Rapid and Non-Destructive Geographical Origin Identification of Chuanxiong Slices Using Near-Infrared Spectroscopy and Convolutional Neural Networks
Abstract
:1. Introduction
2. Material and Methods
2.1. Sample Collection and Spectral Acquisition
2.2. Sample Set Division and Spectral Pretreatment
2.3. Discriminant Analysis
2.4. The Construction and Evaluation of the CNN Model
2.5. Feature Extraction in CNN Models
3. Results and Discussion
3.1. NIR Spectral Features Analysis
3.2. Traditional Classification Model Analysis
3.3. Classification Model Based on CNN
3.4. Comparative Performance Analysis of New and Traditional Models
3.5. Analysis of the Feature Extraction Process in CNN Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Shan, F.; Hao, J. Herbal textual research on origin and development of chuanxiong. Zhongguo Zhong Yao Za Zhi 2011, 36, 2306–2310. Available online: https://pubmed.ncbi.nlm.nih.gov/22097351/ (accessed on 27 June 2024). [PubMed]
- Zheng, Y.; Zeng, J.-X.; Lin, J.-X.; Xia, Y.-F.; He, G.-H. Herbal textual research on Chuanxiong Rhizoma in Chinese classical prescriptions. Zhongguo Zhong Yao Za Zhi 2021, 46, 4293–4299. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Peng, C.; Liu, Y.; Chen, H.; Xiang, C. Discussion on forming pattern of dao-di herbs Ligusticum chuanxiong. China J. Chin. Mater. Medica 2011, 36, 2303–2305. Available online: https://pubmed.ncbi.nlm.nih.gov/22097350/ (accessed on 27 June 2024).
- Yang, J.; Feng, X.-L.; Yu, Y.; Wang, Q.; Zou, J.; Wang, C.-X.; Mu, Z.-Q.; Yao, X.-S.; Gao, H. Novel phthalide derivatives identified from Ligusticum chuanxiong (Chuanxiong). Chin. Med. 2016, 11, 10. [Google Scholar] [CrossRef]
- Hu, J.; Jia, X.; Fang, X.; Li, P.; He, C.; Chen, M. Ultrasonic extraction, antioxidant and anticancer activities of novel polysaccharides from Chuanxiong rhizome. Int. J. Biol. Macromol. 2016, 85, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, W.; Li, W.; Wu, T. Unveiling differential mechanisms of chuanxiong cortex and pith in the treatment of coronary heart disease using SPME-GC×GC-MS and network pharmacology. J. Pharm. Biomed. Anal. 2023, 234, 115540. [Google Scholar] [CrossRef] [PubMed]
- Moyer, D.C.; DeVries, J.W.; Spink, J. The economics of a food fraud incident—Case studies and examples including Melamine in Wheat Gluten. Food Control 2017, 71, 358–364. [Google Scholar] [CrossRef]
- Saikia, J.; Washmin, N.; Borah, T.; Sarmah, P.; Konwar, P.; Siga, A.; Haldar, S.; Banik, D. Physicochemical properties, chemical composition and sensory attributes of Alpinia nigra (Gaertn.) B.L. Burtt rhizome: An underutilized spice source. Eur. Food Res. Technol. 2023, 249, 1097–1112. [Google Scholar] [CrossRef]
- Weng, S.; Guo, B.; Tang, P.; Yin, X.; Pan, F.; Zhao, J.; Huang, L.; Zhang, D. Rapid detection of adulteration of minced beef using Vis/NIR reflectance spectroscopy with multivariate methods. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 230, 118005. [Google Scholar] [CrossRef]
- Song, C.; Liu, J.; Wang, C.; Li, Z.; Zhang, D.; Li, P. Rapid identification of adulterated rice based on data fusion of near-infrared spectroscopy and machine vision. J. Food Meas. Charact. 2024, 18, 3881–3892. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, X.; Wang, Y. Development of machine learning models using multi-source data for geographical traceability and content prediction of Eucommia ulmoides leaves. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 313, 124136. [Google Scholar] [CrossRef] [PubMed]
- Giraudo, A.; Grassi, S.; Savorani, F.; Gavoci, G.; Casiraghi, E.; Geobaldo, F. Determination of the geographical origin of green coffee beans using NIR spectroscopy and multivariate data analysis. Food Control 2019, 99, 137–145. [Google Scholar] [CrossRef]
- Amirvaresi, A.; Nikounezhad, N.; Amirahmadi, M.; Daraei, B.; Parastar, H. Comparison of near-infrared (NIR) and mid-infrared (MIR) spectroscopy based on chemometrics for saffron authentication and adulteration detection. Food Chem. 2021, 344, 128647. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Liu, X.; Wang, Y.; Ren, X.; Dong, Y.; Song, R.; Ma, J.; Fan, Q.; Wei, J.; et al. Fast discrimination and quantification analysis of Curcumae Radix from four botanical origins using NIR spectroscopy coupled with chemometrics tools. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 254, 119626. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Jin, K.; Zhong, L.; Zheng, Y.; Shao, Q.; Zhang, A. Near-infrared spectroscopy combined with machine learning for rapid identification of Atractylodis rhizoma decoction pieces. Ind. Crops Prod. 2023, 197, 116579. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, J.; Sun, P.; Ran, W.; Li, Y. Mango variety classification based on convolutional neural network with attention mechanism and near-infrared spectroscopy. J. Food Meas. Charact. 2024, 18, 2237–2247. [Google Scholar] [CrossRef]
- Hao, J.; Dong, F.; Wang, S.; Li, Y.; Cui, J.; Men, J.; Liu, S. Combined hyperspectral imaging technology with 2D convolutional neural network for near geographical origins identification of wolfberry. J. Food Meas. Charact. 2022, 16, 4923–4933. [Google Scholar] [CrossRef]
- Ren, L.; Tian, Y.; Yang, X.; Wang, Q.; Wang, L.; Geng, X.; Wang, K.; Du, Z.; Li, Y.; Lin, H. Rapid identification of fish species by laser-induced breakdown spectroscopy and Raman spectroscopy coupled with machine learning methods. Food Chem. 2023, 400, 134043. [Google Scholar] [CrossRef]
- Yang, S.; Li, C.; Mei, Y.; Liu, W.; Liu, R.; Chen, W.; Han, D.; Xu, K. Determination of the Geographical Origin of Coffee Beans Using Terahertz Spectroscopy Combined With Machine Learning Methods. Front. Nutr. 2021, 8, 680627. [Google Scholar] [CrossRef]
- Li, Q.; Zeng, J.; Lin, L.; Zhang, J.; Zhu, J.; Yao, L.; Wang, S.; Du, J.; Wu, Z. Mid-infrared spectra feature extraction and visualization by convolutional neural network for sugar adulteration identification of honey and real-world application. LWT 2021, 140, 110856. [Google Scholar] [CrossRef]
- Yang, J.; Xu, J.; Zhang, X.; Wu, C.; Lin, T.; Ying, Y. Deep learning for vibrational spectral analysis: Recent progress and a practical guide. Anal. Chim. Acta 2019, 1081, 6–17. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; He, M.; Wang, X.; Guo, S.; Zhang, Y.; Li, W. Fast Discrimination and Quantification Analysis of Atractylodis rhizoma Using NIR Spectroscopy Coupled with Chemometrics Tools. J. Agric. Food Chem. 2024, 72, 7707–7715. [Google Scholar] [CrossRef] [PubMed]
- Santos, I.A.; Conceição, D.G.; Viana, M.B.; Silva, G.d.J.; Santos, L.S.; Ferrão, S.P.B. NIR and MIR spectroscopy for quick detection of the adulteration of cocoa content in chocolates. Food Chem. 2021, 349, 129095. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Zhu, M.; Shi, T.; Luo, X.; Gan, B.; Tang, L.; Chen, Y. Adulteration detection of corn oil, rapeseed oil and sunflower oil in camellia oil by in situ diffuse reflectance near-infrared spectroscopy and chemometrics. Food Control 2021, 121, 107577. [Google Scholar] [CrossRef]
- Fan, X.Q.; Ming, W.; Zeng, H.T.; Zhang, Z.M.; Lu, H.M. Deep learning-based component identification for the Raman spectra of mixtures. Analyst 2019, 144, 1789–1798. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Pan, T.; Li, Y.; Chen, S.; Li, G. Development of analytical method associating near-infrared spectroscopy with one-dimensional convolution neural network: A case study. J. Food Meas. Charact. 2021, 15, 2963–2973. [Google Scholar] [CrossRef]
- Singh, T.; Garg, N.M.; Iyengar, S.R.S.; Singh, V. Near-infrared hyperspectral imaging for determination of protein content in barley samples using convolutional neural network. J. Food Meas. Charact. 2023, 17, 3548–3560. [Google Scholar] [CrossRef]
- Pu, H.; Yu, J.; Sun, D.-W.; Wei, Q.; Li, Q. Distinguishing pericarpium citri reticulatae of different origins using terahertz time-domain spectroscopy combined with convolutional neural networks. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 299, 122771. [Google Scholar] [CrossRef]
- Hamm, C.A.; Wang, C.J.; Savic, L.J.; Ferrante, M.; Schobert, I.; Schlachter, T.; Lin, M.; Duncan, J.S.; Weinreb, J.C.; Chapiro, J.; et al. Deep learning for liver tumor diagnosis part I: Development of a convolutional neural network classifier for multi-phasic MRI. Eur. Radiol. 2019, 29, 3338–3347. [Google Scholar] [CrossRef]
- Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning Deep Features for Discriminative Localization. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2921–2929. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Wang, Y.J.; Yan, H.; Chang, X.W.; Zhou, G.S.; Zhu, L.; Liu, P.; Guo, S.; Dong, T.T.X.; Duan, J.A. Rapid Geographical Origin Identification and Quality Assessment of Angelicae Sinensis Radix by FT-NIR Spectroscopy. J. Anal. Methods Chem. 2021, 2021, 8875876. [Google Scholar] [CrossRef]
- Wang, Z.H.; Li, B.Y.; Hu, Y.; Zhang, J.; Zhang, J.H.; Pan, X.B.; Wang, Y.L. Characterization of Radix Angelicae sinensis by Fluorescence and Near-Infrared Spectroscopies. Anal. Lett. 2024, 57, 1563–1575. [Google Scholar] [CrossRef]
- Chang, X.; Wei, D.; Su, S.; Guo, S.; Qian, S.; Yan, H.; Zhao, M.; Shang, E.; Qian, D.; Sun, X.; et al. An integrated strategy for rapid discovery and prediction of nucleobases, nucleosides and amino acids as quality markers in different flowering stages of Flos Chrysanthemi using UPLC–MS/MS and FT-NIR coupled with multivariate statistical analysis. Microchem. J. 2020, 153, 104500. [Google Scholar] [CrossRef]
- Hong, X.Z.; Fu, X.S.; Wang, Z.L.; Zhang, L.; Yu, X.P.; Ye, Z.H. Tracing geographical origins of teas based on FT-NIR spectroscopy: Introduction of model updating and imbalanced data handling approaches. J. Anal. Methods Chem. 2019, 2019, 1537568. [Google Scholar] [CrossRef] [PubMed]
- Acquarelli, J.; van Laarhoven, T.; Gerretzen, J.; Tran, T.N.; Buydens, L.M.C.; Marchiori, E. Convolutional neural networks for vibrational spectroscopic data analysis. Anal. Chim. Acta 2017, 954, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Fearn, T. Modern practical convolutional neural networks for multivariate regression: Applications to NIR calibration. Chemom. Intell. Lab. Syst. 2018, 182, 9–20. [Google Scholar] [CrossRef]
Modeling Set/237 | Prediction Set/60 | All/297 | ||||
---|---|---|---|---|---|---|
Correct | Accuracy/% | Correct | Accuracy/% | Correct | Accuracy/% | |
Raw | 173 | 73.00 | 44 | 73.33 | 217 | 73.06 |
S-G | 173 | 73.00 | 44 | 73.33 | 217 | 73.06 |
1st D | 181 | 76.37 | 47 | 78.33 | 228 | 76.77 |
2nd D | 130 | 54.85 | 24 | 40.00 | 154 | 51.58 |
MSC | 190 | 80.17 | 47 | 78.33 | 237 | 79.80 |
SNV | 186 | 78.48 | 45 | 75.00 | 231 | 77.78 |
S-G + 1st D | 186 | 78.48 | 47 | 78.33 | 233 | 78.56 |
S-G + 2nd D | 142 | 59.92 | 34 | 56.67 | 176 | 59.26 |
S-G + MSC | 190 | 80.17 | 48 | 80.00 | 238 | 80.13 |
S-G + SNV | 184 | 77.64 | 46 | 76.67 | 230 | 77.44 |
MSC + 1st D | 175 | 73.84 | 44 | 73.33 | 219 | 73.74 |
MSC + 2nd D | 139 | 58.65 | 27 | 45.00 | 166 | 55.89 |
SNC + 1st D | 175 | 73.84 | 44 | 73.33 | 219 | 73.74 |
SNC + 2nd D | 139 | 58.65 | 27 | 45.00 | 166 | 55.89 |
S-G + SNV + 1st D | 182 | 76.79 | 47 | 78.33 | 229 | 77.10 |
S-G + SNV + 2nd D | 175 | 73.84 | 46 | 76.67 | 221 | 74.41 |
S-G + MSC + 1st D | 182 | 76.79 | 47 | 78.33 | 229 | 77.10 |
S-G + MSC + 2nd D | 175 | 73.84 | 46 | 76.67 | 221 | 74.41 |
Modeling Set/237 | Prediction Set/60 | All/297 | ||||
---|---|---|---|---|---|---|
Correct | Accuracy/% | Correct | Accuracy/% | Correct | Accuracy/% | |
Raw | 158 | 66.67 | 45 | 75.00 | 203 | 68.35 |
S-G | 153 | 64.56 | 44 | 73.33 | 197 | 66.33 |
1st D | 195 | 82.28 | 48 | 80.00 | 243 | 81.82 |
2nd D | 134 | 56.54 | 32 | 53.33 | 166 | 55.89 |
MSC | 203 | 85.65 | 51 | 85.00 | 254 | 85.52 |
SNV | 205 | 86.50 | 32 | 53.33 | 238 | 80.13 |
S-G + 1st D | 204 | 86.08 | 51 | 85.00 | 255 | 85.86 |
S-G + 2nd D | 134 | 56.54 | 30 | 50.00 | 164 | 55.22 |
S-G + MSC | 206 | 86.92 | 54 | 90.00 | 260 | 87.54 |
S-G + SNV | 206 | 86.92 | 53 | 88.33 | 259 | 87.31 |
MSC + 1st D | 186 | 78.48 | 50 | 83.33 | 236 | 79.46 |
MSC + 2nd D | 150 | 63.29 | 38 | 63.33 | 188 | 63.30 |
SNC + 1st D | 187 | 78.90 | 50 | 83.33 | 237 | 79.80 |
SNC + 2nd D | 148 | 62.45 | 35 | 58.33 | 183 | 61.62 |
S-G + SNV + 1st D | 194 | 81.86 | 52 | 86.67 | 246 | 82.83 |
S-G + SNV + 2nd D | 160 | 67.51 | 33 | 55.00 | 193 | 64.98 |
S-G + MSC + 1st D | 195 | 82.28 | 52 | 86.67 | 247 | 83.16 |
S-G + MSC + 2nd D | 156 | 65.82 | 36 | 60.00 | 192 | 64.65 |
Traditional Model | New Model | New Model Accuracy Change | |
---|---|---|---|
All Accuracy/% | All Accuracy/% | All Accuracy/% | |
Raw | 73.06 | 68.35 | −4.71 |
S-G | 73.06 | 66.33 | −6.73 |
1st D | 76.77 | 81.82 | 5.05 |
2nd D | 51.58 | 55.89 | 4.31 |
MSC | 79.80 | 85.52 | 5.72 |
SNV | 77.78 | 80.13 | 2.35 |
S-G + 1st D | 78.56 | 85.86 | 7.3 |
S-G + 2nd D | 59.26 | 55.22 | −4.04 |
S-G + MSC | 80.13 | 87.54 | 7.41 |
S-G + SNV | 77.44 | 87.31 | 9.87 |
MSC + 1st D | 73.74 | 79.46 | 5.72 |
MSC + 2nd D | 55.89 | 63.30 | 7.41 |
SNC + 1st D | 73.74 | 79.80 | 6.06 |
SNC + 2nd D | 55.89 | 61.62 | 5.73 |
S-G + SNV + 1st D | 77.10 | 82.83 | 5.73 |
S-G + SNV + 2nd D | 74.41 | 64.98 | −9.43 |
S-G + MSC + 1st D | 77.10 | 83.16 | 6.06 |
S-G + MSC + 2nd D | 74.41 | 64.65 | −9.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Pan, Y.; Liu, C.; Zhou, L.; Tang, L.; Wei, H.; Fan, K.; Wang, A.; Tang, Y. Rapid and Non-Destructive Geographical Origin Identification of Chuanxiong Slices Using Near-Infrared Spectroscopy and Convolutional Neural Networks. Agriculture 2024, 14, 1281. https://doi.org/10.3390/agriculture14081281
Huang Y, Pan Y, Liu C, Zhou L, Tang L, Wei H, Fan K, Wang A, Tang Y. Rapid and Non-Destructive Geographical Origin Identification of Chuanxiong Slices Using Near-Infrared Spectroscopy and Convolutional Neural Networks. Agriculture. 2024; 14(8):1281. https://doi.org/10.3390/agriculture14081281
Chicago/Turabian StyleHuang, Yuxing, Yang Pan, Chong Liu, Lan Zhou, Lijuan Tang, Huayi Wei, Ke Fan, Aichen Wang, and Yong Tang. 2024. "Rapid and Non-Destructive Geographical Origin Identification of Chuanxiong Slices Using Near-Infrared Spectroscopy and Convolutional Neural Networks" Agriculture 14, no. 8: 1281. https://doi.org/10.3390/agriculture14081281
APA StyleHuang, Y., Pan, Y., Liu, C., Zhou, L., Tang, L., Wei, H., Fan, K., Wang, A., & Tang, Y. (2024). Rapid and Non-Destructive Geographical Origin Identification of Chuanxiong Slices Using Near-Infrared Spectroscopy and Convolutional Neural Networks. Agriculture, 14(8), 1281. https://doi.org/10.3390/agriculture14081281