How to Better Use Canopy Height in Soybean Biomass Estimation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Experimental Design
2.2. Data Collection and Preprocessing
2.2.1. Field-Measured Data
2.2.2. Remote Sensing Data from Drones
Data Collection
Data Pre-Processing
2.2.3. Dataset Configuration
2.3. CH Estimation
2.3.1. Per-Pixel CH
2.3.2. Per-Plot CH
2.4. Soybean AGB Estimation
2.4.1. Baseline Model (No CH): AGB Estimation with VIs
Spectral Indices
Machine Learning Models
Hierarchical Regression Considering Growth Stages
2.4.2. Approach 1: CH as an Additional Predictor in Machine Learning Models
2.4.3. Approach 2: CH Fused with VIs to Generate CVMVI Variables
Per-Pixel Fusion
Per-Plot Fusion
2.4.4. Approach 3: Hierarchical Regression Considering Growth Stages
2.5. Accuracy Assessment
3. Results
3.1. CH Estimation Results
3.2. Comparison of AGB Estimation Models
3.2.1. Baseline Model (No CH): Estimating Soybean AGB Using VIs
3.2.2. Approach 1: CH as an Additional Predictor in Machine Learning Models
3.2.3. Approach 2: CH Fused with VIs to Generate CVMVI Variables
3.2.4. Approach 3: Hierarchical Regression Considering Growth Stages
4. Discussion
4.1. CH Estimation Accuracy Relative to Different Data Types
4.2. CH Contribution to AGB Estimation
4.3. CH–VI Fusion: Comparison of CVMVI and mCVMVI
4.4. Hierarchical Regression with GDD
4.5. Future Work
5. Conclusions
- LiDAR and RGB are equally effective in CH estimation, while MS data suffer underestimations due to the loss of ground-elevation information.
- The inclusion of CH as input data improved the soybean AGB estimation accuracy. Regardless of how the CH variable was used, the new models always outperform machine learning models with no CH input. However, for MS data, the accuracy increased less, possibly due to the poor CH-estimation results.
- CH–VI composite variables (Approach 2) more accurately represent the three-dimensional structural characteristics of crops than does simple combination (Approach 1), demonstrating superior AGB estimation performance. The composite variables like mCVMVI showed significant advantages in the context of data sources with high CH-estimation accuracy.
- The inclusion of GDD information allowed for a more accurate representation of crop dynamics across different growth stages. With accurate CH input, the integration of CH, VI, and GDD yields the most accurate AGB estimation. However, if the CH estimation is inaccurate, to only integrate VI and GDD could be a more robust choice. The hierarchical regression approach, by incorporating GDD as a dynamic modifier of the regression parameters, proves effective in improving AGB estimation accuracy.
- To enhance the robustness and generalizability of AGB estimation models, future studies should focus on improving the CH prediction accuracy of MS data, optimizing composite variable computation methods, and exploring their applicability across different crop types and environmental conditions.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Date | CH (m) | AGB (g/m2) | ||||||
---|---|---|---|---|---|---|---|---|
Mean | Median | Min | Max | Mean | Median | Min | Max | |
23 July 2022 | 0.30 | 0.30 | 0.17 | 0.41 | 34.46 | 33.93 | 12.56 | 73.32 |
28 July 2022 | 0.31 | 0.30 | 0.17 | 0.48 | 52.70 | 50.91 | 15.34 | 101.87 |
6 August 2022 | 0.44 | 0.44 | 0.29 | 0.66 | 118.75 | 113.26 | 45.39 | 295.79 |
12 August 2022 | 0.53 | 0.55 | 0.31 | 0.77 | 195.06 | 200.47 | 49.45 | 363.83 |
26 August 2022 | 0.61 | 0.62 | 0.34 | 0.92 | 404.14 | 381.23 | 116.18 | 900.4 |
15 July 2023 1 | 0.27 | 0.28 | 0.18 | 0.37 | 38.01 | 37.34 | 19.74 | 60.98 |
23 July 2023 | 0.42 | 0.42 | 0.26 | 0.54 | 113.21 | 128.03 | 57.50 | 213.44 |
2 August 2023 | 0.61 | 0.64 | 0.23 | 0.77 | 276.97 | 273.98 | 111.53 | 475.54 |
9 August 2023 | 0.77 | 0.81 | 0.32 | 1.00 | 422.41 | 422.41 | 195.44 | 881.26 |
25 August 2023 | 0.90 | 0.92 | 0.44 | 1.37 | 633.90 | 632.88 | 239.90 | 1026.48 |
LiDAR Point Cloud in 2022 and 2023 | RGB Images in 2022 | RGB Images in 2023 | MS Images in 2022 and 2023 | |
---|---|---|---|---|
Sensor | DJI Zenmuse L1 | DJI Zenmuse L1 | Sony Alpha II | Micasense RedEdge-MX |
UAV | DJI M300 RTK | DJI M300 RTK | DJI M600 Pro | DJI M300 RTK |
Resolution (pixels) | N/A 1 | 5472 × 3648 | 7952 × 5304 | 1280 × 960 |
Focal length | N/A 1 | 8.8 mm (24 mm equivalent) | 35 mm | 5.4 mm |
Wavelength | 905 nm | N/A | N/A | Blue: 475 nm Green: 560 nm Red: 668 nm Red edge: 717 nm Near infrared: 840 nm |
Field of view 2 | 70.4° (H) × 4.5° (V) | 73.7°(H) × 53.1° (V) | 54.4° (H) × 63.4° (V) | 47.2° (H) × 35.4° (V) |
Ranging accuracy | 3 cm | N/A | N/A | N/A |
Flight altitude | 30 m (2022) 20 m (2023) | 30 m | 20 m | 30 m (2022) 20 m (2023) |
Flying speed | 1.7 m/s (2022) 2.0 m/s (2023) | 1.7 m/s | 1.9 m/s | 1.7 m/s (2022) 2.0 m/s (2023) |
Capture mode | Repetitive scanning; Dual return; 240 kHz sampling rate | Equal time interval; Every 1.3 s; Shutter priority; Shutter speed 1/1000 s | Equal time interval; Every 1.2 s | Equal time interval; Every 1.0 s |
Front overlap ratio | 80% (2022) 75% (2023) | 80% | 75% | 80% (2022) 75% (2023) |
Side overlap ratio | 85% (2022) 75% (2023) | 85% | 75% | 85% (2022) 75% (2023) |
Gimble pitch angle | −90° | −90° | −90° | −90° |
Spectral Index | Calculation Formula | Reference |
---|---|---|
Blue Band Normalization (BN) | BN = B/(R + G + B) | [53] |
Color Index for Vegetation Extraction (CIVE) | CIVE = 0.441 × R − 0.811 × G + 0.385 × B + 18.78745 | [54] |
Excessive Blue Index (EXB) | EXB = 1.4 × BN − GN | [55] |
Excessive Green Index (EXG) | EXG = 2 × GN − RN − BN | [55] |
Excessive Red Index (EXR) | EXR = 1.4 × RN − GN | [55] |
Green Band Normalization (GN) | GN = G/(R + G + B) | [53] |
Green Leaf Index (GLI) | GLI = (2 × G − R − B)/(2 × G + R + B) | [56] |
Green–Red Vegetation Index (GRVI) | GRVI = (G − R)/(G + R) | [57] |
Image Intensity (INTs) | INTS = (R + G + B)/3 | [58] |
Index-based Perpendicular Contrast Angle (IPCA) | IPCA = 0.994 × |R − B| + 0.961 × |G − B| + 0.914 × |G − R| | [59] |
Index-based Water Index (IKAW) | IKAW = (R − B)/(R + B) | [53] |
Modified Green Leaf Index (GLI2) | GLI2 = (2 × G − R + B)/(2 × G + R + B) | [59] |
Modified Green–Red Vegetation Index (MGRVI) | MGRVI = (G2 − R2)/(G2 + R2) | [43] |
Normalized Green–Blue Difference Index (NGBDI) | NGBDI = (G − B)/(G + B) | [60] |
Red–Green–Blue Vegetation Index (RGBVI) | RGBVI = (G2 − R × B)/(G2 + R × B) | [61] |
Red Band Normalization (RN) | RN = R/(R + G + B) | [53] |
Spectral Index | Calculation Formula | Reference |
---|---|---|
Agriculture Ratio Index 1 (ARI_1) | ARI_1 = 1/R − 1/RE | [62] |
Agriculture Ratio Index 2 (ARI_2) | ARI_2 = NIR × ARI_1 | [63] |
Atmospherically Resistant Vegetation Index (ARVI) | ARVI = (NIR − 2 × R − B)/(NIR + 2 × R − B) | [64] |
Chlorophyll Index Green (CI_G) | CI_G = NIR/G − 1 | [65] |
Chlorophyll Index Red Edge (CI_RE) | CI_RE = NIR/RE − 1 | [66] |
Enhanced Vegetation Index (EVI) | EVI1 = 2.5 × (NIR − R)/(NIR + 6 × R − 7.5 × B + 1) | [13] |
Enhanced Vegetation Index 2 (EVI2) | EVI2 = 2.5 × (NIR − R)/(NIR + 2.4 × R + 1.0) | [67] |
Green Normalized Difference Vegetation Index (GNDVI) | GNVDI = (NIR − G)/(NIR + G) | [61] |
Modified Triangular Vegetation Index 2 (MTVI_2) | [68] | |
Modified NDVI Red Edge (mNDVI_RE) | mNDVI_RE = (NIR − RE)/(NIR + RE − 2 × B) | [69] |
Modified Simple Ratio Red Edge (mSR_RE) | mSR_RE = (N − B)/(RE − B) | [69] |
Normalized Difference Vegetation Index (NDVI) | NVDI = (NIR − R)/(NIR + R) | [70] |
NDVI with Red Edge (NDVI_RE) | NVDI_RE = (NIR − RE)/(NIR + RE) | [71] |
Plant Senescence Reflectance Index (PSRI) | PSRI = (R − G)/RE | [72] |
Red–Green Ratio Index (RGRI) | RGRI = R/G | [73] |
Optimized Soil-Adjusted Vegetation Index 2 (OSAVI2) | OSAVI2 = (NIR − R)/(NIR + R + 0.16) | [74] |
Structure-Insensitive Pigment Index (SIPI) | SIPI = (NIR − B)/(NIR − R) | [75] |
Simple Ratio (SR) | SR = NIR/R | [76] |
Simple Ratio Red Edge (SR_RE) | SR_RE = NIR/RE | [69] |
Visible Atmospherically Resistant Index (VARI) | VARI = (G − R)/(G + R − B) | [77] |
Index | VI | CVMVI | mCVMVI | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE (g/m2) | MAE (g/m2) | MRE (%) | R2 | RMSE (g/m2) | MAE (g/m2) | MRE (%) | R2 | RMSE (g/m2) | MAE (g/m2) | MRE (%) | |
BN | 0.77 | 102.22 | 65.90 | 35.16 | 0.78 | 99.11 | 62.61 | 30.26 | 0.83 | 88.32 | 57.40 | 28.57 |
CIVE | 0.77 | 101.20 | 64.32 | 31.95 | 0.78 | 98.92 | 62.49 | 29.62 | 0.83 | 87.96 | 57.34 | 28.55 |
EXB | 0.75 | 105.52 | 67.66 | 33.68 | 0.75 | 106.34 | 69.65 | 33.40 | 0.78 | 99.81 | 64.17 | 33.16 |
EXG | 0.78 | 99.39 | 64.47 | 32.15 | 0.78 | 99.85 | 64.26 | 31.54 | 0.80 | 94.98 | 62.72 | 31.81 |
EXR | 0.79 | 96.11 | 62.55 | 31.64 | 0.78 | 98.70 | 64.56 | 30.95 | 0.81 | 92.75 | 60.10 | 31.24 |
GLI | 0.78 | 98.70 | 63.88 | 31.83 | 0.78 | 99.55 | 63.93 | 31.32 | 0.80 | 93.93 | 62.05 | 31.45 |
GLI2 | 0.80 | 94.43 | 61.43 | 31.29 | 0.78 | 98.43 | 61.92 | 29.58 | 0.83 | 87.52 | 57.29 | 28.59 |
GN | 0.78 | 99.37 | 64.46 | 32.15 | 0.78 | 98.93 | 62.20 | 29.72 | 0.83 | 87.76 | 57.39 | 28.64 |
GRVI | 0.80 | 95.65 | 62.17 | 31.39 | 0.77 | 100.58 | 65.62 | 32.83 | 0.79 | 96.27 | 63.48 | 32.51 |
IKAW | 0.79 | 97.96 | 64.78 | 34.41 | 0.78 | 99.84 | 63.51 | 31.14 | 0.78 | 98.38 | 62.56 | 31.85 |
INTS | 0.80 | 95.07 | 62.47 | 34.28 | 0.76 | 102.67 | 66.15 | 33.16 | 0.80 | 95.42 | 63.15 | 35.24 |
IPCA | 0.75 | 105.33 | 69.89 | 37.09 | 0.77 | 100.36 | 63.54 | 30.53 | 0.80 | 94.46 | 62.51 | 31.07 |
MGRVI | 0.80 | 94.72 | 61.36 | 30.97 | 0.78 | 99.86 | 65.00 | 32.48 | 0.80 | 94.54 | 62.45 | 31.99 |
NGBDI | 0.75 | 105.24 | 67.27 | 33.43 | 0.78 | 100.09 | 63.43 | 30.63 | 0.81 | 92.97 | 61.15 | 30.67 |
RGBVI | 0.78 | 98.18 | 63.37 | 31.53 | 0.78 | 99.32 | 63.62 | 31.08 | 0.81 | 92.84 | 61.36 | 31.08 |
RN | 0.80 | 94.63 | 61.85 | 31.72 | 0.77 | 101.60 | 64.76 | 31.82 | 0.82 | 90.47 | 59.05 | 29.55 |
CHmean | 0.83 | 87.94 | 57.32 | 28.54 | N/A 1 | N/A 1 | N/A 1 | N/A 1 | N/A 1 | N/A 1 | N/A 1 | N/A 1 |
Index | VI | CVMVI | mCVMVI | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE (g/m2) | MAE (g/m2) | MRE (%) | R2 | RMSE (g/m2) | MAE (g/m2) | MRE (%) | R2 | RMSE (g/m2) | MAE (g/m2) | MRE (%) | |
BN | 0.78 | 100.28 | 65.38 | 33.75 | 0.77 | 101.53 | 64.89 | 32.36 | 0.80 | 95.13 | 61.41 | 30.26 |
CIVE | 0.78 | 98.47 | 61.88 | 30.58 | 0.77 | 100.91 | 64.71 | 32.59 | 0.81 | 92.97 | 60.01 | 30.99 |
EXB | 0.78 | 98.47 | 63.03 | 31.02 | 0.79 | 97.34 | 63.96 | 33.11 | 0.79 | 96.54 | 61.60 | 29.47 |
EXG | 0.78 | 98.47 | 61.89 | 30.30 | 0.78 | 98.71 | 63.93 | 32.11 | 0.81 | 93.28 | 59.10 | 32.37 |
EXR | 0.78 | 98.69 | 61.46 | 30.50 | 0.78 | 99.40 | 63.46 | 32.05 | 0.77 | 101.55 | 63.45 | 29.36 |
GLI | 0.78 | 98.23 | 61.64 | 30.20 | 0.78 | 98.77 | 63.88 | 32.03 | 0.81 | 92.99 | 58.88 | 29.81 |
GLI2 | 0.78 | 98.78 | 61.34 | 30.79 | 0.77 | 100.55 | 64.45 | 32.28 | 0.81 | 92.31 | 59.15 | 29.84 |
GN | 0.78 | 98.47 | 61.89 | 30.30 | 0.78 | 100.28 | 64.43 | 32.47 | 0.81 | 91.86 | 58.93 | 32.58 |
GRVI | 0.78 | 98.47 | 61.22 | 30.39 | 0.78 | 99.50 | 63.86 | 31.56 | 0.80 | 94.98 | 59.47 | 29.07 |
IKAW | 0.76 | 104.63 | 67.54 | 34.77 | 0.77 | 102.31 | 65.23 | 33.29 | 0.77 | 100.89 | 65.02 | 29.77 |
INTS | 0.78 | 98.51 | 61.89 | 30.81 | 0.77 | 102.42 | 65.42 | 33.04 | 0.78 | 98.52 | 63.53 | 29.23 |
IPCA | 0.78 | 99.49 | 64.67 | 33.23 | 0.77 | 100.66 | 64.52 | 32.13 | 0.80 | 93.87 | 60.20 | 29.42 |
MGRVI | 0.78 | 98.18 | 60.92 | 30.35 | 0.78 | 99.45 | 63.74 | 31.47 | 0.80 | 94.62 | 59.23 | 30.78 |
NGBDI | 0.78 | 98.48 | 63.11 | 31.19 | 0.78 | 98.69 | 64.34 | 32.80 | 0.81 | 92.94 | 59.72 | 29.55 |
RGBVI | 0.79 | 97.88 | 61.39 | 30.13 | 0.78 | 98.80 | 63.84 | 31.96 | 0.81 | 92.49 | 58.63 | 31.78 |
RN | 0.78 | 100.28 | 65.38 | 31.21 | 0.77 | 101.41 | 65.08 | 32.99 | 0.80 | 95.00 | 61.74 | 30.74 |
CHmean | 0.81 | 92.94 | 59.98 | 30.24 | N/A 1 | N/A 1 | N/A 1 | N/A 1 | N/A 1 | N/A 1 | N/A 1 | N/A 1 |
Index | VI | CVMVI | mCVMVI | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE (g/m2) | MAE (g/m2) | MRE (%) | R2 | RMSE (g/m2) | MAE (g/m2) | MRE (%) | R2 | RMSE (g/m2) | MAE (g/m2) | MRE (%) | |
ARI_1 | 0.80 | 93.73 | 60.15 | 30.24 | 0.73 | 110.14 | 69.59 | 33.21 | 0.78 | 98.19 | 63.33 | 31.49 |
ARI_2 | 0.80 | 95.15 | 60.59 | 31.35 | 0.76 | 104.03 | 65.98 | 31.92 | 0.79 | 98.03 | 63.28 | 32.09 |
ARVI | 0.80 | 94.68 | 60.80 | 33.18 | 0.74 | 107.99 | 68.37 | 32.63 | 0.77 | 100.32 | 64.09 | 31.89 |
CI_G | 0.81 | 92.94 | 59.34 | 30.08 | 0.76 | 104.51 | 66.95 | 32.45 | 0.79 | 97.99 | 63.04 | 31.41 |
CI_RE | 0.73 | 109.31 | 77.87 | 53.95 | 0.75 | 105.22 | 66.65 | 33.54 | 0.76 | 102.53 | 65.91 | 34.53 |
EVI | 0.76 | 104.11 | 70.78 | 45.01 | 0.75 | 105.63 | 67.06 | 32.62 | 0.77 | 101.72 | 65.20 | 33.86 |
EVI2 | 0.77 | 101.23 | 66.55 | 38.85 | 0.75 | 105.84 | 67.19 | 32.58 | 0.77 | 100.91 | 64.34 | 32.80 |
GNDVI | 0.81 | 93.09 | 59.84 | 31.47 | 0.74 | 108.10 | 68.52 | 33.38 | 0.77 | 101.16 | 64.18 | 31.92 |
mNDVI_RE | 0.79 | 97.05 | 66.47 | 43.18 | 0.74 | 107.13 | 68.02 | 33.21 | 0.77 | 101.30 | 65.03 | 33.15 |
mSR_RE | 0.79 | 96.95 | 65.05 | 39.08 | 0.75 | 106.10 | 67.72 | 33.59 | 0.77 | 100.60 | 64.79 | 32.77 |
MTVI_2 | 0.75 | 106.60 | 73.69 | 47.99 | 0.75 | 104.94 | 66.27 | 32.77 | 0.76 | 102.81 | 66.16 | 34.61 |
NDVI | 0.80 | 94.87 | 61.29 | 34.54 | 0.74 | 108.29 | 68.54 | 33.12 | 0.77 | 101.25 | 64.35 | 32.23 |
NDVI_RE | 0.80 | 95.00 | 63.50 | 38.04 | 0.74 | 107.06 | 67.99 | 32.89 | 0.77 | 100.85 | 64.74 | 32.70 |
OSAVI | 0.78 | 98.97 | 64.83 | 37.66 | 0.74 | 107.41 | 68.10 | 32.95 | 0.77 | 101.05 | 64.30 | 32.44 |
PSRI | 0.77 | 102.07 | 66.75 | 39.64 | 0.74 | 107.88 | 68.30 | 33.04 | 0.77 | 101.51 | 65.50 | 35.26 |
RGRI | 0.79 | 97.80 | 63.50 | 37.13 | 0.75 | 106.37 | 67.60 | 35.69 | 0.77 | 102.16 | 65.10 | 33.50 |
SIPI | 0.78 | 98.17 | 67.22 | 46.67 | 0.74 | 108.42 | 68.91 | 35.45 | 0.77 | 102.02 | 64.35 | 32.37 |
SR | 0.80 | 94.82 | 60.43 | 31.45 | 0.76 | 104.50 | 66.46 | 32.10 | 0.79 | 98.03 | 63.18 | 32.04 |
SR_RE | 0.80 | 95.27 | 62.90 | 35.68 | 0.75 | 106.33 | 67.87 | 33.56 | 0.78 | 100.19 | 64.39 | 32.43 |
VARI | 0.79 | 97.31 | 62.78 | 35.55 | 0.74 | 107.49 | 68.17 | 32.73 | 0.78 | 99.89 | 64.55 | 34.00 |
CHmean | 0.77 | 101.93 | 64.43 | 32.21 | N/A 1 | N/A 1 | N/A 1 | N/A 1 | N/A 1 | N/A 1 | N/A 1 | N/A 1 |
References
- Hartman, G.L.; West, E.D.; Herman, T.K. Crops that feed the World 2. Soybean—Worldwide production, use, and constraints caused by pathogens and pests. Food Secur. 2011, 3, 5–17. [Google Scholar] [CrossRef]
- Masuda, T.; Goldsmith, P.D. World soybean production: Area harvested, yield, and long-term projections. Int. Food Agribus. Manag. Rev. 2009, 12, 1–20. [Google Scholar] [CrossRef]
- Yao, X.; Zhu, Y.; Tian, Y.; Feng, W.; Cao, W. Exploring hyperspectral bands and estimation indices for leaf nitrogen accumulation in wheat. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 89–100. [Google Scholar] [CrossRef]
- Alabi, T.R.; Abebe, A.T.; Chigeza, G.; Fowobaje, K.R. Estimation of soybean grain yield from multispectral high-resolution UAV data with machine learning models in West Africa. Remote Sens. Appl. Soc. Environ. 2022, 27, 100782. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Sagan, V.; Sidike, P.; Hartling, S.; Esposito, F.; Fritschi, F.B. Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sens. Environ. 2020, 237, 111599. [Google Scholar] [CrossRef]
- Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- Fritz, A.; Kattenborn, T.; Koch, B. UAV-based photogrammetric point clouds–tree stem mapping in open stands in comparison to terrestrial laser scanner point clouds. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 40, 141–146. [Google Scholar] [CrossRef]
- Jin, X.; Zarco-Tejada, P.J.; Schmidhalter, U.; Reynolds, M.P.; Hawkesford, M.J.; Varshney, R.K.; Yang, T.; Nie, C.; Li, Z.; Ming, B. High-throughput estimation of crop traits: A review of ground and aerial phenotyping platforms. IEEE Geosci. Remote Sens. Mag. 2020, 9, 200–231. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Jin, X.; Yang, G.; Xu, X.; Yang, H.; Feng, H.; Li, Z.; Shen, J.; Zhao, C.; Lan, Y. Combined multi-temporal optical and radar parameters for estimating LAI and biomass in winter wheat using HJ and RADARSAR-2 data. Remote Sens. 2015, 7, 13251–13272. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Huete, A.; Liu, H.; Batchily, K.; Van Leeuwen, W. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Feng, H.; Fan, Y.; Yue, J.; Bian, M.; Liu, Y.; Chen, R.; Ma, Y.; Fan, J.; Yang, G.; Zhao, C. Estimation of potato above-ground biomass based on the VGC-AGB model and deep learning. Comput. Electron. Agric. 2025, 232, 110122. [Google Scholar] [CrossRef]
- Wang, C.; Feng, M.-C.; Yang, W.-D.; Ding, G.-W.; Sun, H.; Liang, Z.-Y.; Xie, Y.-K.; Qiao, X.-X. Impact of spectral saturation on leaf area index and aboveground biomass estimation of winter wheat. Spectrosc. Lett. 2016, 49, 241–248. [Google Scholar] [CrossRef]
- Gitelson, A.A. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. J. Plant Physiol. 2004, 161, 165–173. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Li, C.; Li, Z.; Wang, Y.; Feng, H.; Xu, B. Estimation of winter wheat above-ground biomass using unmanned aerial vehicle-based snapshot hyperspectral sensor and crop height improved models. Remote Sens. 2017, 9, 708. [Google Scholar] [CrossRef]
- Mutanga, O.; Masenyama, A.; Sibanda, M. Spectral saturation in the remote sensing of high-density vegetation traits: A systematic review of progress, challenges, and prospects. ISPRS J. Photogramm. Remote Sens. 2023, 198, 297–309. [Google Scholar] [CrossRef]
- Li, W.; Niu, Z.; Chen, H.; Li, D.; Wu, M.; Zhao, W. Remote estimation of canopy height and aboveground biomass of maize using high-resolution stereo images from a low-cost unmanned aerial vehicle system. Ecol. Indic. 2016, 67, 637–648. [Google Scholar] [CrossRef]
- Lu, D. The potential and challenge of remote sensing-based biomass estimation. Int. J. Remote Sens. 2006, 27, 1297–1328. [Google Scholar] [CrossRef]
- Song, Q.; Albrecht, C.M.; Xiong, Z.; Zhu, X.X. Biomass estimation and uncertainty quantification from tree height. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 4833–4845. [Google Scholar] [CrossRef]
- Hao, Q.; Huang, C. A review of forest aboveground biomass estimation based on remote sensing data. Chin. J. Plant Ecol. 2023, 47, 1356. [Google Scholar] [CrossRef]
- Panday, U.S.; Shrestha, N.; Maharjan, S.; Pratihast, A.K.; Shahnawaz; Shrestha, K.L.; Aryal, J. Correlating the plant height of wheat with above-ground biomass and crop yield using drone imagery and crop surface model, a case study from Nepal. Drones 2020, 4, 28. [Google Scholar] [CrossRef]
- Shu, M.; Li, Q.; Ghafoor, A.; Zhu, J.; Li, B.; Ma, Y. Using the plant height and canopy coverage to estimation maize aboveground biomass with UAV digital images. Eur. J. Agron. 2023, 151, 126957. [Google Scholar] [CrossRef]
- Acorsi, M.G.; das Dores Abati Miranda, F.; Martello, M.; Smaniotto, D.A.; Sartor, L.R. Estimating biomass of black oat using UAV-based RGB imaging. Agronomy 2019, 9, 344. [Google Scholar] [CrossRef]
- Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sens. 2014, 6, 10395–10412. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, H.; Yue, J.; Fan, Y.; Bian, M.; Ma, Y.; Jin, X.; Song, X.; Yang, G. Estimating potato above-ground biomass by using integrated unmanned aerial system-based optical, structural, and textural canopy measurements. Comput. Electron. Agric. 2023, 213, 108229. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Sagan, V.; Sidike, P.; Maimaitiyiming, M.; Hartling, S.; Peterson, K.T.; Maw, M.J.; Shakoor, N.; Mockler, T.; Fritschi, F.B. Vegetation index weighted canopy volume model (CVMVI) for soybean biomass estimation from unmanned aerial system-based RGB imagery. ISPRS J. Photogramm. Remote Sens. 2019, 151, 27–41. [Google Scholar] [CrossRef]
- Tilly, N.; Aasen, H.; Bareth, G. Fusion of plant height and vegetation indices for the estimation of barley biomass. Remote Sens. 2015, 7, 11449–11480. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, Y.; Taylor, J.; Gaulton, R.; Jin, X.; Song, X.; Li, Z.; Meng, Y.; Chen, P.; Feng, H. Comparison and transferability of thermal, temporal and phenological-based in-season predictions of above-ground biomass in wheat crops from proximal crop reflectance data. Remote Sens. Environ. 2022, 273, 112967. [Google Scholar] [CrossRef]
- Dai, Y.; Yu, S.e.; Ma, T.; Ding, J.; Chen, K.; Zeng, G.; Xie, A.; He, P.; Peng, S.; Zhang, M. Improving the estimation of rice above-ground biomass based on spatio-temporal UAV imagery and phenological stages. Front. Plant Sci. 2024, 15, 1328834. [Google Scholar] [CrossRef]
- Bai, Y.; Nie, C.; Yu, X.; Gou, M.; Liu, S.; Zhu, Y.; Jiang, T.; Jia, X.; Liu, Y.; Nan, F. Comprehensive analysis of hyperspectral features for monitoring canopy maize leaf spot disease. Comput. Electron. Agric. 2024, 225, 109350. [Google Scholar] [CrossRef]
- Cheng, M.; Jiao, X.; Liu, Y.; Shao, M.; Yu, X.; Bai, Y.; Wang, Z.; Wang, S.; Tuohuti, N.; Liu, S. Estimation of soil moisture content under high maize canopy coverage from UAV multimodal data and machine learning. Agric. Water Manag. 2022, 264, 107530. [Google Scholar] [CrossRef]
- Meier, U.; Bleiholder, H.; Buhr, L.; Feller, C.; Hack, H.; Heß, M.; Lancashire, P.D.; Schnock, U.; Stauß, R.; Van Den Boom, T. The BBCH system to coding the phenological growth stages of plants–history and publications. J. Kult. 2009, 61, 41–52. [Google Scholar] [CrossRef]
- Gao, M.; Yang, F.; Wei, H.; Liu, X. Individual maize location and height estimation in field from UAV-Borne LiDAR and RGB images. Remote Sens. 2022, 14, 2292. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S.; d’Oleire-Oltmanns, S.; Niethammer, U. Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment. Geomorphology 2017, 280, 51–66. [Google Scholar] [CrossRef]
- Yin, D.; Wang, L.; Lu, Y.; Shi, C. Mangrove tree height growth monitoring from multi-temporal UAV-LiDAR. Remote Sens. Environ. 2024, 303, 114002. [Google Scholar] [CrossRef]
- Meng, L.; Yin, D.; Cheng, M.; Liu, S.; Bai, Y.; Liu, Y.; Liu, Y.; Jia, X.; Nan, F.; Song, Y. Improved Crop Biomass Algorithm with Piecewise Function (iCBA-PF) for Maize Using Multi-Source UAV Data. Drones 2023, 7, 254. [Google Scholar] [CrossRef]
- Chen, M.; Yin, C.; Lin, T.; Liu, H.; Wang, Z.; Jiang, P.; Ali, S.; Tang, Q.; Jin, X. Integration of unmanned aerial vehicle spectral and textural features for accurate above-ground biomass estimation in cotton. Agronomy 2024, 14, 1313. [Google Scholar] [CrossRef]
- Wold, S.; Ruhe, A.; Wold, H.; Dunn, W.J., III. The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM J. Sci. Stat. Comput. 1984, 5, 735–743. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Wen, H.; Wu, T.; Jia, H.; Song, W.; Xu, C.; Han, T.; Sun, S.; Wu, C. Analysis of Relationship between Soybean Relative Maturity Group, Crop Heat Units and ≥10 °C Active Accumulated Temperature. Agronomy 2022, 12, 1444. [Google Scholar] [CrossRef]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Ezekiel, M. Methods of Correlation Analysis; John Wiley & Sons, Inc.: New York, NY, USA, 1930. [Google Scholar]
- Livingston, E.H. The mean and standard deviation: What does it all mean? J. Surg. Res. 2004, 119, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Koenker, R.; Bassett, G., Jr. Regression quantiles. Econom. J. Econom. Soc. 1978, 46, 33–50. [Google Scholar] [CrossRef]
- Armstrong, J.S. Long-Range Forecasting: From Crystal Ball to Computer; Wiley-Interscience: New York, NY, USA, 1978. [Google Scholar]
- Tukey, J.W. Comparing individual means in the analysis of variance. Biometrics 1949, 5, 99–114. [Google Scholar] [CrossRef]
- Zheng, G.; Moskal, L.M. Retrieving leaf area index (LAI) using remote sensing: Theories, methods and sensors. Sensors 2009, 9, 2719–2745. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Kawashima, S.; Nakatani, M. An algorithm for estimating chlorophyll content in leaves using a video camera. Ann. Bot. 1998, 81, 49–54. [Google Scholar] [CrossRef]
- Guijarro, M.; Pajares, G.; Riomoros, I.; Herrera, P.; Burgos-Artizzu, X.; Ribeiro, A. Automatic segmentation of relevant textures in agricultural images. Comput. Electron. Agric. 2011, 75, 75–83. [Google Scholar] [CrossRef]
- Mao, W.; Wang, Y.; Wang, Y. Real-time detection of between-row weeds using machine vision. In Proceedings of the 2003 ASAE Annual Meeting, Las Vegas, NV, USA, 27–30 July 2003; p. 1. [Google Scholar]
- Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto Int. 2001, 16, 65–70. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Tucker, C.J. Remote sensing of leaf water content in the near infrared. Remote Sens. Environ. 1980, 10, 23–32. [Google Scholar] [CrossRef]
- Chen, J.M. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Can. J. Remote Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Verrelst, J.; Schaepman, M.E.; Koetz, B.; Kneubühler, M. Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data. Remote Sens. Environ. 2008, 112, 2341–2353. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N.; Chivkunova, O.B. Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochem. Photobiol. 2001, 74, 38–45. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Chivkunova, O.B.; Merzlyak, M.N. Nondestructive estimation of anthocyanins and chlorophylls in anthocyanic leaves. Am. J. Bot. 2009, 96, 1861–1868. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 2005, 32, L08403. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Delegido, J.; Verrelst, J.; Meza, C.; Rivera, J.; Alonso, L.; Moreno, J. A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems. Eur. J. Agron. 2013, 46, 42–52. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the 3rd Earth Resources Technology Satellite (ERTS-1) Symposium, Greenbelt, MD, USA, 10–14 December 1973; NASA Special Publication: Washington, DC, USA, 1974; Volume 351, p. 309. [Google Scholar]
- Gitelson, A.; Merzlyak, M.N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef]
- Saberioon, M.; Amin, M.; Anuar, A.; Gholizadeh, A.; Wayayok, A.; Khairunniza-Bejo, S. Assessment of rice leaf chlorophyll content using visible bands at different growth stages at both the leaf and canopy scale. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 35–45. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Penuelas, J.; Baret, F.; Filella, I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 1995, 31, 221–230. [Google Scholar]
- Jordan, C.F. Derivation of leaf-area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
Growth Stage | BBCH Code | Description | Data Collection Time | |
---|---|---|---|---|
2022 | 2023 | |||
V4 (Fourth trifoliolate) | 14 | Four trifoliolate leaves unrolled. | 23 July | 15 July |
V5 (Fifth trifoliolate) | 15 | Five trifoliolate leaves unrolled. | ||
V7 (Seventh trifoliolate) | 17 | Seven trifoliolate leaves unrolled. | 28 July | 23 July |
V8 (Eighth trifoliolate) | 18 | Eight trifoliolate leaves unrolled. | ||
R1 (Beginning flowering) | 61 | One flower open at any node of the main stem. | 6 August | 2 August |
R2 (Full bloom) | 65 | The soybean plant has one open flower on one of the two uppermost nodes on a main stem with a fully developed leaf. | ||
R3 (Beginning pod) | 71 | Pods are 3/16 of an inch long on one of the four uppermost nodes on a main stem with a fully developed leaf. | 12 August | 9 August |
R4 (Full pod) | 75 | Pods are 3/4 inch long on one of the four uppermost nodes on a main stem with a fully developed leaf. | 26 August | 25 August |
Date of Data Acquisition | Growth Stage | Average Point Density (m−2) | Image SR (m) | Sample Size | ||||
---|---|---|---|---|---|---|---|---|
LiDAR | RGB | MS | LiDAR | RGB | MS | |||
23 July 2022 | V4–V5 | 6666.89 | 5234.18 | 110.39 | 0.017 | 0.0084 | 0.022 | 47 1 |
28 July 2022 | V7–V8 | 7422.26 | 4339.59 | 121.62 | 0.017 | 0.0081 | 0.021 | 60 |
6 August 2022 | R1–R2 | 7422.26 | 4299.42 | 120.99 | 0.017 | 0.0085 | 0.021 | 60 |
12 August 2022 | R3 | 6397.21 | 4500.03 | 122.11 | 0.017 | 0.0081 | 0.021 | 60 |
26 August 2022 | R4 | 6911.97 | 4850.56 | 135.82 | 0.017 | 0.0080 | 0.021 | 60 |
15 July 2023 | V4–V5 | N/A 2 | 4264.92 | 115.02 | N/A 2 | 0.0019 | 0.021 | excluded 3 |
23 July 2023 | V7–V8 | 11,401.09 | 88,847.65 | 266.11 | 0.017 | 0.0018 | 0.014 | 60 |
2 August 2023 | R1–R2 | 12,539.76 | 112,750.88 | 235.17 | 0.017 | 0.0018 | 0.014 | 60 |
9 August 2023 | R3 | 12,521.02 | 123,275.62 | 210.05 | 0.017 | 0.0018 | 0.014 | 60 |
25 August 2023 | R4 | 12,543.24 | 102,862.22 | 244.63 | 0.017 | 0.0017 | 0.014 | 60 |
Algorithm | Input Variables | LiDAR | RGB | MS | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE (g/m2) | MAE (g/m2) | MRE (%) | R2 | RMSE (g/m2) | MAE (g/m2) | MRE (%) | R2 | RMSE (g/m2) | MAE (g/m2) | MRE (%) | |||
Baseline (no CH) | PLSR | mean VIs | 0.71 | 111.43 | 79.23 | 51.31 | 0.57 | 141.13 | 100.94 | 67.52 | 0.70 | 111.61 | 75.53 | 43.05 |
RFR | mean VIs | 0.66 | 121.30 | 83.67 | 51.87 | 0.45 | 154.27 | 106.22 | 60.07 | 0.68 | 117.19 | 77.22 | 37.91 | |
CBA | mean VI, GDD | 0.80 | 94.43 | 61.43 | 31.29 | 0.79 | 97.88 | 61.39 | 30.13 | 0.81 | 92.94 | 59.34 | 30.08 | |
Approach 1 | PLSR | mean VIs, CH | 0.78 | 98.09 | 69.40 | 44.05 | 0.67 | 123.08 | 87.39 | 57.51 | 0.71 | 108.86 | 73.86 | 42.16 |
RFR | mean VIs, CH | 0.74 | 106.25 | 75.19 | 45.49 | 0.66 | 120.95 | 82.85 | 44.30 | 0.73 | 108.12 | 70.78 | 34.03 | |
Approach 2 | PLSR | CVMVIs | 0.68 | 109.31 | 78.37 | 64.49 | 0.60 | 128.24 | 94.60 | 51.90 | 0.74 | 105.46 | 74.50 | 58.82 |
RFR | CVMVIs | 0.64 | 124.44 | 83.22 | 43.48 | 0.60 | 131.66 | 88.15 | 47.95 | 0.74 | 105.64 | 67.98 | 31.99 | |
PLSR | mCVMVIs | 0.77 | 94.40 | 63.26 | 41.45 | 0.67 | 117.85 | 80.68 | 50.30 | 0.67 | 110.13 | 72.51 | 46.62 | |
RFR | mCVMVIs | 0.73 | 107.95 | 76.44 | 46.39 | 0.67 | 120.64 | 84.09 | 44.93 | 0.70 | 113.39 | 74.11 | 36.13 | |
Approach 3 | CBA | mean CH, GDD | 0.83 | 87.94 | 57.32 | 28.69 | 0.81 | 92.94 | 59.98 | 30.24 | 0.77 | 101.93 | 64.43 | 32.21 |
CBA | CVMVI, GDD | 0.78 | 98.43 | 61.92 | 29.58 | 0.79 | 97.34 | 63.96 | 33.11 | 0.76 | 104.03 | 65.98 | 31.92 | |
CBA | mCVMVI, GDD | 0.83 | 87.52 | 57.29 | 28.59 | 0.81 | 91.86 | 58.93 | 29.55 | 0.79 | 97.99 | 63.04 | 31.41 |
Algorithm | Input Variables | LiDAR | RGB | MS | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE (g/m2) | MAE (g/m2) | MRE (%) | R2 | RMSE (g/m2) | MAE (g/m2) | MRE (%) | R2 | RMSE (g/m2) | MAE (g/m2) | MRE (%) | ||
Baseline CBA | mean VI, average GDD 1 | 0.46 | 156.03 | 113.53 | 83.75 | 0.33 | 174.31 | 125.87 | 81.43 | 0.60 | 134.78 | 98.36 | 81.42 |
Approach 3 CBA | mean CH, average GDD 1 | 0.53 | 144.64 | 104.13 | 79.00 | 0.47 | 154.13 | 113.39 | 89.92 | 0.35 | 171.25 | 127.89 | 102.99 |
CVMVI, average GDD 1 | 0.41 | 162.78 | 120.06 | 94.18 | 0.24 | 184.77 | 143.43 | 113.94 | 0.29 | 178.38 | 131.23 | 102.04 | |
mCVMVI, average GDD 1 | 0.55 | 142.51 | 102.40 | 78.79 | 0.48 | 153.41 | 112.91 | 87.03 | 0.51 | 148.27 | 111.71 | 93.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Fan, F.; Zhang, Z.; Yu, X.; Jiang, T.; Li, L.; Liu, Y.; Bai, Y.; Tang, Z.; Liu, S.; et al. How to Better Use Canopy Height in Soybean Biomass Estimation. Agriculture 2025, 15, 1024. https://doi.org/10.3390/agriculture15101024
Zhu Y, Fan F, Zhang Z, Yu X, Jiang T, Li L, Liu Y, Bai Y, Tang Z, Liu S, et al. How to Better Use Canopy Height in Soybean Biomass Estimation. Agriculture. 2025; 15(10):1024. https://doi.org/10.3390/agriculture15101024
Chicago/Turabian StyleZhu, Yanqin, Fan Fan, Zhen Zhang, Xun Yu, Tiantian Jiang, Liming Li, Yadong Liu, Yali Bai, Ziqian Tang, Shuaibing Liu, and et al. 2025. "How to Better Use Canopy Height in Soybean Biomass Estimation" Agriculture 15, no. 10: 1024. https://doi.org/10.3390/agriculture15101024
APA StyleZhu, Y., Fan, F., Zhang, Z., Yu, X., Jiang, T., Li, L., Liu, Y., Bai, Y., Tang, Z., Liu, S., Yin, D., & Jin, X. (2025). How to Better Use Canopy Height in Soybean Biomass Estimation. Agriculture, 15(10), 1024. https://doi.org/10.3390/agriculture15101024