On the Digestibility of Mulberry Leaf Fed to Bombyx mori Larvae
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Animal Material
- -
- grams of dry matter (DM) ingested necessary to produce one gram of growth (grams of dry matter of ingested leaf/grams of dry matter of silk wrap); this ratio provides insight into the feed efficiency of the larvae, indicating how much of the leaf’s dry matter is needed to produce a specific amount of silk (a lower ratio indicates higher efficiency, as less feed is required per unit of silk produced).
- -
- grams of dry matter (DM) digested necessary to produce one gram of growth (grams of dry matter of digested leaf/grams of dry matter of silk wrap); this ratio reflects the efficiency of the larvae’s digestive system, highlighting how much of the ingested dry matter is actually utilized (absorbed and metabolized) for silk production (a more efficient digestive system results in a lower DM digested value).
- -
- efficiency of conversion of ingested substances (ECIS) into silk wrap (ECIS = dry matter of silk wrap/dry matter of ingested leaf × 100); a higher ECIS value indicates better utilization of the ingested nutrients for silk production, demonstrating the larvae’s ability to convert the feed into the desired product effectively.
- -
- efficiency of conversion of digested substances (ECDS) into silk wrap (ECDS = silk wrap/digested leaf × 100); this ratio provides an understanding of the efficiency with which the digested nutrients are converted into silk, accounting for the absorption and metabolic processes (a higher ECDS value suggests that a larger proportion of the digested nutrients contribute to silk synthesis).
2.2. The Vegetal Material
2.3. The Analytical Techniques
2.4. Statistical Data Processing
3. Results
3.1. The Proximate Composition of the Mulberry Leaves
3.2. Mulberry Leaves Digestibility
4. Discussion
4.1. The Proximate Composition of Mulberry Leaves
4.2. Mulberry Leaf Digestibility
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Salem, M.; Khalafalla, M.M.E.; Saad, I.A.I.; El-Hais, A.M.A. Replacement of fish meal by silkworm Bombyx mori pupae meal in Nile tilapia, Oreochromis niloticus diets. Egypt. J. Nutr. Feed. 2008, 11, 611–624. [Google Scholar]
- Longvah, T.; Mangthya, K.; Ramulu, P. Nutrient composition and protein quality evaluation of eri silkworm (Samia ricinii) prepupae and pupae. Food Chem. 2011, 128, 400–403. [Google Scholar] [CrossRef] [PubMed]
- Bandlamori, S.V.; Mondal, M.; Singh, C.R.; Karkada, A.M. Evaluation of nutritional composition of hybrids of waste silkworm pupa Bombyx mori L. as a potential raw material for poultry feed-a sustainable technology for future. Int. J. Eng. Res. Technol. 2012, 1, 1–5. [Google Scholar]
- Tran, G.; Heuzé, V.; Makkar, H.P.S. Insects in fish diets. Anim. Front. 2015, 5, 37–44. [Google Scholar]
- Khan, S.H. Recent advances in role of insects as alternative protein source in poultry nutrition. J. Appl. Anim. Res. 2018, 46, 1144–1157. [Google Scholar] [CrossRef]
- Dalle Zotte, A.; Singh, Y.; Squartini, A.; Stevanato, P.; Cappellozza, S.; Kovitvadhi, A.; Subaneg, S.; Bertelli, D.; Cullere, M. Effect of a dietary inclusion of full-fat or defatted silkworm pupa meal on the nutrient digestibility and faecal microbiome of fattening quails. Animals 2021, 15, 100112. [Google Scholar] [CrossRef] [PubMed]
- Siriamornpun, S.; Thammapat, P. Insects as a delicacy and a nutritious food in Thailand. Using Food Sci. Technol. Improv. Nutr. Promot. Natl. Dev. 2008, 16. [Google Scholar]
- Mlček, J.; Rop, O.; Borkovcova, M.; Bednářová, M. A comprehensive look at the possibilities of edible insects as food in Europe-a review. Pol. J. Food Nutr. Sci. 2014, 64. [Google Scholar] [CrossRef]
- Longvah, T.; Manghtya, K.; Qadri, S.S. Eri silkworm: A source of edible oil with a high content of α-linolenic acid and of significant nutritional value. J. Sci. Food Agric. 2012, 92, 1988–1993. [Google Scholar] [CrossRef]
- Ullah, R.; Khan, S.; Khan, N.A.; Mobashar, M.; Sultan, A.; Ahmad, N.; Lohakare, J. Replacement of soybean meal with silkworm meal in the diets of white leghorn layers and effects on performance, apparent total tract digestibility, blood profile and egg quality. Int. J. Vet. Health Sci. Res. 2017, 5, 200–207. [Google Scholar]
- Omar, S.S.; Shayo, C.M.; Uden, P. Voluntary intake and digestibility of mulberry (Morus alba) diets by growing goats. Trop. Grassl. 1999, 33, 177–181. [Google Scholar]
- Azim, A.; Khan, A.G.; Ahmad, J.; Ayaz, M.; Mirza, I.H. Nutritional evaluation of fodder tree leaves with goats. Asian-Australas. J. Anim. Sci. 2002, 15, 34–37. [Google Scholar] [CrossRef]
- Patra, A.K.; Sharma, K.; Dutta, N.; Pattanaik, A.K. Effect of partial replacement of dietary protein by a leaf meal mixture containing Leucaena leucocephala, Morus alba and Azadirachta indica on performance of goats. Asian-Australas. J. Anim. Sci. 2002, 15, 1732–1737. [Google Scholar] [CrossRef]
- Tom, M.; Talaat, A.E.; Magid, D.A.; Eldeen, E.B. Investigation of the nutritional constituents of the wild silk moth Epiphora Bauhiniae (Guerin Meneville) Lepidoptera: Saturniidae in Sudan. For. Prod. Ind. 2013, 2, 69–74. [Google Scholar]
- Leterme, P.; Botero, M.; Londoño, A.M.; Bindelle, J.; Buldgen, A. Nutritive value of tropical tree leaf meals in adult sows. Anim. Sci. 2006, 82, 175–182. [Google Scholar] [CrossRef]
- Doran, M.P.; Laca, E.A.; Sainz, R.D. Total tract and rumen digestibility of mulberry foliage (Morus alba), alfalfa hay and oat hay in sheep. Anim. Feed. Sci. Technol. 2007, 138, 239–253. [Google Scholar] [CrossRef]
- Todaro, M.; Sinacori, A.; Marinaro, G.; Alicata, M.L.; Giaccone, P. Palatability and in vivo digestibility of mulberry leaves (Morus latifolia CV. Kokusou 21) in sheep feeding. J. Anim. Vet. Adv. 2007, 6, 509–512. [Google Scholar]
- Suchisree, J. Feeding preference of silkworm larvae depending on biochemical attributes related to mulberry genotypes. Int. J. Pharm. Pharm. Sci 2016, 8, 307–314. [Google Scholar]
- Ruiz-Erazo, X.; Zambrano-González, G.; Castañeda-Vildozóla, Á.; Rodríguez-Ortega, L.T.; Pro-Martínez, A.; Hernández-Guzmán, F.J.; Rodríguez-Ortega, A. Silkworm (Bombyx mori L.) fed with mulberry (Morus alba L.) leaves and cow’s milk. Agro Product. 2023, 16, 107–112. [Google Scholar] [CrossRef]
- El-Banna, A.A.; Moustafa, M.N.; Mahmoud, S.M.; El-Shafei, A.M.; Moustafa, A.A. Effect of feeding different mulberry varieties on some biological characteristics of the silkworm, Bombyx mori L. Egypt. J. Pure Appl. Sci. 2013, 51, 55–60. [Google Scholar]
- Lazar, S.; Vornicu, O.C. Biological and Technical Foundation in Sericulture Production; Ion Ionescu de la Brad Publ.: Iași, Romania, 2013; pp. 56–63. [Google Scholar]
- Mărghitaş, L.A. Silkworm Larvae Farming; Ceres Publ.: Bucharest, Romania, 1995; pp. 84–89. [Google Scholar]
- Doliș, M. Sericulture; Alfa Publ.: Iași, Romania, 2008; pp. 101–107. [Google Scholar]
- Pătruică, S. Beekeeping and Sericulture; EUROBIT: Timișoara, Romania, 2013; pp. 23–27. [Google Scholar]
- Pasca, I.; Marghitas, L.A.; Morar, R.; Cimpean, A.; Pusta, D. Testing correlation between biological traits of larvae and consumption and digestibility of the mulberry leaf in silkworm (Bombyx mori L.). Anim. Sci. Biotechnol. 2006, 62, 153–157. [Google Scholar]
- Moise, A.R.; Marghitas, L.A.; Bobis, O.; Copaciu, F.M.; Dezmirean, D.S. Morus spp. Material conservation and characterization and its importance for romanian sericulture and GCEARS-PSP development—A review. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Anim. Sci. Biotechnol. 2018, 75, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Pătruică, S. Successive growth of silkworms. Agric. Banat. 2008; 17, 23. [Google Scholar]
- Pop, I.M.; Halga, P.; Avarvarei, T. Animal Nutrition and Feeding; Tipo Moldova: Iași, Romania, 2006; pp. 66–71. [Google Scholar]
- Regulation (EC) no. 152/2009 SR ISO 6496:2001; Animal Feeding Stuffs—Determination of Moisture and Other Volatile Matter Content. International Organization for Standardization: Geneva, Switzerland, 2001.
- Regulation (EC) no. 152/2009 SR EN ISO 2171:2001; Cereals, Pulses and by-Products—Determination of Ash Yield by Incineration. International Organization for Standardization: Geneva, Switzerland, 2001.
- Regulation (EC) no. 152/2009 SR ISO 6492:2001; Animal Feeding Stuffs—Determination of Fat Content. International Organization for Standardization: Geneva, Switzerland, 2001.
- Regulation (EC) no. 152/2009 SR EN ISO 5983-2:2009 AOAC 2001.11; Animal Feeding Stuffs—Determination of Nitrogen Content and Calculation of Crude Protein Content. International Organization for Standardization: Geneva, Switzerland, 2009.
- Regulation (EC) no. 152/2009 SR EN ISO 6865:2002; Animal Feeding Stuffs—Determination of Crude Fibre Content—Method with Intermediate Filtration. International Organization for Standardization: Geneva, Switzerland, 2002.
- Regulation (EU) No. 68/2013. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32013R0068 (accessed on 17 December 2023).
- Ahanger, F.A.; Irfan, I.; Ramegowda, G.K.; Rao, R.J. Impact of road dust polluted mulberry leaves on the food ingestion, assimilation and conversion efficiency of silkworm, Bombyx mori L. in Kashmir Valley. Intern. Int. J. Plant Anim. Environ. Sci. 2015, 5, 86–94. [Google Scholar]
- Diniţă, G.; Tudorache, M.; Matei, A.; Antonescu, C.; Marmandiu, A. The inbreeding effect on food consumption and digestibility of the silkworms (Bombyx mori L.). In Scientific Papers Series D. Animal Science; Ion Ionescu de la Brad: Iași, Romania, 2004; Volume 47, pp. 684–687. [Google Scholar]
- Review of Methods of Analysis, Chapter 7. Available online: https://www.fao.org/3/y4705e/y4705e12.htm (accessed on 17 December 2023).
- Maciuc, V.; Creangă, Ș.; Maciuc, D.; Vidu, L. A New Programme for Data Management in Dairy Farms “ST 26733”. In Proceedings of the International Conference “Agriculture for Life, Life for Agriculture”, Bucharest, Romania, 4–6 June 2015; Volume 6, pp. 226–231. [Google Scholar]
- Bura, M.; Acatincăi, S.; Pădeanu, I. Silkworms, Biology and Growth; Helicon Publ.: Timișoara, Romania, 1995; pp. 45–57. [Google Scholar]
- Ifrim, S. Natural Silk; Ceres Publ.: Bucureşti, Romania, 1998; pp. 33–38. [Google Scholar]
- Rath, S.S.; Narain, R.; Prasad, B.C.; Roy, G.C.; Sinha, B. Food allocation budgeting in tropical tasar, Antheraea mylitta fed on Terminalia tomentosa. Sericologia 2003, 43, 557–564. [Google Scholar]
- De Marco, M.; Martínez, S.; Hernandez, F.; Madrid, J.; Gai, F.; Rotolo, L.; Belforti, M.; Bergero, D.; Katz, H.; Dabbou, S.; et al. Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: Apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Anim. Feed. Sci. Technol. 2015, 209, 211–218. [Google Scholar] [CrossRef]
- Rubia, B.; Kalpna, S. Analysis on the Effect of Different Mulberry Varieties on the Commercial Parameters of Mulberry Silkworm (Bombyx mori): A Review. J. Exp. Agric. Int. 2021, 43, 22–28. [Google Scholar]
- Chorshanbi, B. Effect of feeding mulberry silkworms with leaves of different cultivars and hybrids on silk gland activity and yield of cultivated cocoons. E3S Web Conf. 2023, 389, 03088. [Google Scholar] [CrossRef]
- Zhao, L.-C.; Hou, Y.-S.; Sima, Y.-H. Changes in glutathione redox cycle during diapause determination and termination in the bivoltine silkworm, Bombyx mori. Insect Sci. 2014, 21, 39–46. [Google Scholar] [CrossRef]
- Ajage, D.A.; Tambe, A.S.; Pawar, S.S.; Khyade, V.B. Protein and carbohydrate digesting capability of syzigium seed powder in the tissue homogenate of mid gut in the fifth instar of silkworm, Bombyx mori (L.) race: Bivoltine cross breed [(CSR6 × CSR26) × CSR2 × CSR27)]. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 2343–2354. [Google Scholar] [CrossRef]
Larval Age | Mulberry Variety | Dry Matter % (Mean ± Standard Deviation) | Crude Protein % (Mean ± Standard Deviation) | Crude Fat % (Mean ± Standard Deviation) | Crude Fiber % (Mean ± Standard Deviation) | Nitrogen-Free Extract % (Mean ± Standard Deviation) | Ash % (Mean ± Standard Deviation) |
---|---|---|---|---|---|---|---|
I | Kokuso 21 | 27.91 ± 0.25 | 6.31± 0.09 | 0.79 ± 0.09 | 4.74 ± 0.14 | 12.33 ± 0.18 | 3.75 ± 0.45 |
Eforie | 28.14 ± 0.90 | 6.23 ± 0.40 | 0.85 ± 0.20 | 4.79 ± 0.42 | 12.43 ± 0.50 | 3.84 ± 0.88 | |
II | Kokuso 21 | 28.34 ± 0.54 | 6.28 ± 0.18 | 0.88 ± 0.13 | 4.88 ± 0.17 | 12.34 ± 0.22 | 3.96 ± 0.67 |
Eforie | 28.03 ± 0.81 | 6.21 ± 0.33 | 0.88 ± 0.20 | 4.76 ± 0.49 | 12.24 ± 0.63 | 3.94 ± 1.27 | |
III | Kokuso 21 | 29.70 ± 0.41 | 6.23 ± 0.15 | 1.14 ± 0.14 | 5.31 ± 0.62 | 12.64 ± 0.50 | 4.38 ± 1.22 |
Eforie | 29.32 ± 0.53 | 6.41 ± 0.39 | 1.17 ± 0.25 | 5.26 ± 0.31 | 12.30 ± 0.40 | 4.18 ± 0.94 | |
IV | Kokuso 21 | 29.87 ± 0.45 | 6.04 ± 0.10 | 1.16 ± 0.14 | 5.44 ± 0.42 | 13.09 ± 0.67 | 4.14 ± 1.28 |
Eforie | 30.47 ± 0.80 | 6.00 ± 0.39 | 1.22 ± 0.22 | 5.58 ± 0.50 | 13.37 ± 0.39 | 4.30 ± 1.13 | |
V | Kokuso 21 | 31.14 ± 0.91 | 6.15 ± 0.41 | 1.25 ± 0.33 | 5.93 ± 0.75 | 13.41 ± 0.61 | 4.41 ± 0.71 |
Eforie | 31.85 ± 0.69 | 6.06 ± 0.34 | 1.38 ± 0.36 | 6.15 ± 0.28 | 13.58 ± 0.44 | 4.69 ± 0.45 | |
I–V | Kokuso 21 | 29.39 ± 0.14 | 6.20 ± 0.10 | 1.04 ± 0.09 | 5.26 ± 0.27 | 12.76 ± 0.25 | 4.13 ± 0.50 |
Eforie | 29.56 ± 0.16 | 6.18 ± 0.08 | 1.10 ± 0.10 | 5.31 ± 0.23 | 12.78 ± 0.30 | 4.19 ± 0.34 |
Larval Age | Variety | F (g) | R (g) | I = F − R (g) | E (g) | D = I − E (g) |
---|---|---|---|---|---|---|
I | Kokuso 21 | 15.5 | 5.007 | 10.493 | 0.147 | 24.01 |
Eforie | 15.5 | 5.295 | 10.205 | 0.155 | 10.050 | |
II | Kokuso 21 | 26 | 8.221 | 17.779 | 1.019 | 16.760 |
Eforie | 26 | 9.039 | 16.961 | 0.622 | 16.339 | |
III | Kokuso 21 | 77 | 23.146 | 53.885 | 4.125 | 49.730 |
Eforie | 77 | 24.090 | 52.910 | 3.629 | 49.282 | |
IV | Kokuso 21 | 242 | 67.940 | 174.143 | 19.858 | 154.286 |
Eforie | 242 | 65.503 | 176.497 | 22.204 | 154.294 | |
V | Kokuso 21 | 1000 | 269.055 | 730.945 | 122.390 | 608.555 |
Eforie | 1000 | 269.837 | 730.163 | 126.960 | 603.203 | |
I–V | Kokuso 21 | 1365.5 | 373.368 | 987.215 | 147.539 | 839.676 |
Eforie | 1365.5 | 373.763 | 986.737 | 153.570 | 833.167 |
Larval Age | Mulberry Variety | Dry Matter % (Mean ± Standard Deviation) | Crude Protein % (Mean ± Standard Deviation) | Crude Fat % (Mean ± Standard Deviation) | Crude Fiber % (Mean ± Standard Deviation) | Nitrogen-Free Extract % (Mean ± Standard Deviation) | Ash % (Mean ± Standard Deviation) |
---|---|---|---|---|---|---|---|
I | Kokuso 21 | 63.82 ± 0.41 | 14.04 ± 0.26 | 2.01 ± 0.37 | 14.59 ± 0.37 | 25.97 ± 0.44 | 7.23 ± 1.43 |
Eforie | 63.61 ± 0.41 | 15.01 ± 0.44 | 1.68 ± 0.43 | 13.92 ± 0.41 | 24.01 ± 0.42 | 9.00 ± 1.09 | |
II | Kokuso 21 | 60.03 ± 0.36 | 12.01 ± 0.81 | 2.11 ± 0.39 | 14.88 ± 0.43 | 21.01 ± 0.67 | 10.02 ± 1.24 |
Eforie | 59.16 ± 0.43 | 13.01 ± 0.32 | 2.01 ± 0.44 | 13.51 ± 0.45 | 22.61 ± 0.39 | 8.03 ± 1.13 | |
III | Kokuso 21 | 58.39 ± 0.33 | 10.78 ± 0.19 | 2.31 ± 0.25 | 15.99 ± 0.38 | 22.12 ± 0.31 | 7.20 ± 0.43 |
Eforie | 58.82 ± 0.63 | 12.33 ± 0.47 | 2.36 ± 0.32 | 15.77 ± 0.45 | 24.02 ± 0.42 | 4.33 ± 1.01 | |
IV | Kokuso 21 | 59.53 ± 0.40 | 12.62 ± 0.34 | 2.45 ± 0.42 | 14.49 ± 0.35 | 24.72 ± 0.54 | 5.27 ± 1.01 |
Eforie | 58.06 ± 0.36 | 12.06 ± 0.48 | 1.72 ± 0.45 | 15.71 ± 0.38 | 24.66 ± 0.41 | 3.91 ± 0.79 | |
V | Kokuso 21 | 56.73 ± 0.46 | 11.46 ± 0.41 | 1.88 ± 0.37 | 13.66 ± 0.39 | 23.97 ± 0.55 | 5.75± 1.12 |
Eforie | 58.56 ± 0.45 | 11.06 ± 0.55 | 2.61 ± 0.40 | 11.99 ± 0.72 | 24.88 ± 0.63 | 8.03± 1.88 | |
I–V | Kokuso 21 | 59.70 ± 0.17 | 12.18 ± 0.17 | 2.15 ± 0.11 | 14.72 ± 0.27 | 23.56 ± 0.24 | 7.09 ± 0.76 |
Eforie | 59.64 ± 0.12 | 12.69 ± 0.20 | 2.08 ± 0.28 | 14.18 ± 0.26 | 24.04 ± 0.32 | 6.66 ± 0.98 |
Larval Age | Mulberry Variety | Dry Matter % (Mean ± Standard Deviation) | Crude Protein % (Mean ± Standard Deviation) | Crude Fat % (Mean ± Standard Deviation) | Crude Fiber % (Mean ± Standard Deviation) | Nitrogen-Free Extract % (Mean ± Standard Deviation) | Ash % (Mean ± Standard Deviation) |
---|---|---|---|---|---|---|---|
I | Kokuso 21 | 66.15 ± 0.41 | 21.87 ± 0.42 | 5.67 ± 0.41 | 2.33 ± 0.38 | 27.21 ± 0.48 | 9.07 ± 0.1.38 |
Eforie | 69.82 ± 0.42 | 14.33 ± 0.44 | 15.02 ± 0.44 | 3.35 ± 0.51 | 27.09 ± 0.70 | 9.13 ± 2.06 | |
p value | 0.9999 | 0.9999 | >0.9999 | >0.9999 | 0.9999 | 0.9999 | |
II | Kokuso 21 | 64.69 ± 0.53 | 14.93 ± 0.62 | 3.64 ± 0.39 | 4.31 ± 0.35 | 27.85± 0.70 | 13.96 ± 1.87 |
Eforie | 63.22 ± 0.62 | 11.01 ± 0.59 | 4.01 ± 0.52 | 2.43 ± 0.43 | 29.78± 0.55 | 15.99 ± 1.91 | |
p value | 0.9999 | >0.9999 | >0.9999 | 0.9999 | 0.9999 | >0.9999 | |
III | Kokuso 21 | 65.15 ± 0.44 | 14.99 ± 0.40 | 2.63 ± 0.43 | 7.99 ± 0.38 | 25.53 ± 0.53 | 14.00 ± 1.04 |
Eforie | 64.53 ± 0.64 | 16.29 ± 0.43 | 2.01± 0.20 | 6.09 ± 0.70 | 28.02 ± 0.52 | 12.12 ± 1.82 | |
p value | 0.9999 | 0.9999 | >0.9999 | >0.9999 | 0.9999 | 0.9999 | |
IV | Kokuso 21 | 63.52 ± 0.40 | 11.01 ± 0.47 | 2.02 ± 0.41 | 14.09 ± 0.29 | 24.99 ± 0.48 | 11.41 ± 1.35 |
Eforie | 64.06 ± 0.46 | 11.01 ± 0.50 | 2.66 ± 0.34 | 12.04 ± 0.44 | 27.29 ± 0.42 | 11.06 ± 1.78 | |
p value | 0.9985 | >0.9999 | >0.9999 | 0.9999 | 0.9999 | 0.9999 | |
V | Kokuso 21 | 61.03 ± 0.49 | 9.98 ± 0.70 | 3.22 ± 0.24 | 13.99 ± 0.45 | 25.01 ± 0.54 | 8.83 ± 1.53 |
Eforie | 62.58 ± 0.42 | 10.38 ± 0.43 | 3.01 ± 0.48 | 16.06 ± 0.23 | 24.02 ± 0.32 | 9.11 ± 1.15 | |
p value | 0.9973 | >0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | |
I–V | Kokuso 21 | 64.11 ± 0.25 | 14.56 ± 0.31 | 3.43 ± 0.26 | 8.54 ± 0.20 | 26.12 ± 0.44 | 11.46 ± 1.31 |
Eforie | 64.84 ± 0.26 | 12.60 ± 0.30 | 5.34 ± 0.18 | 8.00 ± 0.23 | 27.42 ± 0.45 | 11.48 ± 1.33 | |
p value | 0.9999 | >0.9999 | 0.9979 | >0.9999 | >0.9999 | 0.9999 |
Larval Age | Mulberry Variety | Dry Matter % (Mean ± Standard Deviation) | Crude Protein % (Mean ± Standard Deviation) | Crude Fat % (Mean ± Standard Deviation) | Crude Fiber % (Mean ± Standard Deviation) | Nitrogen-Free Extract % (Mean ± Standard Deviation) |
---|---|---|---|---|---|---|
I | Kokuso 21 | 91.38 ± 1.66 | 88.30 ± 2.25 | 61.30 ± 7.36 | 0.17 ± 0.08 | 93.45 ± 1.26 |
Eforie | 89.08 ± 1.42 | 87.02 ± 1.67 | 46.01 ± 7.07 | 0.53 ± 0.21 | 93.36 ± 0.87 | |
p value | >0.9999 | >0.9999 | 6.1 × 10−6 | >0.9999 | >0.9999 | |
II | Kokuso 21 | 72.91 ± 1.10 | 76.46 ± 0.97 | 31.80 ± 2.68 | 4.40 ± 1.92 | 80.85 ± 0.79 |
Eforie | 79.87 ± 10.18 | 84.51 ± 7.84 | 47.50 ± 26.33 | 3.62 ± 1.10 | 83.81 ± 8.25 | |
p value | 0.8709 | 0.5441 | 2.5 × 10−6 | >0.9999 | >0.9999 | |
III | Kokuso 21 | 71.26 ± 0.10 | 73.09 ± 0.10 | 68.15 ± 0.12 | 15.44 ± 0.56 | 77.17 ± 0.08 |
Eforie | 72.20 ± 3.88 | 70.02 ± 4.23 | 77.94 ± 3.07 | 10.21 ± 2.19 | 72.47 ± 3.87 | |
p value | >0.9999 | 0.9999 | 0.1042 | 0.9992 | 0.9999 | |
IV | Kokuso 21 | 60.42 ± 0.08 | 63.86 ± 0.08 | 65.25 ± 0.08 | 15.66 ± 0.29 | 66.68 ± 0.07 |
Eforie | 60.16 ± 0.87 | 63.13 ± 0.77 | 67.58 ± 0.83 | 16.76 ± 1.88 | 62.61 ± 0.83 | |
p value | >0.9999 | >0.9999 | >0.9999 | >0.9999 | 0.9999 | |
V | Kokuso 21 | 52.96 ± 0.02 | 60.10 ± 0.02 | 46.62 ± 0.02 | 24.15 ± 0.03 | 56.01 ± 0.02 |
Eforie | 50.49 ± 0.89 | 57.14 ± 0.77 | 43.51 ± 1.03 | 30.09 ± 1.30 | 55.55 ± 0.80 | |
p value | >0.9999 | >0.9999 | 0.9999 | 0.9882 | >0.9999 | |
I–V | Kokuso 21 | 55.42 ± 0.02 | 61.88 ± 0.03 | 49.79 ± 0.03 | 22.91 ± 0.06 | 59.48 ± 0.02 |
Eforie | 53.49 ± 0.74 | 59.19 ± 0.65 | 49.67 ± 0.84 | 28.62 ± 1.26 | 58.14 ± 0.67 | |
p value | 0.0001 | 6.5 × 10−8 | 0.9999 | 7.1 × 10−15 | 0.0122 | |
I–V | Average values per larval period | 54.45 ± 0.38 | 60.53 ± 0.34 | 49.73 ± 0.43 | 25.67 ± 0.66 | 58.81 ± 0.69 |
Variety | Organic Matter Compounds and Digestibility | |||
---|---|---|---|---|
Dry Matter % | Crude Protein % | Crude Fat % | Nitrogen-Free Extract % | |
Crude fiber in Kokuso 21 | r = −0.33 | r = −0.39 | r = −0.36 | r = −0.30 |
p value | 0.5288 | 0.4422 | 0.4875 | 0.5100 |
Crude fiber in Eforie | r = −0.66 | r = −0.65 | r = −0.63 | r = −0.65 |
p value | 0.1502 | 0.1608 | 0.1785 | 0.1641 |
Mulberry Variety | Ingested Dry Matter/Silk Wrap Dry Matter (Mean ± Standard Deviation) | Digested Dry Matter/Silk Wrap Dry Matter (Mean ± Standard Deviation) | ECIS Silk Wrap (%) (Mean ± Standard Deviation) | ECDS Silk Wrap (%) (Mean ± Standard Deviation) |
---|---|---|---|---|
Kokuso 21 | 10.06 ± 0.11 | 5.57 ± 0.06 | 9.90 ± 0.11 | 17.94 ± 0.04 |
Eforie | 10.14 ± 0.08 | 5.42 ± 0.10 | 9.87 ± 0.08 | 18.45 ± 0.35 |
p value | p < 0.05 | p < 0.05 | p > 0.05 | p < 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doliș, M.G.; Pânzaru, C.; Usturoi, M.G.; Usturoi, A.; Radu-Rusu, C.-G.; Davidescu, M.A. On the Digestibility of Mulberry Leaf Fed to Bombyx mori Larvae. Agriculture 2024, 14, 1394. https://doi.org/10.3390/agriculture14081394
Doliș MG, Pânzaru C, Usturoi MG, Usturoi A, Radu-Rusu C-G, Davidescu MA. On the Digestibility of Mulberry Leaf Fed to Bombyx mori Larvae. Agriculture. 2024; 14(8):1394. https://doi.org/10.3390/agriculture14081394
Chicago/Turabian StyleDoliș, Marius Gheorghe, Claudia Pânzaru, Marius Giorgi Usturoi, Alexandru Usturoi, Cristina-Gabriela Radu-Rusu, and Mădălina Alexandra Davidescu. 2024. "On the Digestibility of Mulberry Leaf Fed to Bombyx mori Larvae" Agriculture 14, no. 8: 1394. https://doi.org/10.3390/agriculture14081394
APA StyleDoliș, M. G., Pânzaru, C., Usturoi, M. G., Usturoi, A., Radu-Rusu, C.-G., & Davidescu, M. A. (2024). On the Digestibility of Mulberry Leaf Fed to Bombyx mori Larvae. Agriculture, 14(8), 1394. https://doi.org/10.3390/agriculture14081394