An Integrated Multi-Media Modeling System for Regional- to National-Scale Nitrogen and Crop Productivity Assessments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Brief Introduction of the Integrated Multi-Media Modeling System
2.2. Model Inputs and Configuration
2.3. Model Simulations
2.4. Model Evaluation of Corn Grain Yield, N Losses and NUE
3. Results and Discussion
3.1. Comparison of N Application Between 2006 FMS and 2011 FMS
3.2. Corn Grain Yield Response to 2006 FMS and 2011 FMS
3.3. N Losses from 2006 FMS and 2011 FMS
3.4. Connecting Nitrogen Inputs, Plant Uptakes and Crop Yields, and N Losses
4. Conclusions and Recommendations
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ladha, J.K.; Tirol-Padre, A.; Reddy, C.K.; Cassman, K.G.; Verma, S.; Powlson, D.S.; van Kessel, C.; Richter, D.D.; Chakraborty, D.; Pathak, H. Global nitrogen budgets in cereals: A 50-year assessment for maize, rice, and wheat production systems. Sci. Report. 2016, 6, 19355. [Google Scholar] [CrossRef] [PubMed]
- Fowler, D.; Coyle, M.; Skiba, U.; Sutton, M.A.; Cape, J.N.; Reis, S.; Sheppard, L.J.; Jenkins, A.; Grizzetti, B.; Galloway, J.N.; et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013, 368, 1621. [Google Scholar]
- Galloway, J.N.; Dentener, F.J.; Capone, D.G.; Boyer, E.W.; Howarth, R.W.; Seitzinger, S.P.; Asner, G.P.; Cleveland, C.C.; Green, P.A.; Holland, E.A.; et al. Nitrogen cycles: Past, present, and future. Biogeochemistry 2004, 70, 153–226. [Google Scholar] [CrossRef]
- Sutton, M.A.; Bleeker, A.; Howard, C.; Bekunda, M.; Grizzetti, B.; Vries, W.d.; Van Grinsven, H.; Abrol, Y.; Adhya, T.; Billen, G. Our Nutrient World: The Challenge to Produce More Food and Energy with Less Pollution; NERC/Centre for Ecology & Hydrology: Edinburgh, UK, 2013; 114p. [Google Scholar]
- Almasri, M.N.; Kaluarachchi, J.J. Assessment and management of long-term nitrate pollution of ground water in agriculture dominated watersheds. J. Hydrol. 2004, 295, 225–245. [Google Scholar] [CrossRef]
- Bouwman, A.F.; Van Drecht, G.; Knoop, J.M.; Beusen, A.H.W.; Meinardi, C.R. Exploring changes in river nitrogen export to the world’s oceans. Glob. Biogeochem. Cycles 2005, 19, GB1002. [Google Scholar] [CrossRef]
- Goolsby, D.A.; Battaglin, W.A.; Aulenbach, B.T.; Hooper, R.P. Nitrogen input to the Gulf of Mexico. J. Environ. Qual. 2001, 30, 329–336. [Google Scholar] [CrossRef]
- Rockstrom, J.; Steffen, W.; Noone, K.; Persson, A.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Naylor, R.; Crews, T.; David, M.B.; Drinkwater, L.E.; Holland, E.; Johnes, P.J.; Katzenberger, J.; Martinelli, L.A.; Matson, P.A.; et al. Nutrient imbalances in agricultural development. Science 2009, 324, 1519–1520. [Google Scholar] [CrossRef]
- Lu, C.; Tian, H. Net greenhouse gas balance in response to nitrogen enrichment: Perspectives from a coupled biogeochemical model. Glob. Change Biol. 2013, 19, 571–588. [Google Scholar] [CrossRef]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef]
- Lu, C.; Tian, H. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: Shifted hot spots and nutrient imbalance. Earth Syst. Sci. Data 2017, 9, 181–192. [Google Scholar] [CrossRef]
- Searchinger, T.; Waite, R.; Hanson, C.; Ranganathan, J.; Matthews, E. Creating a Sustainable Food Future: A Menu of Solutions to Sustainably Feed More than 9 Billion People by 2050. World Resources Report. Interim Findings; World Resources Institute: Washington, DC, USA, 2019. [Google Scholar]
- Davidson, E.; Galloway, J.; Millar, N.; Leach, A. N-related greenhouse gases in North America: Innovations for a sustainable future. Curr. Opin. Environ. Sust. 2014, 9–10, 1–8. [Google Scholar] [CrossRef]
- Liu, W.H.; Yang, J.; Liu, L.B.; Azevedo, X.; Wang, Z.; Xu, K.C.; Abbaspour, R.; Schulin, R. Global assessment of nitrogen losses and trade-offs with yields from major crop cultivations. Sci. Total Environ. 2016, 572, 526–537. [Google Scholar] [CrossRef] [PubMed]
- USEPA SAB (United States Environmental Protection Agency Science Advisory Board). Reactive Nitrogen in the United States: An Analysis of Inputs, Flows, Consequences, and Management Options; USEPA SAB (United States Environmental Protection Agency Science Advisory Board): Washington, DC, USA, 2013; Volume EPA-SAB-11-013, pp. 1–218.
- Sutton, M.A.; Howard, C.M.; Erisman, J.W. The European Nitrogen Assessment: Sources, Effects, and Policy Perspectives; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Yuan, Y.; Wang, R.; Cooter, E.; Ran, L.; Daggupati, P.; Yang, D.; Srinivasan, R.; Jalowska, A. Integrating multimedia models to assess nitrogen losses from the Mississippi River basin to the Gulf of Mexico. Biogeosciences 2018, 15, 7059–7076. [Google Scholar] [CrossRef]
- Cooter, E.J.; Bash, J.O.; Benson, V.; Ran, L. Linking agricultural crop management and air quality models for regional to national-scale nitrogen assessments. Biogeosciences 2012, 9, 4023–4035. [Google Scholar] [CrossRef]
- Pleim, J.E.; Ran, L.; Appel, W.; Shephard, M.W.; Cady-Pereira, K. New bidirectional ammonia flux model in an air quality model coupled with an agricultural model. Adv. Model. Earth Syst. 2019, 11, 2934–2957. [Google Scholar] [CrossRef]
- Ran, L.; Yuan, Y.; Cooter, E.; Benson, V.; Yang, D.; Pleim, J. An integrated agriculture, atmosphere, and hydrology modeling system for ecosystem assessments. Adv. Model. Earth Syst. 2019, 11, 4645–4668. [Google Scholar] [CrossRef]
- Williams, J.R. The EPIC model. In Computer Models of Watershed Hydrology; Singh, V.P., Ed.; Water Resources Publications: Highlands Ranch, CO, USA, 1995; pp. 909–1000. [Google Scholar]
- Wang, X.; Kemanain, A.; Williams, J. Special features of the EPIC and APEX modeling package and procedures for parameterization, calibration, validation, and applications. In Methods of Introducing System Models into Agricultural Research. Advances in Agricultural Systems Modeling 2; Ahuja, L., Ma, L., Eds.; ASA, CSSA, SSSA: Madison, WI, USA, 2011; pp. 177–208. [Google Scholar]
- Williams, J.R. The Erosion-Productivity Impact Calculator (EPIC) Model: A Case History. Phil. Trans. R. Soc. Lond. B 1990, 329, 421–428. [Google Scholar]
- Wang, X.; Williams, J.R.; Gassman, P.W.; Baffaut, C.; Izaurralde, R.C.; Jeong, J.; Kiniry, J.R. EPIC and APEX: Model Use, calibration, and validation. Trans. ASABE 2012, 55, 1447–1462. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Griensven, A.V.; Liew, M.W.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The soil and water assessment tool: Historical development, applications, and future research directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, F.R.; Williams, J.R. Soil and Water Assessment Tool (Version 2009): Theoretical Documentation; USDA-ARS Grassland, Soil and Water Research Laboratory and Blackland Research Center: Temple, TX, USA, 2011. [Google Scholar]
- Chaplot, V.; Saleh, A.; Jaynes, D.B.; Arnold, J. Predicting water, sediment and NO3-N loads under scenarios of land-use and management practices in a flat watershed. Water Air Soil Pollut. 2004, 154, 271–293. [Google Scholar] [CrossRef]
- Johnson, T.; Butcher, J.; Deb, D.; Faizullabhoy, M.; Hummel, P.; Kittle, J.; Witt, J. Modeling Streamflow and Water Quality Sensitivity to Climate Change and Urban Development in 20 US Watersheds. J. Am. Water Resour. Assoc. 2015, 51, 1321–1341. [Google Scholar] [CrossRef] [PubMed]
- Santhi, C.; Srinivasan, R.; Arnold, J.G.; Williams, J.R. A modeling approach to evaluate the impacts of water quality management plans implemented in a watershed in Texas. Environ. Model. Softw. 2006, 21, 1141–1157. [Google Scholar] [CrossRef]
- Vaché, K.B.; Eilers, J.M.; Santelmann, M.V. Water quality modeling of alternative agricultural scenarios in the US corn belt. J. Am. Water Resour. Assoc. 2002, 38, 773–787. [Google Scholar] [CrossRef]
- US Department of Agriculture, National Agricultural Statistics Service; National Agricultural Statistics Service. Corn Yield by Year, 2022. Available online: https://www.nass.usda.gov/Charts_and_Maps/Field_Crops/cornyld.php (accessed on 19 April 2025).
- Fixen, P.E.; Brentrup, F.; Bruulsema, T.; Garcia, F.; Norton, R.; Zingore, S. Nutrient/Fertilizer Use Efficiency: Measurement, Current Situation and Trends. In Managing Water and Fertilizer for Sustainable Agricultural Intensification; Drechsel, P., Heffer, P., Magen, H., Mikkelsen, R., Wichelns, D., Eds.; IFA: Paris, France, 2015; ISBN 979-10-92366-02-0. [Google Scholar]
- Snyder, C.S.; Bruulsema, T.W. Nutrient Use Efficiency and Effectiveness in North America: Indices of Agronomic and Environmental benefit; International Plant Nutrition Institute: Norcross, GA, USA, 2007. [Google Scholar]
- Richards, R.P.; Baker, D.B.; Eckert, D.J. Trends in agriculture in the LEASEQ watersheds, 1975–1995. J. Environ. Qual. 2002, 31, 17–24. [Google Scholar] [CrossRef]
- Forster, D.L.; Rausch, J.N. Evaluating agricultural nonpoint source pollution programs in two Lake Erie tributaries. J. Environ. Qual. 2002, 31, 24–31. [Google Scholar]
- Blevins, R.L.; Frye, W.W. Conservation tillage: An ecological approach to soil management. Adv. Agron. 1993, 51, 33–78. [Google Scholar]
- Kern, J.S.; Johnson, M.G. Conservation tillage impacts on national soil and atmospheric carbon levels. Soil Sci. Soc. Am. J. 1993, 57, 200–210. [Google Scholar] [CrossRef]
- US Department of Agriculture; Natural Resources Conservation Service. Effects of Conservation Practices on Nitrogen Loss from Farm Fields: A National Assessment Based on the 2003–06 CEAP Survey and APEX Modeling Databases; 2017; 129p. Available online: https://www.nrcs.usda.gov/publications/ceap-crop-2017-nitrogen-loss.pdf (accessed on 19 April 2025).
- Robertson, G.P. Nitrogen Use Efficiency in Row-Crop Agriculture: Crop Nitrogen Use and Soil Nitrogen Loss. In Ecology in Agriculture; Jackson, L.E., Ed.; Academic Press: New York, NY, USA, 1997; pp. 347–365. [Google Scholar]
- Liu, W.; Yang, H.; Folberth, C.; Muller, C.; Ciais, P.; Abbaspour, K.C.; Schulin, R. Achieving high crop yields with low nitrogen emissions in global agricultural input intensification. Environ. Sci. Technol. 2018, 52, 13782–13791. [Google Scholar] [CrossRef]
- Cassman, K.; Dobermann, A.; Walters, D.T. Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio 2002, 31, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency. Mississippi River Gulf of Mexico Watershed Nutrient Task Force: New Goal Framework 2014; Office of Wetlands, Oceans, and Watersheds: Washington, DC, USA, 2014. [Google Scholar]
- Cohan, D.S.; Boylan, J.W.; Marmur, A.; Khan, M.N. An integrated framework for multipollutant air quality management and its application in Georgia. Environ. Manag. 2007, 40, 545–554. [Google Scholar] [CrossRef]
- Williams, J.R.; Arnold, J.G. Water quality models for watershed management. In Water-Quality Hydrology; Springer Nature: Berlin/Heidelberg, Germany, 1996; pp. 217–241. [Google Scholar]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF, Version 3; NCAR Tech Note, 1035 NCAR/TN 475+STR; National Center for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- Bash, J.O.; Cooter, E.; Dennis, R.L.; Walker, J.T.; Pleim, J.E. Evaluation of a regional air-quality model with bidirectional NH3 exchange coupled to an agroecosystem model. Biogeosciences 2013, 10, 1635–1645. [Google Scholar] [CrossRef]
- Pleim, J.E.; Bash, J.O.; Walker, J.T.; Cooter, E. Development and evaluation of an ammonia bidirectional flux parameterization for air quality models. J. Geophys. Res. 2013, 118, 3794–3806. [Google Scholar] [CrossRef]
- Byun, D.W.; Schere, K.L. Review of the governing equations, computational algorithms, and other components of the models-3 community multiscale air quality (CMAQ) modeling system. Appl. Mech. Rev. 2006, 59, 51–77. [Google Scholar] [CrossRef]
- Appel, K.W.; Napelenok, S.L.; Foley, K.M.; Pye, H.O.T.; Hogrefe, C.; Luecken, D.J.; Bash, J.O.; Roselle, S.J.; Pleim, J.E.; Foroutan, H.; et al. Description and evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.1. Geosci. Model Dev. 2017, 10, 1703–1732. [Google Scholar] [CrossRef]
- Fu, X.; Wang, S.X.; Ran, L.M.; Pleim, J.E.; Cooter, E.; Bash, J.O.; Benson, V.; Hao, J.M. Estimating NH3 emissions from agricultural fertilizer application in China using the bi-directional CMAQ model coupled to an agro-ecosystem model. Atmos. Chem. Phys. 2015, 15, 6637–6649. [Google Scholar] [CrossRef]
- Vinten, A.J.A.; Smith, K.A. Nitrogen cycling in agricultural soils. In Nitrate: Processes, Patterns and Management 1993; Burt, T.P., Heathwaite, A.L., Trudgill, S.T., Eds.; Wiley: Chichester, UK, 1993; pp. 39–73. [Google Scholar]
- Goebes, M.D.; Strader, R.; Davidson, C. An ammonia emission inventory for fertilizer application in the United States. Atmos. Environ. 2003, 37, 2539–2550. [Google Scholar] [CrossRef]
Region | Simulated Corn Area | N Applied (kg ha−1) | Percent Change Between FMSs (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
2006 FMS | 2011 FMS | |||||||||
(ha) | (%) | Nfer | Nman | Napp | Nfer | Nman | Napp | ∆Nfer | ∆Napp | |
Pacific | 137,435 | 0.4 | 163.3 | 8.8 | 172.1 | 127.5 | 114.4 | 241.9 | −21.9 | 40.6 |
Corn Belt | 15,048,093 | 48.0 | 168.7 | 6.3 | 175.0 | 174.7 | 40.0 | 214.7 | 3.6 | 22.7 |
Mountain | 470,802 | 1.5 | 96.5 | 4.8 | 101.3 | 69.3 | 65.6 | 134.9 | −28.2 | 33.2 |
Northeast | 652,780 | 2.1 | 120.1 | 14.3 | 134.4 | 89.4 | 76.5 | 165.9 | −25.5 | 23.4 |
Southeast | 411,157 | 1.3 | 141.8 | 9.3 | 151.1 | 118.2 | 48.6 | 166.8 | −16.7 | 10.4 |
Appalachia | 1,094,494 | 3.5 | 171.1 | 1.9 | 173.0 | 138.3 | 54.2 | 192.5 | −19.2 | 11.3 |
Lake States | 5,117,713 | 16.3 | 92.2 | 5.4 | 97.6 | 66.5 | 59.7 | 126.2 | −27.9 | 29.4 |
Delta States | 934,136 | 3.0 | 211.5 | 6.1 | 217.6 | 225.8 | 0.0 | 225.8 | 6.8 | 3.8 |
Northern Plains | 6,763,499 | 21.6 | 126.1 | 9.0 | 135.1 | 139.9 | 16.9 | 156.8 | 11.0 | 16.1 |
Southern Plains | 695,400 | 2.2 | 168.1 | 10.3 | 178.4 | 133.4 | 106.3 | 239.7 | −20.7 | 34.3 |
All regions | 31,325,510 | 100.0 | 145.9 | 6.8 | 152.7 | 144.5 | 40.6 | 185.1 | −0.9 | 21.2 |
Region | 2006 FMS | 2011 FMS | ||||
---|---|---|---|---|---|---|
Corn Grain Yield (Mg ha−1) | Nup (kg ha−1) | NUE | Corn Grain Yield (Mg ha−1) | Nup (Kg ha−1) | NUE | |
Pacific | 9.40 | 117.8 | 0.68 | 9.91 | 126.1 | 0.52 |
Corn Belt | 8.60 | 107.2 | 0.61 | 8.75 | 109.5 | 0.51 |
Mountain | 6.47 | 81.2 | 0.80 | 7.12 | 90.4 | 0.67 |
Northeast | 7.93 | 98.8 | 0.74 | 8.08 | 101.5 | 0.61 |
Southeast | 9.14 | 113.9 | 0.75 | 9.44 | 117.9 | 0.71 |
Appalachia | 8.97 | 111.5 | 0.64 | 9.11 | 113.7 | 0.59 |
Lake States | 7.02 | 87.7 | 0.90 | 7.37 | 92.7 | 0.73 |
Delta States | 9.01 | 112.0 | 0.51 | 9.02 | 112.2 | 0.50 |
Northern Plains | 7.05 | 88.3 | 0.65 | 7.87 | 98.3 | 0.63 |
Southern Plains | 7.79 | 97.4 | 0.55 | 8.24 | 104.0 | 0.43 |
All regions | 7.98 | 99.6 | 0.65 | 8.32 | 104.2 | 0.56 |
Region | 2006 FMS (kg ha−1) | 2011 FMS (kg ha−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Nvol | Nden | Nwat | Nsed | Nloss | Nvol | Nden | Nwat | Nsed | Nloss | |
Pacific | 9.2 | 8.7 | 2.0 | 0.2 | 20.1 | 14.6 | 23.5 | 4.2 | 0.1 | 42.3 |
Corn Belt | 6.7 | 4.6 | 6.6 | 5.5 | 23.3 | 11.0 | 11.1 | 10.4 | 5.8 | 38.3 |
Mountain | 5.9 | 1.7 | 1.6 | 0.7 | 9.9 | 6.9 | 7.5 | 2.5 | 0.8 | 17.8 |
Northeast | 4.4 | 9.4 | 9.2 | 8.3 | 31.4 | 6.7 | 14.1 | 12.3 | 10.4 | 43.5 |
Southeast | 4.4 | 8.3 | 4.6 | 2.3 | 19.6 | 7.0 | 12.6 | 4.4 | 2.4 | 26.4 |
Appalachia | 5.9 | 10.0 | 9.9 | 4.3 | 30.0 | 8.6 | 12.6 | 10.3 | 5.3 | 36.7 |
Lake States | 5.7 | 3.8 | 6.9 | 4.6 | 21.0 | 7.9 | 6.8 | 9.0 | 4.2 | 27.8 |
Delta States | 5.3 | 25.0 | 13.2 | 2.5 | 46.1 | 6.6 | 27.6 | 15.6 | 2.6 | 52.3 |
Northern Plains | 6.1 | 3.5 | 1.4 | 2.7 | 13.8 | 7.5 | 6.4 | 1.7 | 2.1 | 17.8 |
Southern Plains | 6.7 | 18.4 | 4.5 | 3.8 | 33.4 | 10.7 | 41.7 | 4.7 | 4.6 | 61.8 |
All regions | 6.3 | 5.4 | 5.7 | 4.5 | 21.9 | 9.3 | 10.7 | 8.1 | 4.6 | 32.7 |
Change (%) | 47.6 | 98.1 | 42.1 | 2.2 | 49.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Y.; Wang, X.; Benson, V.; Ran, L. An Integrated Multi-Media Modeling System for Regional- to National-Scale Nitrogen and Crop Productivity Assessments. Agriculture 2025, 15, 1017. https://doi.org/10.3390/agriculture15101017
Yuan Y, Wang X, Benson V, Ran L. An Integrated Multi-Media Modeling System for Regional- to National-Scale Nitrogen and Crop Productivity Assessments. Agriculture. 2025; 15(10):1017. https://doi.org/10.3390/agriculture15101017
Chicago/Turabian StyleYuan, Yongping, Xiuying Wang, Verel Benson, and Limei Ran. 2025. "An Integrated Multi-Media Modeling System for Regional- to National-Scale Nitrogen and Crop Productivity Assessments" Agriculture 15, no. 10: 1017. https://doi.org/10.3390/agriculture15101017
APA StyleYuan, Y., Wang, X., Benson, V., & Ran, L. (2025). An Integrated Multi-Media Modeling System for Regional- to National-Scale Nitrogen and Crop Productivity Assessments. Agriculture, 15(10), 1017. https://doi.org/10.3390/agriculture15101017