Herbal Companion Crops as an Example of Implementation of Sustainable Plant Protection Practices in Soybean Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Experimental Design
2.3. Biometric Analysis
2.4. Yield Quality
2.5. Assessment of the Incidence of Cercospora Leaf Blight, Fusarium Wilt, Ascochyta Blight, and Downy Mildew (Peronospora Manshurica) in Soybean Plants
2.6. Statistical Analysis
3. Results
3.1. Weather Conditions
3.2. Biometric Traits
3.3. Seed Yield and Yield Quality
3.4. Pathogen Suppression
4. Discussion
4.1. Companion Crop and Seed Yield
4.2. Companion Crops and Soybean Health
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT 2024. Available online: http://www.fao.org/faostat (accessed on 1 February 2024).
- Available online: https://biomassmagazine.com/articles/usda-growth-in-us-renewable-diesel-production-impacts-global-feedstock-trade (accessed on 1 January 2024).
- Rezende, V.T.; Ali, S.; Bonaudo, T.; Gameiro, A.H. Brazilian soybeans as feed for livestock in Europe: An insight into the nitrogen flows. Reg. Environ. Chang. 2023, 23, 33. [Google Scholar] [CrossRef] [PubMed]
- Rotundo, J.L.; Marshall, R.; McCormick, R.; Truong, S.K.; Styles, D.; Gerde, J.A.; Gonzalez-Escobar, E.; Carmo-Silva, E.; Janes-Bassett, V.; Logue, J.; et al. European soybean to benefit people and the environment. Sci. Rep. 2024, 14, 7612. [Google Scholar] [CrossRef] [PubMed]
- Nendel, C.; Reckling, M.; Debaeke, P.; Schulz, S.; Berg-Mohnicke, M.; Constantin, J.; Fronzek, S.; Hoffmann, M.; Jakšić, S.; Kersebaum, K.-C.; et al. Future area expansion outweighs increasing drought risk for soybean in Europe. Glob. Chang. Biol. 2023, 29, 1340–1358. [Google Scholar] [CrossRef] [PubMed]
- Staniak, M.; Szpunar-Krok, E.; Kocira, A. Responses of Soybean to Selected Abiotic Stresses—Photoperiod, Temperature and Water. Agriculture 2023, 13, 146. [Google Scholar] [CrossRef]
- Kulig, B.; Klimek-Kopyra, A. Sowing Date and Fertilization Level Are Effective Elements Increasing Soybean Productivity in Rainfall Deficit Conditions in Central Europe. Agriculture 2023, 13, 115. [Google Scholar] [CrossRef]
- Klimek-Kopyra, A.; Skowera, B.; Dacewicz, E.; Boligłowa, E.; Kulig, B.; Znój, K. Occurrence of Diseases and Seed Yield of Early Maturing Soybean Cultivars Grown under the Conditions of Central Europe. Agronomy 2024, 14, 534. [Google Scholar] [CrossRef]
- Płaza, A.; Soszyński, J. Wpływ wsiewek międzyplonowych na cechy konsumpcyjne bulw ziemniaka odmiany Syrena. Biul. Inst. Hod. Aklim. Rośl. 2010, 257, 145–152. [Google Scholar] [CrossRef]
- Kołota, E.; Adamczewska-Sowińska, K. Living mulches in vegetable crops production: Perspectives and limitations (A review). Acta Sci. Pol. Hortorum Cultus 2013, 12, 127–142. [Google Scholar]
- Lenzi, A.; Antichi, D.; Bigongiali, F.; Mazzoncini, M.; Migliorini, P.; Tesi, R. Effect of different cover crops on organic tomato production. Renew. Agric. Food Syst. 2009, 24, 92–101. [Google Scholar] [CrossRef]
- Dufault, R.J.; Decoteau, D.R.; Garrett, J.T.; Batal, K.D.; Granberry, D.; Davis, J.M.; Hoyt, G.; Sanders, D. Influence of cover crops and inorganic nitrogen fertilization on tomato and snap bean production and soil nitrate distribution. J. Veg. Crop Prod. 2000, 6, 13–25. [Google Scholar] [CrossRef]
- Baumann, D.T.; Kropff, M.J.; Bastiaans, L. Intercropping leeks to suppress weeds. Weed Res. 2000, 40, 359–374. [Google Scholar] [CrossRef]
- Brainard, D.C.; Bellinder, R.R.; Miller, A.J. Cultivation and interseeding for weed control in transplanted cabbage. Weed Technol. 2004, 18, 704–710. [Google Scholar] [CrossRef]
- Starck, J.R.; Przeradza, M.; Okruszko, B.; Senatorska-Wiśnioch, A.; Michalska, M. Wpływ koniczyny białej, jako rośliny okrywowej na plonowanie kukurydzy cukrowej. In Proceedings of the Materiały z Konf. pt. “Nawożenie Roślin Ogrodniczych. Stan Badań i Kierunki Rozwoju”, Kraków, Poland, 20–21 June 1996; pp. 84–85. (In Polish). [Google Scholar]
- Leary, J.; DeFrank, J. Living mulches for organic farming systems. HortTechnology 2000, 10, 692–698. [Google Scholar] [CrossRef]
- Stirzaker, R.J.; White, I. Amelioration of soil compaction by a cover-crop for no-tillage lettuce production. Aust. J. Agric. Res. 1995, 46, 553–568. [Google Scholar] [CrossRef]
- Jędrszczyk, E.; Poniedziałek, M. Wpływ żywych ściółek na wybrane właściwości gleby i zachwaszczenie w uprawie kukurydzy cukrowej. Zesz. Probl. Postępów Nauk. Rol. 2009, 539, 265–272. (In Polish) [Google Scholar]
- Sainju, U.M.; Singh, B.P. Winter cover crops for sustainable agricultural systems: Influence on soil properties, water quality and crop yields. HortScience 1997, 32, 21–28. [Google Scholar] [CrossRef]
- Hartwig, N.L.; Ammon, H.U. Cover crops and living mulches. Weed Sci. 2022, 50, 688–699. [Google Scholar] [CrossRef]
- Jamshidi-Kia, F.; Lorigooini, Z.; Amini-Khoei, H. Medicinal plants: Past history and future perspective. J. Herbmed Pharmacol. 2018, 7, 1–7. [Google Scholar] [CrossRef]
- Chen, J.; Ren, X.; Zhang, Q.; Diao, X.; Shen, Q. Determination of protein, total carbohydrates and crude fat contents of foxtail millet using effective wavelengths in NIR spectroscopy. J. Cereal Sci. 2013, 58, 241–247. [Google Scholar] [CrossRef]
- Janket, S.; Jogloy, N.; Vorasoot, B.; Toomsan, W.; Kaewpradit, P.; Theerakulpisut, C.C.; Holbrook, C.; Kvien, K.; Banterng, P. Nutrient uptake and nutrient use efficiency of cassava genotypes with different starch bulking periods as affected by different planting dates. J. Plant Nutr. 2021, 44, 580–599. [Google Scholar] [CrossRef]
- Hartman, G.L.; Sinclair, J.B.; Rupe, J.C. Compendium of Soybean Diseases, 4th ed.; American Phytopathological Society: St. Paul, MN, USA, 1999. [Google Scholar]
- Hartman, G.L.; Hill, C.B. Diseases of soybean and their management. In The Soybean; Singh, G., Ed.; CABI: Wallingford, UK, 2010; pp. 276–299. [Google Scholar]
- Marcinkowska, J.; Boros, L.; Wawer, A. Response of pea (Pisum sativum L.) cultivars and lines to seed infection by ascochyta blight fungi. Plant Breed. Seed Sci. 2009, 59, 75–86. [Google Scholar] [CrossRef]
- Dhar, P.C.; Awal, M.A.; Sultan, M.S.; Rana, M.M.; Sarker, A. Interspecific competition, growth and productivity of maize and pea in intercropping mixture. J. Crop Sci. 2013, 2, 136–143. [Google Scholar]
- Klimek-Kopyra, A.; Bacior, M.; Zając, T. Biodiversity as a creator of productivity and interspecific competitiveness of winter cereal species in mixed cropping. Ecol. Model. 2017, 343, 123–130. [Google Scholar] [CrossRef]
- Rezaei-Chiyaneh, E.; Amirnia, R.; Machiani, M.A.; Javanmard, A.; Maggi, F.; Morshedloo, M.R. Intercropping fennel (Foeniculum vulgare L.) with common bean (Phaseolus vulgaris L.) as affected by PGPR inoculation: A strategy for improving yield, essential oil and fatty acid composition. Sci. Hortic. 2020, 261, 108951. [Google Scholar] [CrossRef]
- De Mastro, G.; Marzi, V.; Ventrelli, A. Influence of temporary intercropping on the productivity of Liquorice (Glycyrrhiza glabra L.). Acta Hortic. 1993, 344, 523–528. [Google Scholar] [CrossRef]
- Marzi, V. Risultati di un quinquennio di prove sulla coltivazione della Liquirizia (Glycyrrhiza glabra L.) in differenti condizioni pedoclimatiche (In Italian). In Proceedings of the Int. Conv. “Coltivazione e Miglioramento di Piante Officinali”, Trento, Italy, 2–3 June 1994; pp. 3–95. [Google Scholar]
- Carrubba, A.; la Torre, R.; Saiano, F.; Aiello, P. Sustainable production of fennel and dill by intercropping. Agron. Sustain. Dev. 2008, 28, 247–256. [Google Scholar] [CrossRef]
- Morelli, I. I Principi Attivi delle Piante Medicinali (In Italian); Edagricole: Bologna, Italy, 1981. [Google Scholar]
- Maffei, M.; Mucciarelli, M. Essential oil yield in pepper- mint/soybean strip intercropping. Field Crop. Res. 2003, 84, 229–240. [Google Scholar] [CrossRef]
- Gehad, M.M. Effect of intercropping of pea with some medicinal plants on microbial community of soil, damping-off and downy mildew diseases, under Beheira Governorate conditions. J. Plant Prot. Pathol. 2013, 4, 625–641. [Google Scholar] [CrossRef]
- Dai, C.C.; Xie, H.; Wang, X.X.; Li, P.D.; Zhang, T.L.; Li, Y.L.; Tan, X. Intercropping peanut with traditional Chinese medicinal plants improves soil microcosm environment and peanut production in subtropical China. Afr. J. Biotechnol. 2009, 8, 3739–3746. [Google Scholar]
- El-Gendy, H.M.R. Studies on Chocolate Spot Disease of Faba Bean. Master’s Thesis, Faculty of Agriculture, Minufiya University, Shibin el Kom, Egypt, 2003. [Google Scholar]
- Sahar, A.E. Influence of Two Intercropping Patterns of Onion with Sugar Beet on Some Foliar Diseases and Productivity of Both Crops. Egypt. J. Phytopathol. 2019, 47, 1121–1143. [Google Scholar] [CrossRef]
Parameter | Decada * | Apr. | May | Jun. | Jul. | Aug. | Sep. | Σ/Mean |
---|---|---|---|---|---|---|---|---|
2021 | ||||||||
Temperature | 1 | 5.12 | 10.35 | 16.5 | 22.53 | 19.77 | 15.21 | |
2 | 4.88 | 14.44 | 19.5 | 21.87 | 20.19 | 15.85 | ||
3 | 7.33 | 13.34 | 22.36 | 21.83 | 16.0 | 13.15 | ||
Mean | 5.78 | 12.71 | 19.47 | 22.08 | 18.65 | 14.74 | 15.57 | |
Rainfall | 1 | 6.4 | 14.2 | 4.8 | 27.2 | 116 | 1.2 | |
2 | 34.1 | 54.6 | 7.8 | 102.8 | 24.4 | 31.2 | ||
3 | 9.6 | 28.8 | 78.8 | 29.9 | 85.4 | 14.4 | ||
Σ | 50.1 | 97.6 | 91.4 | 159.9 | 225.8 | 46.8 | 671.6 | |
2022 | ||||||||
Temperature | 1 | 4.02 | 11.84 | 16.54 | 18.44 | 19.03 | 13.48 | |
2 | 4.64 | 14.74 | 17.06 | 17.05 | 20.04 | 11.32 | ||
3 | 8.12 | 12.78 | 20.64 | 19.90 | 18.3 | 8.96 | ||
Mean | 5.59 | 13.12 | 18.08 | 18.45 | 19.14 | 11.25 | 14.27 | |
Rainfall | 1 | 24.6 | 11.0 | 43.6 | 57.2 | 0.40 | 24.4 | |
2 | 6.20 | 0.00 | 29.6 | 10.6 | 8.60 | 23.0 | ||
3 | 14.8 | 9.40 | 0.00 | 44.2 | 75.2 | 20.9 | ||
Σ | 45.6 | 20.4 | 73.2 | 112 | 84.2 | 68.3 | 403.7 | |
2023 | ||||||||
Temperature | 1 | 3.49 | 10.5 | 17 | 20.4 | 17.2 | 17.9 | |
2 | 9.56 | 12.3 | 16.8 | 21.3 | 22.7 | 19.0 | ||
3 | 10.7 | 15.8 | 19.5 | 18.9 | 20.9 | 17.3 | ||
Mean | 7.90 | 12.9 | 17.8 | 20.2 | 20.3 | 18.1 | 16.2 | |
Rainfall | 1 | 20.2 | 39.6 | 0.2 | 29.6 | 71.8 | 20.2 | |
2 | 20.6 | 50.0 | 42.0 | 42.2 | 0.00 | 28.6 | ||
3 | 13.0 | 0.40 | 23.6 | 34.2 | 25.8 | 23 | ||
Σ | 53.9 | 90.0 | 65.8 | 106 | 97.6 | 71.8 | 485.1 |
Treatment | Height of Plant (cm) | Height of 1st Pod (cm) | No of Pods per Plant | No of Seeds per Plant | Weight of Pods (g) | Weight of Seeds (g) | 1000 Seeds Weight (g) | |
---|---|---|---|---|---|---|---|---|
Year (Y) | 2021 | 80.4 b | 14.28 a | 40.2 c | 91.8 b | 20.1 b | 14.0 b | 162.5 b |
2022 | 57.5 c | 14.02 a | 20.6 b | 45.8 c | 10.3 c | 6.95 c | 152.4 c | |
2023 | 95.0 a | 10.34 b | 48.2 a | 112.0 a | 27.7 a | 19.7 a | 175.2 a | |
p < 0.05 | <0.000 * | <0.000 * | <0.000 * | <0.000 * | <0.000 * | <0.000 * | ns | |
Way of sowing (WS) | SOY | 81.4 a | 13.3 ab | 35.6 | 88.7 | 18.9 | 13.3 ab | 168.8 |
ALY | 79.5 ab | 13.5 a | 37.2 | 84.4 | 20.9 | 15.7 a | 170.0 | |
FEN | 74.9 ab | 11.3 b | 39.4 | 90.6 | 20.7 | 14.4 ab | 156.8 | |
BOR | 72.7 b | 12.6 ab | 34.4 | 78.1 | 18.3 | 12.9 ab | 163.8 | |
MAR | 78.3 ab | 12.5 ab | 36.7 | 81.2 | 19.3 | 11.7 b | 160.9 | |
CAL | 76.0 ab | 12.6 ab | 38.7 | 88.6 | 20.5 | 14.4 ab | 159.9 | |
MIX | 80.6 ab | 14.5 a | 32.3 | 71.4 | 17.2 | 11.9 b | 164.4 | |
p < 0.05 | <0.007 * | <0.002 * | ns | ns | ns | <0.049 * | ns | |
Y × WS | p < 0.05 | <0.031 * | <0.000 * | <0.000 * | <0.009 * | <0.01 * | <0.004 * | ns |
Treatment | Seed Yield (t ha−1) | Protein Yield (kg ha−1) | Oil Yield (kg ha−1) | Starch Yield (kg ha−1) | N Uptake (kg t−1) | |
---|---|---|---|---|---|---|
Year (Y) | 2021 | 3.34 b | 1135.4 b | 649.4 b | 1218.8 b | 181.6 b |
2022 | 2.96 c | 1047.8 b | 576.8 c | 1017.4 c | 167.6 b | |
2023 | 4.82 a | 1767.3 a | 897.2 a | 1698.0 a | 282.8 a | |
p < 0.05 | <0.000 * | <0.000 * | <0.000 * | <0.000 * | <0.000 * | |
Way of sowing (WS) | SOY | 3.68 ab | 1302.3 | 707.6 | 1269.3 | 208.4 |
ALY | 3.70 ab | 1295.4 | 689.9 | 1310.8 | 207.3 | |
FEN | 3.95 a | 1402.2 | 768.3 | 1434.3 | 224.4 | |
BOR | 3.44 b | 1360.5 | 721.5 | 1359.9 | 217.7 | |
MAR | 3.41 b | 1254.6 | 697.9 | 1235.2 | 200.7 | |
CAL | 3.46 b | 1288.9 | 703.2 | 1293.5 | 206.2 | |
MIX | 3.39 b | 1313.9 | 665.9 | 1277.1 | 210.2 | |
p < 0.05 | <0.000 * | ns | ns | ns | ns | |
Y × WS | p < 0.05 | ns | ns | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sikora, A.; Dłużniewska, J.; Kulig, B.; Klimek-Kopyra, A. Herbal Companion Crops as an Example of Implementation of Sustainable Plant Protection Practices in Soybean Cultivation. Agriculture 2024, 14, 1485. https://doi.org/10.3390/agriculture14091485
Sikora A, Dłużniewska J, Kulig B, Klimek-Kopyra A. Herbal Companion Crops as an Example of Implementation of Sustainable Plant Protection Practices in Soybean Cultivation. Agriculture. 2024; 14(9):1485. https://doi.org/10.3390/agriculture14091485
Chicago/Turabian StyleSikora, Adrian, Joanna Dłużniewska, Bogdan Kulig, and Agnieszka Klimek-Kopyra. 2024. "Herbal Companion Crops as an Example of Implementation of Sustainable Plant Protection Practices in Soybean Cultivation" Agriculture 14, no. 9: 1485. https://doi.org/10.3390/agriculture14091485
APA StyleSikora, A., Dłużniewska, J., Kulig, B., & Klimek-Kopyra, A. (2024). Herbal Companion Crops as an Example of Implementation of Sustainable Plant Protection Practices in Soybean Cultivation. Agriculture, 14(9), 1485. https://doi.org/10.3390/agriculture14091485