarić, A.; Volenik, M.; Duvnjak, T.; Zdunić, Z. Crop-Specific Responses to Cold Stress and Priming: Insights from Chlorophyll Fluorescence and Spectral Reflectance Analysis in Maize and Soybean. Plants 2024, 13, 1204. [Google Scholar] [CrossRef]
- Melo, A.S.; Costa, R.R.; da Sá, F.V.S.; Dias, G.F.; de Alencar, R.S.; de Viana, P.M.O.; Peixoto, T.D.C.; Suassuna, J.F.; Brito, M.E.B.; de Ferraz, R.L.S.; et al. Modulation of Drought-Induced Stress in Cowpea Genotypes Using Exogenous Salicylic Acid. Plants 2024, 13, 634. [Google Scholar] [CrossRef]
- Lotfi, R.; Eslami-Senoukesh, F.; Mohammadzadeh, A.; Zadhasan, E.; Abbasi, A.; Kalaji, H.M. Identification of Key Chlorophyll Fluorescence Parameters as Biomarkers for Dryland Wheat Under Future Climate Conditions. Sci. Rep. 2024, 14, 28699. [Google Scholar] [CrossRef]
- Prince, S.; Anower, M.R.; Motes, C.M.; Hernandez, T.D.; Liao, F.; Putman, L.; Mattson, R.; Seethepalli, A.; Shah, K.; Komp, M.; et al. Intraspecific Variation for Leaf Physiological and Root Morphological Adaptation to Drought Stress in Alfalfa (Medicago sativa L.). Front. Plant Sci. 2022, 13, 795011. [Google Scholar] [CrossRef] [PubMed]
- Monteoliva, M.; Guzzo, M.; Posada, G. Breeding for Drought Tolerance by Monitoring Chlorophyll Content. Gene Technol. 2021, 10, 10-35248. [Google Scholar]
- Kashiwagi, J.; Upadhyaya, H.D.; Krishnamurthy, L. Significance and Genetic Diversity of Spad Chlorophyll Meter Reading in Chickpea Germplasm in the Semi-Arid Environments. J. Food Legum. 2010, 23, 99–105. [Google Scholar]
- Staudinger, C.; Mehmeti-Tershani, V.; Gil-Quintana, E.; Gonzalez, E.M.; Hofhansl, F.; Bachmann, G.; Wienkoop, S. Evidence for a rhizobia-induced drought stress response strategy in Medicago truncatula. J. Proteomics 2016, 136, 202–213. [Google Scholar] [CrossRef]
- D’Odorico, P.; Schönbeck, L.; Vitali, V.; Meusburger, K.; Schaub, M.; Ginzler, C.; Zweifel, R.; Velasco, V.M.E.; Gisler, J.; Gessler, A.; et al. Drone-based physiological index reveals long-term acclimation and drought stress responses in trees. Plant Cell Environ. 2021, 44, 3552–3570. [Google Scholar] [CrossRef]
- Sadowska-Bartosz, I.; Bartosz, G. Antioxidant Activity of Anthocyanins and Anthocyanidins: A Critical Review. Int. J. Mol. Sci. 2024, 25, 12001. [Google Scholar] [CrossRef] [PubMed]
- Sukhova, E.; Yudina, L.; Kior, A.; Kior, D.; Popova, A.; Zolin, Y.; Gromova, E.; Sukhov, V. Modified Photochemical Reflectance Indices as New Tool for Revealing Influence of Drought and Heat on Pea and Wheat Plants. Plants 2022, 11, 1308. [Google Scholar] [CrossRef]
- Yudina, L.; Sukhova, E.; Gromova, E.; Nerush, V.; Vodeneev, V.; Sukhov, V. A Light-Induced Decrease in the Photochemical Reflectance Index (PRI) Can Be Used to Estimate the Energy-Dependent Component of Non-Photochemical Quenching Under Heat Stress and Soil Drought in Pea, Wheat, and Pumpkin. Photosynth. Res. 2020, 146, 175–187. [Google Scholar] [CrossRef]
- Swapnil, P.; Meena, M.; Singh, S.K.; Dhuldhaj, U.P.; Harish; Marwal, A. Vital roles of carotenoids in plants and humans to deteriorate stress with its structure, biosynthesis, metabolic engineering and functional aspects. Curr. Plant Biol. 2021, 26, 100203. [Google Scholar] [CrossRef]
- Young, A.J. The Photoprotective Role of Carotenoids in Higher Plants. Physiol. Plant. 1991, 83, 702–708. [Google Scholar] [CrossRef]
- Gomes, A.M.F.; Rodrigues, A.P.; António, C.; Rodrigues, A.M.; Leitão, A.E.; Batista-Santos, P.; Nhantumbo, N.; Massinga, R.; Ribeiro-Barros, A.I.; Ramalho, J.C. Drought Response of Cowpea (Vigna unguiculata L. Walp.) Landraces at Leaf Physiological and Metabolite Profile Levels. Environ. Exp. Bot. 2020, 175, 104060. [Google Scholar] [CrossRef]
- Pantha, S.; Kilian, B.; Özkan, H.; Zeibig, F.; Frei, M. Physiological and Biochemical Changes Induced by Drought Stress During the Stem Elongation and Anthesis Stages in the Triticum Genus. Environ. Exp. Bot. 2024, 228, 106047. [Google Scholar] [CrossRef]
- Talebi, R.; Ensafi, M.H.; Baghebani, N.; Karami, E.; Mohammadi, K. Physiological Responses of Chickpea (Cicer arietinum) Genotypes to Drought Stress. Environ. Exp. Biol. 2013, 11, 9–15. [Google Scholar]
- Rizvi, A.H.; Dwivedi, V.K.; Sairam, R.K.; Yadav, S.S.; Bharadwaj, C.; Sarker, A.; Alam, A. Physiological Studies on Moisture Stress Tolerance in Chickpea (Cicer arietinum L.) Genotypes. Int. J. Sci. Res. Agric. Sci. 2014, 1, 23–31. [Google Scholar] [CrossRef]
- Iozia, L.M.; Varone, L. Short Range Shifts in Plant Physiological Responses to Induced Water Stress: Experimental Evidence of Intraspecific Trait Variability Differentiating Neighbouring Mediterranean Plant Populations. Plant Stress 2024, 13, 100556. [Google Scholar] [CrossRef]
- Chalker-Scott, L. Environmental Significance of Anthocyanins in Plant Stress Responses. Photochem. Photobiol. 1999, 70, 1–9. [Google Scholar] [CrossRef]
- Beebe, S.; Rao, I.; Blair, M.; Acosta, J. Phenotyping Common Beans for Adaptation to Drought. Front. Physiol. 2013, 4, 35. [Google Scholar] [CrossRef]
- Yahaya, D.; Denwar, N.; Blair, M.W. Effects of Moisture Deficit on the Yield of Cowpea Genotypes in the Guinea Savannah of Northern Ghana. Agric. Sci. 2019, 10, 577–595. [Google Scholar] [CrossRef]
- Fenta, B.A.; Beebe, S.E.; Kunert, K.J.; Burridge, J.D.; Barlow, K.M.; Lynch, J.P.; Foyer, C.H. Field Phenotyping of Soybean Roots for Drought Stress Tolerance. Agronomy 2014, 4, 418–435. [Google Scholar] [CrossRef]
- Akyeampong, E. Some Responses of Cowpea to Drought Stress. In Proceedings of the Potentials of Forage Legumes in Farming Systems of Sub-Saharan Africa, Addis Ababa, Ethiopia, 16–19 September 1985; pp. 141–159. [Google Scholar]
- Hayatu, M.; Mukhtar, F.B. Physiological Responses of Some Drought Resistant Cowpea Genotypes (Vigna unguiculata L. Walp) to Water Stress. Bayero J. Pure Appl. Sci. 2010, 3, 69–75. [Google Scholar]
- Craufurd, P.Q.; Wheeler, T.R.; Ellis, R.H.; Summerfield, R.J.; Williams, J.H. Effect of Temperature and Water Deficit on Water-Use Efficiency, Carbon Isotope Discrimination, and Specific Leaf Area in Peanut. Crop Sci. 1999, 39, 136–142. [Google Scholar] [CrossRef]
- Payne, W.A.; Wendt, C.W.; Hossner, L.R.; Gates, C.E. Estimating Pearl Millet Leaf Area and Specific Leaf Area. Agron. J. 1991, 83, 937–941. [Google Scholar] [CrossRef]
- Anyia, A.O.; Herzog, H. Water-Use Efficiency, Leaf Area and Leaf Gas Exchange of Cowpeas Under Mid-Season Drought. Eur. J. Agron. 2004, 20, 327–339. [Google Scholar] [CrossRef]
- Santos, R.; Carvalho, M.; Rosa, E.; Carnide, V.; Castro, I. Root and Agro-Morphological Traits Performance in Cowpea Under Drought Stress. Agronomy 2020, 10, 1604. [Google Scholar] [CrossRef]
- Wijewardana, C.; Alsajri, F.A.; Irby, J.T.; Krutz, L.J.; Golden, B.; Henry, W.B.; Gao, W.; Reddy, K.R. Physiological assessment of water deficit in soybean using midday leaf water potential and spectral features. J. Plant Interact. 2019, 14, 533–543. [Google Scholar] [CrossRef]
- Tardieu, F. Any Trait or Trait-Related Allele Can Confer Drought Tolerance: Just Design the Right Drought Scenario. J. Exp. Bot. 2012, 63, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, S.B.; Burridge, J.D.; Ishiyaku, M.F.; Boukar, O.; Lynch, J.P. Phenotyping Cowpea for Seedling Root Architecture Reveals Root Phenes Important for Breeding Phosphorus Efficient Varieties. Crop Sci. 2022, 62, 326–345. [Google Scholar] [CrossRef]
- Ye, H.; Roorkiwal, M.; Valliyodan, B.; Zhou, L.; Chen, P.; Varshney, R.K.; Nguyen, H.T. Genetic Diversity of Root System Architecture in Response to Drought Stress in Grain Legumes. J. Exp. Bot. 2018, 69, 3267–3277. [Google Scholar] [CrossRef]
- Vadez, V.; Rao, S.; Kholova, J.; Krishnamurthy, L.; Kashiwagi, J.; Ratnakumar, P.; Sharma, K.K.; Bhatnagar-Mathur, P.; Basu, P.S. Root Research for Drought Tolerance in Legumes: Quo Vadis? J. Food Legum. 2008, 21, 77–85. [Google Scholar]
- Hall, A. Phenotyping Cowpeas for Adaptation to Drought. Front. Physiol. 2012, 3, 155. [Google Scholar] [CrossRef]
- Kou, X.; Han, W.; Kang, J. Responses of Root System Architecture to Water Stress at Multiple Levels: A Meta-Analysis of Trials Under Controlled Conditions. Front. Plant Sci. 2022, 13, 1085409. [Google Scholar] [CrossRef] [PubMed]
- Dharmappa, P.M.; Doddaraju, P.; Malagondanahalli, M.V.; Rangappa, R.B.; Mallikarjuna, N.M.; Rajendrareddy, S.H.; Ramanjinappa, R.; Mavinahalli, R.P.; Prasad, T.G.; Udayakumar, M.; et al. Introgression of Root and Water Use Efficiency Traits Enhances Water Productivity: An Evidence for Physiological Breeding in Rice (Oryza sativa L.). Rice 2019, 12, 14. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Cui, K.; Xu, A.; Nie, L.; Huang, J.; Peng, S. Drought Stress Condition Increases Root to Shoot Ratio Via Alteration of Carbohydrate Partitioning and Enzymatic Activity in Rice Seedlings. Acta Physiol. Plant. 2015, 37, 9. [Google Scholar] [CrossRef]
- Bheemanahalli, R.; Narayanaswamy, B.R.; Mohankumar, M.V.; Sumanth, K.K.; Rajanna, M.P.; Mohanraju, B.; Udayakumar, M.; Sheshshayee, M.S. Root Traits and Cellular Level Tolerance Hold the Key in Maintaining Higher Spikelet Fertility of Rice Under Water Limited Conditions. Funct. Plant Biol. FPB 2014, 41, 930–939. [Google Scholar] [CrossRef]
- Gargallo-Garriga, A.; Sardans, J.; Pérez-Trujillo, M.; Rivas-Ubach, A.; Oravec, M.; Vecerova, K.; Urban, O.; Jentsch, A.; Kreyling, J.; Beierkuhnlein, C.; et al. Opposite Metabolic Responses of Shoots and Roots to Drought. Sci. Rep. 2014, 4, 6829. [Google Scholar] [CrossRef]
Index | Formula | Reference |
---|---|---|
Chlorophyll index (Chl) | [53] | |
Flavonol index (Flv) | [53] | |
Nitrogen–flavonol index (NFI) | [53] | |
Photochemical reflectance index (PRI) | [54] | |
Anthocyanin reflectance index (ARI1) | [55] | |
Carotenoid reflectance index (CRI1) | [36] |
Trait | T | G | T × G | Mean (CNT) | Mean (DS) |
---|---|---|---|---|---|
Stomatal conductance (gs, mol m−2 s−1) | ** | * | ns | 0.49 a | 0.10 b |
Transpiration (E, mmol m−2 s−1) | ** | * | ns | 5.27 a | 1.61 b |
Canopy temperature (Ctemp, °C) | ** | ns | * | 35.85 b | 38.71 a |
Quantum efficiency of photosystem II (PhiPS2) | ** | * | ns | 0.60 a | 0.35 b |
Electron transport rate (ETR, μmol m−2 s−1) | *** | * | ns | 226.97 a | 131.96 b |
Photochemical reflectance index (PRI) | * | * | ns | 0.006 a | −0.007 b |
Chlorophyll index (Chl) | * | ns | ns | 0.43 a | 0.36 b |
Nitrogen–flavonol index (NFI) | * | ns | ns | 0.70 a | 0.48 b |
Carotenoid reflectance index (CRI1) | * | *** | ns | 4.55 a | 4.22 a |
Anthocyanin reflectance index 1 (ARI1) | ** | ns | ns | −0.29 b | 0.06 a |
Leaf number (LN, no. plant−1) | ** | *** | ns | 4.46 a | 3.18 b |
Leaf area (LA, cm2) | * | ns | ns | 138.08 a | 80.51 b |
Specific leaf area (SLA, cm2 g−1) | ** | *** | * | 140.00 b | 180.68 a |
Shoot weight (SW, g plant−1) | ** | * | ns | 1.51 a | 0.74 b |
Root weight (RW, g plant−1) | * | *** | ns | 0.39 a | 0.26 b |
Root-to-shoot weight (RW/SW, ratio) | *** | ns | ns | 0.27 b | 0.39 a |
Total root length (TRL, mm plant−1) | * | *** | ns | 17,086 a | 15,085 b |
Average root diameter (RD, mm plant−1) | *** | ns | ns | 0.48 a | 0.38 b |
Root surface area (RSA, cm2 plant−1) | ** | ** | ns | 253.88 a | 176.39 b |
Root volume (RV, mm plant−1) | ** | *** | ns | 6779.58 a | 3268.45 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poudel, S.; Valsala Sankarapillai, L.; Sivarathri, B.S.; Hosahalli, V.; Harkess, R.L.; Bheemanahalli, R. Characterization of Cowpea Genotypes for Traits Related to Early-Season Drought Tolerance. Agriculture 2025, 15, 1075. https://doi.org/10.3390/agriculture15101075
Poudel S, Valsala Sankarapillai L, Sivarathri BS, Hosahalli V, Harkess RL, Bheemanahalli R. Characterization of Cowpea Genotypes for Traits Related to Early-Season Drought Tolerance. Agriculture. 2025; 15(10):1075. https://doi.org/10.3390/agriculture15101075
Chicago/Turabian StylePoudel, Sujan, Lekshmy Valsala Sankarapillai, Bala Subramanyam Sivarathri, Vijaykumar Hosahalli, Richard L. Harkess, and Raju Bheemanahalli. 2025. "Characterization of Cowpea Genotypes for Traits Related to Early-Season Drought Tolerance" Agriculture 15, no. 10: 1075. https://doi.org/10.3390/agriculture15101075
APA StylePoudel, S., Valsala Sankarapillai, L., Sivarathri, B. S., Hosahalli, V., Harkess, R. L., & Bheemanahalli, R. (2025). Characterization of Cowpea Genotypes for Traits Related to Early-Season Drought Tolerance. Agriculture, 15(10), 1075. https://doi.org/10.3390/agriculture15101075