Chinese Farmers’ Low-Carbon Agricultural Technology Adoption Behavior and Its Influencing Factors
Abstract
:1. Introduction
2. Theoretical Analysis and Hypotheses
2.1. Concept Definition
2.2. Conceptual Framework
2.3. Hypotheses
3. Data and Methods
3.1. Survey Design
3.2. Data Collection
3.3. Data Analysis
4. Results
4.1. Sample Characteristics
4.2. Farmers’ LCAT Adoption Status
4.3. Measurement Model
4.4. Structural Model
4.4.1. Model Fitness
4.4.2. Direct Effect and Hypotheses Test
4.4.3. Indirect Effect Result Analysis
5. Discussion
6. Conclusions and Implications
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Point of Departure and Key Concepts. In Climate Change 2022—Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2023; pp. 121–196. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Karl, K.; Flammini, A.; Gütschow, J.; Obli-Laryea, G.; Conchedda, G.; Pan, X.; Qi, S.Y.; Heiðarsdóttir, H.H.; Wanner, N.; et al. Pre-and post-production processes increasingly dominate greenhouse gas emissions from agri-food systems. Earth Syst. Sci. Data 2022, 14, 1795–1809. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Mitigation of Climate Change: Working Group III Contribution to the IPCC Fifth Assessment Report; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2015; p. 147. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: Mitigation: Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar] [CrossRef]
- FAO. Climate Change: Unpacking the Burden on Food Safety; Food Safety and Quality Series No. 8; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Sun, X.; Dong, Y.; Wang, Y.; Ren, J. Sources of greenhouse gas emission reductions in OECD countries: Composition or technique effects. Ecol. Econ. 2022, 193, 107288. [Google Scholar] [CrossRef]
- Dickie, A.; Streck, C.; Roe, S.; Zurek, M.; Haupt, F.; Dolginow, A. Strategies for Mitigating Climate Change in Agriculture: Abridged Report; Climate Focus and California Environmental Associates: Sacramento, CA, USA, 2014; Available online: https://www.ceaconsulting.com/wp-content/uploads/strategies-for-mitigating-climate-change-in-agriculture.pdf (accessed on 2 February 2024).
- Anuga, S.W.; Chirinda, N.; Nukpezah, D.; Ahenkan, A.; Andrieu, N.; Gordon, C. Towards low carbon agriculture: Systematic-narratives of climate-smart agriculture mitigation potential in Africa. Curr. Res. Environ. Sustain. 2020, 2, 100015. [Google Scholar] [CrossRef]
- About Low Emission Agriculutre. Available online: https://ccafs.cgiar.org/about-low-emissions-agriculture (accessed on 2 February 2025).
- Opinions on the Key Work of Comprehensively Promoting Rural Revitalization in 2022. Available online: http://www.gov.cn/zhengce/2022-02/22/content_5675035.htm (accessed on 2 February 2024).
- Sovacool, B.K.; Newell, P.; Carley, S.; Fanzo, J. Equity, technological innovation and sustainable behaviour in a low-carbon future. Nat. Hum. Behav. 2022, 6, 326–337. [Google Scholar] [CrossRef]
- Aguilera, E.; Reyes-Palomo, C.; Díaz-Gaona, C.; Sanz-Cobena, A.; Smith, P.; García-Laureano, R.; Rodríguez-Estévez, V. Greenhouse gas emissions from Mediterranean agriculture: Evidence of unbalanced research efforts and knowledge gaps. Glob. Environ. Change 2021, 69, 102319. [Google Scholar] [CrossRef]
- Hahn, C.; Lindkvist, E.; Magnusson, D.; Johansson, M. The role of agriculture in a sustainable energy system—The farmers’ perspective. Renew. Sustain. Energy Rev. 2025, 213, 115437. [Google Scholar] [CrossRef]
- Perry, H.; Carrijo, D.R.; Duncan, A.H.; Fendorf, S.; Linquist, B.A. Mid-season drain severity impacts on rice yields, greenhouse gas emissions and heavy metal uptake in grain: Evidence from on-farm studies. Field Crops Res. 2024, 307, 109248. [Google Scholar] [CrossRef]
- Adnan, N.; Nordin, S.M.; Rahman, I.; Noor, A. Adoption of Green Fertilizer Technology Among Paddy Farmers: A Possible Solution for Malaysian Food Security. Land Use Policy 2017, 63, 38–52. [Google Scholar] [CrossRef]
- Kastner, T.; Chaudhary, A.; Gingrich, S.; Marques, A.; Persson, U.M.; Bidoglio, G.; Le Provost, G.; Schwarzmüller, F. Global agricultural trade and land system sustainability: Implications for ecosystem carbon storage, biodiversity, and human nutrition. One Earth 2021, 4, 1425–1443. [Google Scholar] [CrossRef]
- Li, W.; Ruiz-Menjivar, J.; Zhang, L.; Zhang, J. Climate change perceptions and the adoption of low-carbon agricultural technologies: Evidence from rice production systems in the Yangtze River Basin. Sci. Total Environ. 2021, 759, 143554. [Google Scholar] [CrossRef]
- Waiswa, D.; Muriithi, B.W.; Murage, A.W.; Ireri, D.M.; Maina, F.; Chidawanyika, F.; Yavuz, F. The role of social-psychological factors in the adoption of push-pull technology by small-scale farmers in east Africa: Application of the Theory of Planned Behavior. Heliyon 2025, 11, e41449. [Google Scholar] [CrossRef] [PubMed]
- Hui, M.A.O.; Quan, Y.R.; Yong, F.U. Risk preferences and the low-carbon agricultural technology adoption: Evidence from rice production in China. J. Integr. Agric. 2023, 22, 2577–2590. [Google Scholar] [CrossRef]
- Luo, J.; Hu, M.; Huang, M.; Bai, Y. How does innovation consortium promote low-carbon agricultural technology innovation: An evolutionary game analysis. J. Clean. Prod. 2023, 384, 135564. [Google Scholar] [CrossRef]
- Zou, J.; Shen, L.; Wang, F.; Tang, H.; Zhou, Z. Dual carbon goal and agriculture in China: Exploring key factors influencing farmers’ behavior in adopting low carbon technologies. J. Integr. Agric. 2024, 23, 3215–3233. [Google Scholar] [CrossRef]
- Dissanayake, C.A.K.; Jayathilake, W.; Wickramasuriya, H.V.A.; Dissanayake, U.; Wasala, W.M.C.B. A review on factors affecting technology adoption in agricultural sector. J. Agric. Sci. 2022, 17, 280–296. [Google Scholar] [CrossRef]
- Fadeyi, O.A.; Ariyawardana, A.; Aziz, A.A. Factors influencing technology adoption among smallholder farmers: A systematic review in Africa. J. Agric. Rural Dev. Trop. Subtrop. 2022, 123, 13–20. [Google Scholar] [CrossRef]
- Oyetunde-Usman, Z. Heterogenous factors of adoption of agricultural technologies in West and East Africa countries: A review. Front. Sustain. Food Syst. 2022, 6, 761498. [Google Scholar] [CrossRef]
- Mao, H.; Fu, Y.; Cao, G.; Chen, S. Contract farming, social trust, and cleaner production behavior: Field evidence from broiler farmers in China. Environ. Sci. Pollut. Res. 2022, 29, 4690–4709. [Google Scholar] [CrossRef]
- Ma, J.; Gao, H.; Cheng, C.; Fang, Z.; Zhou, Q.; Zhou, H. What influences the behavior of farmers’ participation in agricultural nonpoint source pollution control?—Evidence from a farmer survey in Huai’an, China. Agric. Water Manag. 2023, 281, 108248. [Google Scholar] [CrossRef]
- Han, H.; Zou, K.; Yuan, Z. Capital endowments and adoption of agricultural green production technologies in China: A meta-regression analysis review. Sci. Total Environ. 2023, 897, 165175. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, J.; Zhang, K.; Xu, D.; Qi, Y.; Deng, X. The impacts of farmer ageing on farmland ecological restoration technology adoption: Empirical evidence from rural China. J. Clean. Prod. 2023, 430, 139648. [Google Scholar] [CrossRef]
- Zhang, Y.; Long, H.; Li, Y.; Tu, S.; Jiang, T. Non-point source pollution in response to rural transformation development: A comprehensive analysis of China’s traditional farming area. J. Rural Stud. 2021, 83, 165–176. [Google Scholar] [CrossRef]
- Liu, Y.; Ruiz-Menjivar, J.; Zhang, L.; Zhang, J.; Swisher, M.E. Technical training and rice farmers’ adoption of low-carbon management practices: The case of soil testing and formulated fertilization technologies in Hubei, China. J. Clean. Prod. 2019, 226, 454–462. [Google Scholar] [CrossRef]
- Liu, L.; Shangguan, D.; Li, X.; Jiang, Z. Influence of peasant household differentiation and risk perception on soil and water conservation tillage technology adoption- an analysis of moderating effects based on government subsidies. J. Clean. Prod. 2021, 288, 125092. [Google Scholar] [CrossRef]
- Vinholis, M.D.M.B.; Saes, M.S.M.; Carrer, M.J.; de Souza Filho, H.M. The effect of meso-institutions on adoption of sustainable agricultural technology: A case study of the Brazilian low carbon agriculture plan. J. Clean. Prod. 2021, 280, 124334. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, X.; Deng, X. Modeling farmers’ adoption of low-carbon agricultural technology in Jianghan Plain, China: An examination of the theory of planned behavior. Technol. Forecast. Soc. Change 2022, 180, 121726. [Google Scholar] [CrossRef]
- Goswami, K.; Choudhury, H.K.; Saikia, J. Factors influencing farmers’ adoption of slash and burn agriculture in North East India. For. Policy Econ. 2012, 15, 146–151. [Google Scholar] [CrossRef]
- Krettenauer, T.; Lefebvre, J.P. Beyond subjective and personal: Endorsing pro-environmental norms as moral norms. J. Environ. Psychol. 2021, 76, 101644. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, D.; Wang, H.; Wang, X.; Yu, G.; Zhao, X. An evaluation of China’s agricultural green production: 1978–2017. J. Clean. Prod. 2020, 243, 118483. [Google Scholar] [CrossRef]
- Meng, H.; Ye, J. Looking good and doing good: The effect of self-perceived attractiveness on prosocial behavior. Mark. Lett. 2024, 36, 137–151. [Google Scholar] [CrossRef]
- Venhoeven, L.A.; Bolderdijk, J.W.; Steg, L. Why acting environmentally-friendly feels good: Exploring the role of self-image. Front. Psychol. 2016, 7, 1846. [Google Scholar] [CrossRef]
- Wang, H.; Sarkar, A.; Qian, L. Evaluations of the roles of organizational support, organizational norms and organizational learning for adopting environmentally friendly technologies: A case of kiwifruit farmers’ cooperatives of Meixian, China. Land 2021, 10, 284. [Google Scholar] [CrossRef]
- Dong, L.; Bettinger, P.; Liu, Z. Periodic harvests, rather than passive conservation, increase the carbon balance of boreal forests much more in northeast china. For. Ecol. Manag. 2023, 530, 120777. [Google Scholar] [CrossRef]
- Ogiemwonyi, O.; Jan, M.T. The correlative influence of consumer ethical beliefs, environmental ethics, and moral obligation on green consumption behavior. Resour. Conserv. Recycl. Adv. 2023, 19, 200171. [Google Scholar] [CrossRef]
- Kasymov, U.; Wang, X.; Zikos, D.; Chopan, M.; Ibele, B. Institutional barriers to sustainable forest management: Evidence from an experimental study in Tajikistan. Ecol. Econ. 2022, 193, 107276. [Google Scholar] [CrossRef]
- Lou, S.; Zhang, B.; Zhang, D. Foresight from the hometown of green tea in China: Tea farmers’ adoption of pro-green control technology for tea plant pests. J. Clean. Prod. 2021, 320, 128817. [Google Scholar] [CrossRef]
- Kim, E.; Kyung, Y. Factors affecting the adoption intention of new electronic authentication services: A convergent model approach of VAM, PMT, and TPB. IEEE Access 2023, 11, 13859–13876. [Google Scholar] [CrossRef]
- Cao, H.; Li, F.; Zhao, K.; Qian, C.; Xiang, T. From value perception to behavioural intention: Study of Chinese smallholders’ pro-environmental agricultural practices. J. Environ. Manag. 2022, 315, 115179. [Google Scholar] [CrossRef]
- Ajzen, I. Attitudes, Personality and Behaviour; Open University Press: New York, NY, USA, 2005. [Google Scholar]
- Schwartz, S.H. Normative influences on altruism. Adv. Exp. Soc. Psychol. 1997, 10, 221–279. [Google Scholar] [CrossRef]
- Xu, Z.; Meng, W.; Li, S.; Chen, J.; Wang, C. Driving factors of farmers’ green agricultural production behaviors in the multi-ethnic region in China based on NAM-TPB models. Glob. Ecol. Conserv. 2024, 50, e02812. [Google Scholar] [CrossRef]
- Chen, T.; Wu, C.; Lu, X.; Xiao, H. Analysis of factors influencing family farms’ adoption of green prevention and control techniques on an integrative framework of the TPB and NAM. Acta Psychol. 2024, 247, 104314. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lu, P.; Tang, J.; Gao, X.; Liao, W.; Weng, Z. Drivers of farmers’ intentions to use eco-breeding: Integrating the theory of planned behavior and the norm activation model. Front. Environ. Econ. 2022, 1, 1035176. [Google Scholar] [CrossRef]
- Rezaei, R.; Safa, L.; Damalas, C.A.; Ganjkhanloo, M. Drivers of farmers’ intention to use integrated pest management: Integrating theory of planned behavior and norm activation model. J. Environ. Manag. 2019, 236, 328–339. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.P.L.; Doan, X.H.; Nguyen, T.T.; Nguyen, T.M. Factors affecting Vietnamese farmers’ intention toward organic agricultural production. Int. J. Soc. Econ. 2021, 48, 1213–1228. [Google Scholar] [CrossRef]
- Han, G.; Grudens-Schuck, N. Motivations and challenges for adoption of organic grain production: A qualitative study of Iowa organic farmers. Foods 2022, 11, 3512. [Google Scholar] [CrossRef]
- Han, G.; Arbuckle, J.G.; Grudens-Schuck, N. Motivations, goals, and benefits associated with organic grain farming by producers in Iowa, US. Agric. Syst. 2021, 191, 103175. [Google Scholar] [CrossRef]
- Savari, M.; Damaneh, H.E.; Damaneh, H.E.; Cotton, M. Integrating the norm activation model and theory of planned behaviour to investigate farmer pro-environmental behavioural intention. Sci. Rep. 2023, 13, 5584. [Google Scholar] [CrossRef]
- Ai, P.; Rosenthal, S. The model of norm-regulated responsibility for proenvironmental behavior in the context of littering prevention. Sci. Rep. 2024, 14, 9289. [Google Scholar] [CrossRef] [PubMed]
- Rui, J.R.; Yuan, S.; Xu, P. Motivating COVID-19 mitigation actions via personal norm: An extension of the norm activation model. Patient Educ. Couns. 2022, 105, 2504–2511. [Google Scholar] [CrossRef]
- Kim, Y.G.; Woo, E.; Nam, J. Sharing economy perspective on an integrative framework of the NAM and TPB. Int. J. Hosp. Manag. 2018, 72, 109–117. [Google Scholar] [CrossRef]
- Wang, B.; Wang, X.; Guo, D.; Zhang, B.; Wang, Z. Analysis of factors influencing residents’ habitual energy-saving behaviour based on NAM and TPB models: Egoism or altruism? Energy Policy 2018, 116, 68–77. [Google Scholar] [CrossRef]
- Han, G.; Niles, M.T. An adoption spectrum for sustainable agriculture practices: A new framework applied to cover crop adoption. Agric. Syst. 2023, 212, 103771. [Google Scholar] [CrossRef]
- Li, L.; Huang, Y. Sustainable agriculture in the face of climate change: Exploring farmers’ risk perception, low-carbon technology adoption, and productivity in the Guanzhong Plain of China. Water 2023, 15, 2228. [Google Scholar] [CrossRef]
- Tama, R.A.Z.; Ying, L.; Yu, M.; Hoque, M.M.; Adnan, K.M.; Sarker, S.A. Assessing farmers’ intention towards conservation agriculture by using the Extended Theory of Planned Behavior. J. Environ. Manag. 2021, 280, 111654. [Google Scholar] [CrossRef]
- Liu, P.; Segovia, M.; Tse, E.C.-Y.; Nayga, R.M. Become an environmentally responsible customer by choosing low-carbon footprint products at restaurants: Integrating the elaboration likelihood model (ELM) and the theory of planned behavior (TPB). J. Hosp. Tour. Manag. 2022, 52, 346–355. [Google Scholar] [CrossRef]
- Li, M.; Wang, J.; Zhao, P.; Chen, K.; Wu, L. Factors affecting the willingness of agricultural green production from the perspective of farmers’ perceptions. Sci. Total Environ. 2020, 738, 140289. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Fu, T. Can social networks facilitate smallholders’ decisions to adopt climate-smart agriculture technologies? A three-level meta-analysis. Mitig. Adapt. Strateg. Glob. Change 2024, 29, 20. [Google Scholar] [CrossRef]
- Qiu, W.; Zhong, Z.; Huang, Y. Impact of perceived social norms on farmers’ behavior of cultivated land protection: An empirical analysis based on mediating effect model. Int. J. Low-Carbon Technol. 2021, 16, 114–124. [Google Scholar] [CrossRef]
- Wauters, E.; Bielders, C.; Poesen, J.; Govers, G.; Mathijs, E. Adoption of soil conservation practices in Belgium: An examination of the theory of planned behaviour in the agri-environmental domain. Land Use Policy 2010, 27, 86–94. [Google Scholar] [CrossRef]
- Chunfang, Y.; Xing, J.; Changming, C.; Shiou, L.; Obuobi, B.; Yifeng, Z. Digital economy empowers sustainable agriculture: Implications for farmers’ adoption of ecological agricultural technologies. Ecol. Indic. 2024, 159, 111723. [Google Scholar] [CrossRef]
- Daxini, A.; O’Donoghue, C.; Ryan, M.; Buckley, C.; Barnes, A.P.; Daly, K. Which factors influence farmers’ intentions to adopt nutrient management planning? J. Environ. Manag. 2018, 224, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Omulo, G.; Daum, T.; Köller, K.; Birner, R. Unpacking the behavioral intentions of ‘emergent farmers’ towards mechanized conservation agriculture in Zambia. Land Use Policy 2024, 36, 106979. [Google Scholar] [CrossRef]
- Vaske, J.J.; Landon, A.C.; Miller, C.A. Normative influences on farmers’ intentions to practice conservation without compensation. Environ. Manag. 2020, 66, 191–201. [Google Scholar] [CrossRef]
- Valizadeh, N.; Bijani, M.; Abbasi, E. Farmers’ participatory-based water conservation behaviors: Evidence from Iran. Environ. Dev. Sustain. 2021, 23, 4412–4432. [Google Scholar] [CrossRef]
- Shin, Y.H.; Im, J.; Jung, S.E.; Severt, K. The theory of planned behavior and the norm activation model approach to consumer behavior regarding organic menus. Int. J. Hosp. Manag. 2018, 69, 21–29. [Google Scholar] [CrossRef]
- Daxini, A.; Ryan, M.; O’Donoghue, C.; Barnes, A.P. Understanding farmers’ intentions to follow a nutrient management plan using the theory of planned behaviour. Land Use Policy 2019, 85, 428–437. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, S. The role of social norms on public service motivation and prosocial behavior: Moderating effect versus direct effect. Int. J. Public Adm. 2022, 45, 1122–1131. [Google Scholar] [CrossRef]
- Zhao, X.; Zheng, J.; Zhang, M. Internal motivation, external environment and farmland waste green disposal behavior of family farms. J. Arid Land. Resour. Environ. 2022, 36, 9–15. (In Chinese) [Google Scholar] [CrossRef]
- Meng, B.; Chua, B.L.; Ryu, H.B.; Han, H. Volunteer tourism (VT) traveler behavior: Merging norm activation model and theory of planned behavior. J. Sustain. Tour. 2020, 28, 1947–1969. [Google Scholar] [CrossRef]
- Stern, P.C. New environmental theories: Toward a coherent theory of environmentally significant behavior. J. Soc. Issues 2000, 56, 407–424. [Google Scholar] [CrossRef]
- Duong, C.D. Using a unified model of TPB, NAM and SOBC to understand students’ energy-saving behaviors: Moderation role of group-level factors and media publicity. Int. J. Energy Sect. Manag. 2024, 18, 71–93. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, M.; Ni, Q.; Cai, Y. Modelling farmers’ watershed ecological protection behaviour with the value-belief-norm theory: A case study of the wei river basin. Int. J. Environ. Res. Public Health 2021, 18, 5023. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Yang, G.; Guo, Z.; Wang, G. Exploring the influence mechanism of farmers’ organic fertilizer application behaviors based on the normative activation theory. Land 2021, 10, 1111. [Google Scholar] [CrossRef]
- Khan, F.; Abbass, K.; Qun, W.; Grebinevych, O. Moderating role of digital media on environmental awareness and environmental beliefs to shape farmers’ behavioral intentions towards sustainable agricultural land conservation practices. J. Environ. Manag. 2025, 373, 123745. [Google Scholar] [CrossRef] [PubMed]
- Arjomandi, A.P.; Yazdanpanah, M.; Zobeidi, T.; Komendantova, N.; Shirzad, A. Place attachment, activation of personal norms, and the role of emotions to save water in scarcity. Environ. Sustain. Indic. 2024, 25, 100567. [Google Scholar] [CrossRef]
- Mann, R.P. Collective decision-making by rational agents with differing preferences. Proc. Natl. Acad. Sci. USA 2020, 117, 10388–10396. [Google Scholar] [CrossRef]
- Wang, J.Y.; Li, X.B.; Xin, L.J. Spatial-temporal variations and influential factors of land transfer in China. J. Nat. Resour. 2018, 33, 2067–2083. (In Chinese) [Google Scholar] [CrossRef]
- Guo, A.; Wei, Y.; Zhong, F.; Wang, P. How do climate change perception and value cognition affect farmers’ sustainable livelihood capacity? An analysis based on an improved DFID sustainable livelihood framework. Sustain. Prod. Consum. 2022, 33, 636–650. [Google Scholar] [CrossRef]
- Sui, Y.; Gao, Q. Farmers’ endowments, technology perception and green production technology adoption behavior. Sustainability 2023, 15, 7385. [Google Scholar] [CrossRef]
- Xiong, Y.; He, P. Impact factors and production performance of adoption of green control technology: An empirical analysis based on the survey data of rice farmers in Sichuan Province. Chin. J. Eco-Agric. 2020, 28, 136–146. (In Chinese) [Google Scholar] [CrossRef]
- Zou, Q.; Zhang, Z.; Yi, X.; Yin, C. The direction of promoting smallholders’ adoption of agricultural green production technologies in China. J. Clean. Prod. 2023, 415, 137734. [Google Scholar] [CrossRef]
- Lu, C.; Huang, Y.; Yu, Y.; Hu, J.; Mo, H.; Li, Y.; Huo, D.; Song, X.; Huang, X.; Sun, Y.; et al. Health co-benefits of post-COVID-19 low-carbon recovery in Chinese cities. Nat. Cities 2024, 1, 695–705. [Google Scholar] [CrossRef]
- Qin, X.; Xu, X.; Yang, Q. Carbon peak prediction and emission reduction pathways of China’s low-carbon pilot cities: A case study of Wuxi city in Jiangsu province. J. Clean. Prod. 2024, 447, 141385. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 4th ed.; Guilford Press: New York, NY, USA, 2016. [Google Scholar]
- Hayes, A.F.; Montoya, A.K.; Rockwood, N.J. The analysis of mechanisms and their contingencies: PROCESS versus structural equation modeling. Australas. Mark. J. 2017, 25, 76–81. [Google Scholar] [CrossRef]
- Sarkar, A.; Wang, H.; Rahman, A.; Azim, J.A.; Memon, W.H.; Qian, L. Structural equation model of young farmers’ intention to adopt sustainable agriculture: A case study in Bangladesh. Renew. Agric. Food Syst. 2022, 37, 142–154. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M.A. New criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. 2015, 43, 115–135. [Google Scholar] [CrossRef]
- Tabri, N.; Elliott, C.M. Principles and practice of structural equation modeling. Can. Grad. J. Sociol. Criminol. 2012, 1, 59–60. [Google Scholar] [CrossRef]
- Hou, B.; Hou, J.; Wang, Z.W. Analyzing Farmers’ Low-carbon Production Behavior: Based on the Theory of Planned Behavior. J. Anhui Agric. Univ. 2015, 24, 25–31. (In Chinese) [Google Scholar] [CrossRef]
- Sarkar, A.; Wang, H.; Rahman, A.; Qian, L.; Memon, W.H. Evaluating the roles of the farmer’ s cooperative for fostering environmentally friendly production technologies-a case of kiwi-fruit farmers in Meixian, China. J. Environ. Manag. 2022, 301, 113858. [Google Scholar] [CrossRef]
- Gowda, B.; Sendhil, R.; Adak, T.; Raghu, S.; Patil, N.; Mahendiran, A.; Damalas, C.A. Determinants of rice farmers’ intention to use pesticides in eastern India: Application of an extended version of the planned behavior theory. Sustain. Prod. Consum. 2021, 26, 814–823. [Google Scholar] [CrossRef]
- Doran, E.M.; Zia, A.; Hurley, S.E.; Tsai, Y.; Koliba, C.; Adair, C.; Schattman, R.E.; Rizzo, D.M.; Méndez, V.E. Social-psychological determinants of farmer intention to adopt nutrient best management practices: Implications for resilient adaptation to climate change. J. Environ. Manag. 2020, 276, 111304. [Google Scholar] [CrossRef]
- Garmendia-Lemus, S.; Moshkin, E.; Hung, Y.; Tack, J.; Buysse, J. European farmers’ perceptions and intentions to use bio-based fertilisers: Insights from the theory of planned behaviour and perceived utility. J. Clean. Prod. 2024, 434, 139755. [Google Scholar] [CrossRef]
- Wang, T.; Shen, B.; Han Springer, C.; Hou, J. What prevents us from taking low-carbon actions? A comprehensive review of influencing factors affecting low-carbon behaviors. Energy Res. Soc. Sci. 2021, 71, 101844. [Google Scholar] [CrossRef]
- Taghibaygi, M.; Alibaygi, A. The impact of ethical commitments on the intention to adopt digital agricultural technologies. Sci. Rep. 2024, 14, 23035. [Google Scholar] [CrossRef] [PubMed]
- Jaffar, M.; Latiff, A.R.A. Pro-environmental conservation behavior through the lens of norm activation model: A systematic review (2018–2023). PaperASIA 2024, 40, 1–11. [Google Scholar] [CrossRef]
- Shi, Z.H.; Zhang, H. Farmers’ green production behavior examined through the value-belief-norm theory. J. Arid Land. Resour. Environ. 2020, 34, 96–102. (In Chinese) [Google Scholar] [CrossRef]
- Niu, Z.; Chen, C.; Gao, Y.; Wang, Y.; Chen, Y.; Zhao, K. Peer effects, attention allocation and farmers’ adoption of cleaner production technology: Taking green control techniques as an example. J. Clean. Prod. 2022, 339, 130700. [Google Scholar] [CrossRef]
- Zhang, Q.; Zheng, S.; Wei, J. The influence of social network dicitization and information capability on farmers’ adoption of green prevention and control technology. J. Arid Land. Resour. Environ. 2023, 37, 46–53. (In Chinese) [Google Scholar] [CrossRef]
- Ricart, S.; Gandolfi, C.; Castelletti, A. What drives farmers’ behavior under climate change? Decoding risk awareness, perceived impacts, and adaptive capacity in northern Italy. Heliyon 2025, 11, e41328. [Google Scholar] [CrossRef]
- Guo, Q.H.; Li, H.; Li, S.P.; Liu, L. Analysis of the influence of personal norms on farmers’ pro-environmental behavior--based on the extended theory of norm-activation. Resour. Environ. Yangtze Basin. 2019, 28, 1176–1184. [Google Scholar]
- Badsar, M.; Moghim, M.; Ghasemi, M. Analysis of factors influencing farmers’ sustainable environmental behavior in agriculture activities: Integration of the planned behavior and the protection motivation theories. Environ. Dev. Sustain. 2023, 25, 9903–9934. [Google Scholar] [CrossRef]
- Niu, N.; Fan, W.; Ren, M.; Li, M.; Zhong, Y. The role of social norms and personal costs on pro-environmental behavior: The mediating role of personal norms. Psychol. Res. Behav. Manag. 2023, 16, 2059–2069. [Google Scholar] [CrossRef] [PubMed]
- Westerink, J.; Pleijte, M.; Schrijver, R.; van Dam, R.; de Krom, M.; de Boer, T. Can a ‘good farmer’ be nature-inclusive? Shifting cultural norms in farming in the Netherlands. J. Rural Stud. 2021, 88, 60–70. [Google Scholar] [CrossRef]
- Huo, X.; Zou, X.; Zhang, Y.; Ma, R. Driving factors of pro-environmental behavior among rural tourism destination residents-considering the moderating effect of environmental policies. Sci. Rep. 2025, 15, 7663. [Google Scholar] [CrossRef] [PubMed]
- Tran-Nam, Q.; Tiet, T. The role of peer influence and norms in organic farming adoption: Accounting for farmers’ heterogeneity. J. Environ. Manag. 2022, 320, 115909. [Google Scholar] [CrossRef]
- Barghusen, R.; Sattler, C.; Berner, R.; Matzdorf, B. More than spatial coordination–How Dutch agricultural collectives foster social capital for effective governance of agri-environmental measures. J. Rural Stud. 2022, 96, 246–258. [Google Scholar] [CrossRef]
- Pradhananga, A.K.; Davenport, M.A. Predicting farmer adoption of water conservation practices using a norm-based moral obligation model. Environ. Manag. 2019, 64, 483–496. [Google Scholar] [CrossRef] [PubMed]
- Hansla, A.; Gamble, A.; Juliusson, A.; Gärling, T. The relationships between awareness of consequences, environmental concern, and value orientations. J. Environ. Psychol. 2008, 28, 1–9. [Google Scholar] [CrossRef]
- Onwezen, M.C.; Antonides, G.; Bartels, J. The Norm Activation Model: An exploration of the functions of anticipated pride and guilt in pro-environmental behaviour. J. Econ. Psychol. 2013, 39, 141–153. [Google Scholar] [CrossRef]
LCAT System | Specific Practices |
---|---|
Reduced tillage system | No-till, Reduced tillage, Shallow tillage, Deep loosening, Crop rotation, Intercropping, and Relay planting |
4R fertilizing system | Right-source fertilization, Right-rate fertilization, Right-time fertilization, and Right-place fertilization |
Eco-friendly pesticide application system | Physical pest control, Use of biological pesticides |
Agricultural film system | Agricultural film recycling, Agricultural film covering |
Straw resource utilization system | Straw biogas treatment, Straw returning to the field |
Latent Variables | Observed Variables | Questionnaire Questions |
---|---|---|
Behavioral Attitude | BA1 | The benefits of adopting low-carbon agricultural technologies outweigh the potential risks. |
BA2 | Low-carbon agricultural technologies can increase both crop yields and household incomes. | |
BA3 | The cost of adopting low-carbon agricultural technologies is relatively low. | |
Subjective Norms | SN1 | Many farmers in my community have adopted low-carbon farming techniques. |
SN2 | Neighbors frequently discuss low-carbon agricultural technologies with each other. | |
SN3 | Village officials provide strong technical support for low-carbon agriculture. | |
SN4 | My family supports my adoption of low-carbon agricultural technologies. | |
Perceived Behavioral Control | PBC1 | I can quickly learn and apply low-carbon farming techniques. |
PBC2 | I have sufficient time to learn and master low-carbon agricultural technologies. | |
PBC3 | I have enough financial resources to support my learning and mastery of low-carbon agricultural technologies. | |
Personal Norms | PN1 | I feel a moral obligation to use low-carbon farming techniques. |
PN2 | Practicing low-carbon agriculture aligns with my core values. | |
PN3 | I would feel guilty if I chose not to adopt low-carbon farming techniques. | |
Responsibility Attribution | RA1 | I am responsible for the environmental pollution caused by my agricultural production. |
RA2 | I take responsibility for the damage caused to the soil during agricultural production. | |
RA3 | I am accountable for the water wastage in my agricultural production process. | |
Consequence Awareness | CA1 | The failure to adopt low-carbon agricultural technologies hampers sustainable agricultural development. |
CA2 | Not adopting low-carbon agricultural technologies conflicts with one’s ethical principles. | |
CA3 | The failure to practice low-carbon agricultural technologies is against the family’s wishes. | |
Adoption Level | AB | How many low-carbon agricultural technologies have been adopted? (0–16) |
Variable | Definition | Number | Percentage (%) | Variable | Definition | Number | Percentage (%) |
---|---|---|---|---|---|---|---|
Gender | Male | 251 | 69.7% | Family Number | ≤3 | 66 | 18.3% |
Female | 109 | 30.3% | 4–6 | 250 | 69.4% | ||
Age (Years) | 30–40 | 29 | 8.1% | ≥7 | 44 | 12.2% | |
41–50 | 50 | 13.9% | Farming Scale (hm2) | ≤0.67 | 244 | 67.8% | |
51–60 | 151 | 41.9% | 0.67–2 | 105 | 29.2% | ||
61–70 | 91 | 25.3% | ≥2 | 11 | 3.1% | ||
≥71 | 39 | 10.8% | Plot Number | 1–2 | 114 | 31.7% | |
Physical Condition | Good | 305 | 84.7% | 3–4 | 234 | 65.0% | |
Normal | 50 | 13.9% | ≥5 | 12 | 3.3% | ||
Poor | 5 | 1.4% | Annual Household Income (CNY 10,000) | 0–10 | 137 | 38.1% | |
Education Level (Years) | Primary School and Below | 168 | 45.8% | 10–20 | 177 | 49.2% | |
Middle School | 96 | 26.7% | 20–30 | 41 | 11.4% | ||
High School | 49 | 13.6% | ≥30 | 5 | 1.4% | ||
College or Above | 47 | 13.1% |
LCAT System | Number | Percentage (%) |
---|---|---|
Reduced tillage system | 161 | 44.72% |
4R fertilizing system | 95 | 26.39% |
Eco-friendly pesticide application system | 52 | 14.44% |
Agricultural film system | 33 | 9.17% |
Straw resource utilization system | 28 | 7.78% |
LCAT Adoption Status | Number | Percentage (%) | |
---|---|---|---|
Binary adoption | Unadopted LCAT | 133 | 36.94% |
Adopted LCAT | 227 | 63.06% | |
Number adopted LCATs | 1 LCAT Adopted | 137 | 38.06% |
2 LCAT Adopted | 16 | 4.44% | |
3 LCAT Adopted | 14 | 3.89% | |
4 LCAT Adopted | 20 | 5.56% | |
5 LCAT Adopted | 18 | 5.00% | |
6 LCAT Adopted | 22 | 6.11% |
Latent Variables | Observed Variables | Std. Estimate | Construct Reliability (CR) | Average Variance Extracted (AVE) |
---|---|---|---|---|
Behavioral Attitude | BA1 | 0.94 | 0.95 | 0.87 |
BA2 | 0.91 | |||
BA3 | 0.91 | |||
Subjective Norms | SN1 | 0.93 | 0.95 | 0.84 |
SN2 | 0.91 | |||
SN3 | 0.91 | |||
SN4 | 0.92 | |||
Perceived Behavioral Control | PBC1 | 0.95 | 0.96 | 0.88 |
PBC2 | 0.94 | |||
PBC3 | 0.92 | |||
Personal Norms | PN1 | 0.93 | 0.95 | 0.86 |
PN2 | 0.93 | |||
PN3 | 0.92 | |||
Responsibility Attribution | RA1 | 0.94 | 0.95 | 0.86 |
RA2 | 0.93 | |||
RA3 | 0.92 | |||
Consequence Awareness | CA1 | 0.91 | 0.94 | 0.84 |
CA2 | 0.90 | |||
CA3 | 0.94 |
Fitness Indicators | Acceptable Fit Values | Post Modification | Result |
---|---|---|---|
Absolute Fitness Indicator | |||
CMIN/DF | <3 Ideal, <5 Acceptable | 2.36 | Accept |
RMSEA | <0.05 Ideal, <0.08 Acceptable | 0.06 | Accept |
Value-Added Fitness Indicators | |||
NFI | >0.9 | 0.96 | Accept |
IFI | >0.9 | 0.97 | Accept |
CFI | >0.9 | 0.97 | Accept |
TLI | >0.9 | 0.97 | Accept |
Concise Fitness Indicators | |||
PNFI | >0.5 | 0.81 | Accept |
PCFI | >0.5 | 0.82 | Accept |
Type | Hypothesis | Path | Coefficient | S.E. | C.R. | Test Result |
---|---|---|---|---|---|---|
Direct effect | H1 | Behavioral Attitude → Adoption Level | 0.23 *** | 0.02 | 3.95 | Acceptable |
H2 | Subjective Norms → Adoption Level | 0.31 *** | 0.02 | 5.32 | Acceptable | |
H3 | Perceived Behavioral Control → Adoption Level | 0.21 *** | 0.02 | 3.60 | Acceptable | |
H4 | Personal Norms → Adoption Level | 0.26 *** | 0.02 | 5.05 | Acceptable | |
H5 | Subjective Norms → Personal Norms | 0.24 *** | 0.06 | 4.00 | Acceptable | |
H6 | Responsibility Attribution → Personal Norms | 0.16 *** | 0.06 | 2.65 | Acceptable | |
H7 | Consequence Awareness → Responsibility Attribution | 0.81 *** | 0.04 | 18.76 | Acceptable | |
H8 | Consequence Awareness → Personal Norms | 0.50 *** | 0.09 | 5.96 | Acceptable |
Type | Path | Coefficient | S.E. | C.R. | Mediation Type |
---|---|---|---|---|---|
Indirect effect | Subjective Norms → Personal Norms → Adoption Level | 0.06 ** | 0.02 | 2.52 | Partial mediation |
Consequence Awareness → Personal Norms → Adoption Level | 0.13 *** | 0.03 | 2.65 | Partial mediation | |
Responsibility Attribution → Personal Norms → Adoption Level | 0.04 ** | 0.02 | 2.03 | Partial mediation | |
Consequence Awareness → Responsibility Attribution → Personal Norms | 0.13 *** | 0.05 | 4.68 | Partial mediation | |
Consequence Awareness → Responsibility Attribution → Personal Norms → Adoption Level | 0.03 *** | 0.02 | 3.20 | Chain mediation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Wang, Y.; Liu, Y.; Tan, Z.; Ke, S.; Hu, N.; Qu, S.; Han, G. Chinese Farmers’ Low-Carbon Agricultural Technology Adoption Behavior and Its Influencing Factors. Agriculture 2025, 15, 1055. https://doi.org/10.3390/agriculture15101055
Zhu L, Wang Y, Liu Y, Tan Z, Ke S, Hu N, Qu S, Han G. Chinese Farmers’ Low-Carbon Agricultural Technology Adoption Behavior and Its Influencing Factors. Agriculture. 2025; 15(10):1055. https://doi.org/10.3390/agriculture15101055
Chicago/Turabian StyleZhu, Liqun, Yutao Wang, Yujia Liu, Zhuqun Tan, Siqi Ke, Naijuan Hu, Shuyang Qu, and Guang Han. 2025. "Chinese Farmers’ Low-Carbon Agricultural Technology Adoption Behavior and Its Influencing Factors" Agriculture 15, no. 10: 1055. https://doi.org/10.3390/agriculture15101055
APA StyleZhu, L., Wang, Y., Liu, Y., Tan, Z., Ke, S., Hu, N., Qu, S., & Han, G. (2025). Chinese Farmers’ Low-Carbon Agricultural Technology Adoption Behavior and Its Influencing Factors. Agriculture, 15(10), 1055. https://doi.org/10.3390/agriculture15101055