Solid and Liquid Fraction of Digestate as an Alternative Mineral Nitrogen Source: Two-Year Field Research in Croatia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Weather Conditions during Maize Growing Season
2.3. Composition of the Digestate Fractions and Organic Fertilizer
2.4. Experimental Design, Fertilization Treatments and Dosage
2.5. Soil and Plant Sampling
2.6. Digestate Fractions, Soil and Plant Measurements (or Chemical Analysis)
2.6.1. Soil Analysis
2.6.2. Plant Analysis
2.7. Calculations and Statistical Analysis
3. Results
3.1. Maize Yield
3.2. Maize Nutrient Uptake
3.3. Apparent Nitrogen Recovery (ANR) and Nitrogen Fertilizer Replacement Value (NFRV)
3.4. NO3−-N Residue and Soil Mineral Nitrogen
4. Discussion
4.1. Fertilizer Impact on Maize Production
4.2. Nutrient Uptake
4.3. Apparent Nitrogen Recovery (ANR) and Nitrogen Fertilizer Replacement Value (NFRV)
4.4. The Post-Harvested Status of the Soil
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Croatian Renewable Energy Sources Association. The Survival of Bio-Gas in Croatia Brought into Question. Developed: L33T Digital Agency. 2023. Available online: https://oie.hr/en/upitan-opstanak-bioplina-u-hrvatskoj/#:~:text=Croatia%20has%2048MW%20biogas%20plants,384.000%20MWH%20of%20electric%20power (accessed on 5 April 2024).
- Doyeni, M.O.; Stulpinaite, U.; Baksinskaite, A.; Suproniene, S.; Tilvikiene, V. The Effectiveness of Digestate Use for Fertilization in an Agricultural Cropping System. Plants 2021, 10, 1734. [Google Scholar] [CrossRef]
- Corden, C.; Bougas, K.; Cunningham, E.; Tyrer, D.; Kreißig, J.; Zetti, E.; Gamero, E.; Wildey, R.; Crookes, M. WOOD. Wood Environment & Infrastructure Solutions. Digestate and Compost as Fertilisers: Risk Assessment and Risk Management Options. European Comission, 2020. Available online: https://ec.europa.eu/environment/chemicals/reach/pdf/40039%20Digestate%20and%20Compost%20RMOA%20-%20Final%20report%20i2_20190208.pdf (accessed on 20 February 2024).
- Corden, C.; Bougas, K.; Cunningham, E.; Tyrer, D.; Kreissig, J.; Crookes, M. Digestate abd Compost as Fertilizer: Risk Assessment and Risk Menagement Options; Wood Environment and Infrastructure Solutions UK Limited: Aberdeen, UK, 2019; pp. 121–128. [Google Scholar]
- Scarlat, N.; Dallemand, J.F.; Fahl, F. Biogas: Developments and perspectives in Europe. Renew. Energy 2018, 129, 457–472. [Google Scholar] [CrossRef]
- Kulišić, B.; Par, V. Agricultural Potential for Biogas Production in Croatia. Agric. Conspec. Sci. 2009, 74, 215–220. [Google Scholar]
- European Biogas Association. EBA Statistical Report. Annual Statistical Report of the European Biogas Association Abriged Version; European Biogas Association: Bruxelles, Belgium, 2018. [Google Scholar]
- Petravić-Tominac, V.; Nastav, N.; Buljubašić, M.; Šantek, B. Current state of biogas production in Croatia. Sustain. Soc. 2020, 10, 8. [Google Scholar] [CrossRef]
- Vukadinović, V.; Jug, I. Adekvatnom Gnojidbom do Prinosa. Agroklub. 2015. Available online: https://www.agroklub.com/ratarstvo/adekvatnom-gnojidbom-do-prinosa/18726/ (accessed on 30 August 2020).
- HROTE. Povlašteni Proizvođači s Kojima je HROTE Sklopio Ugovor o Otkupu Električne Energije, a Čija su Postrojenja u Sustavu Poticanja. Electricity Purchase Agreement with Croatian Energy Market Operator; Hrvatski Operator Tržišta Energije, HROTE: Zagreb, Croatia, 2018. [Google Scholar]
- OIE HRVATSKA. Upitan Opstanak Bioplina u Hrvatskoj. 2023. Available online: https://oie.hr/upitan-opstanak-bioplina-u-hrvatskoj/ (accessed on 17 June 2024).
- Yuan, Z.L.; Gerbens-Leenes, P.W. Biogas feedstock potentials and related water footprints from residues in China and the European Union. Sci. Total Environ. 2021, 793, 148340. [Google Scholar] [CrossRef] [PubMed]
- Scarlat, N.; Fahl, F.; Dallemand, J.F.; Monforti, F.; Motola, F. A spatial analysis of biogas potential from manure in Europe. Renew. Sustain. Energy Rev. 2018, 94, 915–930. [Google Scholar] [CrossRef]
- Bacenetti, J.; Negri, M.; Fiala, M.; González-García, S. Anaerobic digestion of different feedstocks: Impact on energetic and environmental balances of biogas process. Sci. Total Environ. 2013, 463–464, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Ðurđević, D.; Blecich, P.; Lenić, K. Energy potential of digestate produced by anaerobic digestion in biogas power plants: The case study of Croatia. Environ. Eng. Sci. 2018, 35, 1286–1293. [Google Scholar] [CrossRef]
- Vaneeckhaute, C.; Meers, E.; Michels, E.; Ghekiere, G.; Accoe, F.; Tack, F.M.G. Closing the nutrient cycle by using bio-digestion waste derivatives as synthetic fertilizer substitutes: A field experiment. Biomass Bioenergy 2013, 55, 175–189. [Google Scholar] [CrossRef]
- Passos, F.; Ortega, V.; Donoso-Bravo, A. Thermochemical pretreatment and anaerobic digestion of dairy cow manure: Experimental and economic evaluation. Bioresour. Technol. 2017, 227, 239–246. [Google Scholar] [CrossRef]
- Risberg, K.; Cederlund, H.; Pell, M.; Arthurson, V.; Schnürer, A. Comparative characterization of digestate versus pig slurry and cow manure—Chemical composition and effects on soil microbial activity. Waste Manag. 2017, 61, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Ebner, J.H.; Labatut, L.A.; Lodge, J.S.; Williamson, A.A.; Trabold, T.A. Anaerobic co-digestion of commercial food waste and dairy manure: Characterizing biochemical parameters and synergistic effects. Waste Manag. 2016, 52, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Wallace, P. Digestates: Realising the Fertilizer Benefits for Crops and Grassland; Waste and Resources Action Programme: Banbury, UK, 2011. [Google Scholar]
- WRAP. Using Quality Anaerobic Digestate to Benefit Crops; Waste & Resource Action Programme: Banbury, UK, 2012. [Google Scholar]
- WRAP. Digestate and Compost Use in Agriculture; WRAP: Banbury, UK, 2016; pp. 1–32. [Google Scholar]
- Lund, Z.F.; Doss, B.D. Residual effects of dairy cattle manure on plant growth and soil properties. Agron. J. 1980, 72, 123–130. [Google Scholar] [CrossRef]
- Magdoff, F.R.; Amadon, J.F. Yield trends and soil chemical changes resulting from N and manure application to continuous corn. Agron. J. 1980, 72, 161–164. [Google Scholar] [CrossRef]
- Görlitz, H.; Herrmann, V.; Jauert, R. Ertrag und Nahrstoffnutzung nach ein- und mehrjahrigen hohen Gullegaben zu Silomais sowie ihre Nachwirkung auf sandigen B€oden. Arch. Acker-Pflanzenb. Bodenk. Berlin 1985, 29, 55–60. [Google Scholar]
- Werner, W.; Scherer, H.W.; Drescher, D. Untersuchungen uber den Einfluss langjahriger Gulledungung auf N-Fraktionen und Nnachlieferung des Bodens. Zeitschr. Acker-Pflanzenb. 1985, 155, 137–144. [Google Scholar]
- Sommerfeldt, T.G.; Chang, C.; Entz, T. Long-term annual manure applications increase soil organic matter and nitrogen, and decrease carbon to nitrogen ratio. Soil Sci. Soc. Am. J. 1988, 52, 1668–1672. [Google Scholar] [CrossRef]
- Dilz, P.; Postmus, J.; Prins, W.H. Residual effect of long term applications of farmyard manure to silage maize maize. Fert. Res. 1990, 26, 249–252. [Google Scholar] [CrossRef]
- Czekala, W. Digestate as a Source of Nutrients: Nitrogen and Its Fractions. Water 2022, 14, 406. [Google Scholar] [CrossRef]
- Guo, J.H.; Lui, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant Acidification in Major Chinese Croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef]
- Bogunović, M.; Vidaček, Ž.; Racz, Z.; Husnjak, S.; Sraka, M. General Soil Map of Croatia, 1:300 000; University of Zagreb Faculty of Agriculture, Department of Soil Science: Zagreb, Croatia, 1996. [Google Scholar]
- Lazarević, B.; Horvat, T.; Poljak, M. Effect of Acid Aluminous Soil on Photosynthetic Parameters of Potato (Solanum tuberosum L.). Potato Res. 2014, 57, 33–46. [Google Scholar] [CrossRef]
- Bogunović, I.; Kisić, I. Soil Compaction on Clay Loam Soil in Pannonian Region of Croatia under Different Tillage Systems. J. Agric. Sci. Technol. 2017, 19, 475–486. [Google Scholar]
- Biró, B.; Varga, G.; Hartl, W.; Németh, T. Soil quality and nitrate percolation as affected by the horticultural and arable field conditions of organic and conventional agriculture. Acta Agric. Scand. Sect. B Soil Plant Sci. 2005, 55, 111–119. [Google Scholar] [CrossRef]
- Alburquerquea, J.A.; de la Fuentea, C.; Campoya, M.; Carrascoa, L.; Nájerab, I.; Baixaulib, C.; Caravacaa, F.; Roldána, A.; Cegarraa, J.; Bernala, M.P. Agricultural use of digestate for horticultural crop production and improvement of soil properties. Eur. J. Agron. 2012, 43, 119–128. [Google Scholar] [CrossRef]
- European Commission. The Nitrates Directive 1991. Available online: http://ec.europa.eu/environment/water/water-nitrates/index_en.html (accessed on 25 March 2024).
- Reuland, G.; Sigurnjak, I.; Dekker, H.; Michels, E.; Meers, E. The Potential of Digestate and the Liquid Fraction of Digestate as Chemical Fertilizer Substitutes under the RENURE Criteria. Agronomy 2021, 11, 1374. [Google Scholar] [CrossRef]
- Schroder, J. Revisiting the agronomic benefits of manure: A correct assessment and exploitation of its fertilizer value spares the environment. Bioresour. Technol. 2005, 96, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Cavalli, D.; Cabassi, G.; Borrelli, L.; Geromel, G.; Bechini, L.; Degano, L.; Marino Gallinaa, P. Nitrogen fertilizer replacement value of undigested liquid cattlemanure and digestates. Eur. J. Agron. 2016, 73, 34–41. [Google Scholar] [CrossRef]
- Thun, R.; Herrmann, R.; Knickmann, E. Die Untersuchung von Boden. Radebeuel und Berlin; Neumann Verlag: Berlin, Germany, 1955. (In German) [Google Scholar]
- DHMZ—Croatian Meteorological and Hydrological Service. Average Temperature and Precipitation for Year 2018; DHMZ: Zagreb, Croatia, 2018. [Google Scholar]
- DHMZ—Croatian Meteorological and Hydrological Service. Average Temperature and Precipitation for Year 2019; DHMZ: Zagreb, Croatia, 2019. [Google Scholar]
- Pucarić, A.; Ostojić, Z.; Čuljat, M. Proizvodnja Kukuruza; Biblioteka Poljoprivredni Savjetnik: Zagreb, Croatia, 1997. [Google Scholar]
- ConsultAre. BPP Bojana. Trg Petra Zrinskog, Vrbovec. Available online: https://www.consultare.hr/hr/projekti/bpp-bojana-cazma (accessed on 24 July 2024).
- Gašpar. I. Gnojidba Ratatskih Kultura. Petrokemija.d.d.; Studio Grafičkih Ideja: Zagreb, Croatia, 2000; 40p. (In Croatian) [Google Scholar]
- Ondrašek, G.; Bakić Begić, H.; Romić, D.; Brkić, Ž.; Husnjak, S.; Bubalo Kovačić, M. A novel LUMNAqSoP approach for prioritising groundwater monitoring stations for implementation of the Nitrates Directive. Environ. Sci. Eur. 2021, 33, 23. [Google Scholar] [CrossRef]
- Ministarstvo Poljoprivrede (NN 60/2017). II. Akcijski Program Zaštite Voda Od Onečišćenja Uzrokovanog Nitratima Poljoprivrednog Podrijetla. Off. Gazette 2017, 1360, 23. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/2017_06_60_1368.html (accessed on 27 February 2024). (In Croatian).
- Corteca agriscience. Catalog Pioneer Seed. Available online: https://www.corteva.hr/proizvodi/sjeme/kukuruz/p0725.html (accessed on 5 May 2024).
- Abendroth, L.J.; Elmore, R.W.; Boyer, M.J.; Marlay, S.K. Corn Growth and Development; Iowa State University. University Extension: Ames, IA, USA, 2011; PMR 1009. [Google Scholar]
- Bremner, J.M.; Kwwnwy, D.R. Steam destilation methods for determination of ammonium, nitrate and nitrite. Anal. Chim. Acta 1964, 32, 485–495. [Google Scholar] [CrossRef]
- European Parliament. EU Fertilising Products. Annex I. Product Function Categories (PFCs) of EU Fertilising Products. Part II. Requirements Related to PFCS; EU: Strasbourg, France, 2019; p. 119. [Google Scholar]
- AOAC. Officinal Method of Analysis of AOAC International; AOAC: Gaithersburg, MD, USA, 2015. [Google Scholar]
- Keeney, D.R.; Nelson, D.W. Nitrogen—Inorganic Forms from Methods of Soil Analysis; Page, A.I., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 1982; pp. 643–693. [Google Scholar]
- JDPZ. Kemijske Metode za Ispitivanje Zemljišta, Priručnik za Ispitivanje Zemljišta; Jugoslovensko Društvo za Proučavanje Zemljišta: Beograd, Serbia, 1966. (In Serbian) [Google Scholar]
- Sigurnjak, I.; Vaneeckhaute, C.; Michels, E.; Ryckaert, B.; Ghekiere, G.; Tack, F.M.G.; Meers, E. Fertilizer performance of liquid fraction of digetate as synthetic nitrogen sustitute in silage maize cultivation for three consecutive years. Sci. Total Environ. 2017, 599–600, 1885–1894. [Google Scholar] [CrossRef] [PubMed]
- Krištof, M. Statistical Yearbook of the Republic of Croatia; Ostroški, L., Čajkušić, S., Čizmović, Ž., Jukić, D., Lipavić, V., Ostroški, L., Pekeč, M., Primorac Čačić, M., Eds.; Državni zavod za statistiku Republike Hrvatske: Zagreb, Croatia, 2018. [Google Scholar]
- Culy, M.D.; Edwards, C.R.; Cornelius, J.R. Effect of Silk Feeding by Western Corn Rootworm (Coleoptera: Chrysomelidae) on Yield and Quality of Inbred Corn in Seed Corn Production Fields. J. Econ. Entomol. 1992, 85, 2440–2446. [Google Scholar] [CrossRef]
- Hrgović, S. Osnove agrotehnike proizvodnje kukuruza (Zea mays). Glas. Zaštite Bilja 2007, 30, 48–61. [Google Scholar]
- Tollenaar, M.; Dwyer, L.M. Physiology of Maize; Springer: Berlin/Heidelberg, Germany, 1999; pp. 169–204. [Google Scholar]
- Westgate, M.E.; Otegui, M.E.; Andrade, F.H. Physiology of the Corn Plant. In Corn: Origin, History, Technology and Production; Smith, C.W., Betrán, J., Runge, E.C.A., Eds.; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2004. [Google Scholar]
- Cvjetićanin, P.; Kanižaj, Ž.; Žanić, M.; Šimičević, M.; Štimac, V.; Valentić, M.; Ćališ, D.; Grlica, A. Agriculture, forestry and fishing. In Statistical Yearbook of the Republic of Croatia; Croatia Bureau of Statistics: Zagreb, Croatia, 2017; Available online: https://www.dzs.hr/Hrv_Eng/ljetopis/2017/sljh2017.pdf (accessed on 30 August 2020).
- Chantigny, M.H.; Angers, D.A.; Bélanger, G.; Rochette, P.; Eriksen-Hamel, N.; Bittman, S.; Buckley, K.; Massé, D.; Gasser, M.-O. Yield and Nutrient Export of Grain Corn Fertilized with Raw and Treated Liquid Swine Manure. Agron. J. 2008, 100, 1303–1309. [Google Scholar] [CrossRef]
- Rhoads, F.M.; Manning, A. Soybean, corn, and wheat yields with variable soil pH on plinthic Acrisols. Fert. Res. 1989, 19, 137–142. [Google Scholar] [CrossRef]
- Alam, S.M. Nutrient uptake by plants under stress conditions. In Handbook of Plant and Crop Stress, 2nd ed.; Pessarakli, M., Ed.; Marcel Dekker Inc.: New York, NY, USA, 1999; pp. 285–315. [Google Scholar]
- Fageria, N.K.; Zimmermanna, F.J.P. Influence of pH on Growth and Nutrient Uptake by Crop Species in an Oxisol. Commun. Soil Sci. Plant Anal. 1998, 29, 2675–2682. [Google Scholar] [CrossRef]
- Bergmann, W. Nutritional Disorders of Plants. Development, Visual and Analytical Diagnosis; Gustav Fisher Verlag Jena: Stuttgard, Germany; New York, NY, USA, 1992; pp. 17–26. [Google Scholar]
- Schimel, J.P. Life in dry soils: Effects of drought on soil microbial communities and processes. Annu. Rev. Ecol. Evol. Syst. 2018, 49, 409–432. [Google Scholar] [CrossRef]
- Ali, N.S.; Hassan, W.F.; Janno, F.O. Soil iron and nitrogen availability and their uptake by maize plants as related to mineral and bio nitrogen fertilizers application. Agric. Biol. J. N. Am. 2015, 6, 118–122. [Google Scholar]
- Marschner, P. Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: London, UK, 2012; pp. 135–178. [Google Scholar]
- Głowacka, A.; Szostak, B.; Klebaniuk, R. Effect of Biogas Digestate and Mineral Fertilisation on the Soil Properties and Yield and Nutritional Value of Switchgrass Forage. Agronomy 2020, 10, 490. [Google Scholar] [CrossRef]
- Reijs, J.W.; Sonneveld, M.P.W.; Sørensen, P.; Schils, R.L.M.; Groot, J.C.J.; Lantinga, E.A. Effects of different diets on utilization of nitrogen from cattle slurryapplied to grassland on a sandy soil in The Netherlands. Agric. Ecosyst. Environ. 2007, 118, 65–79. [Google Scholar] [CrossRef]
- Sommer, S.G.; Hutchings, N.J. Ammonia emission from field applied manure and its reduction-invited paper. Eur. J. Agron. 2001, 15, 1–15. [Google Scholar] [CrossRef]
- Dai, X.; Karring, H. A Determination and Comparison of Urease Activity in Feces and Fresh Manure from Pig and Cattle in Relation to Ammonia Production and pH Changes. PLoS ONE 2014, 9, e110402. [Google Scholar] [CrossRef] [PubMed]
- De Vos, J.A.; Hesterberg, D.; Raats, P.A.C. Nitrate Leaching in a Tile-Drained Silt Loam Soil. Soil Sci. Soc. Am. J. 2000, 64, 517–527. [Google Scholar] [CrossRef]
- Vukadinović, V.; Vukadinović, V. Ishrana Bilja; Sveučilište Josipa Jurja Strossmayera u Osijeku, Poljoprivredni Fakultet u Osijeku: Osijek, Croatia, 2011. [Google Scholar]
- Vratarić, M.; Sudarić, A. Soja; Poljoprivredni institut Osijek: Osijek, Croatia, 2000. [Google Scholar]
Depth cm | pH DW | Nmin FW kg ha−1 of Soil | P2O5 DW mg 100 g−1 of Soil | K2O DW mg 100 g−1 of Soil | ||
---|---|---|---|---|---|---|
Year | H2O | KCl | ||||
2018 | 0–30 | 5.47 ± 0.11 | 4.21 ± 0.09 | 37.34 ± 3.13 | 16.68 ± 1.06 | 21.63 ± 1.46 |
2019 | 0–30 | 5.26 ± 0.08 | 3.93 ± 0.11 | 38.45 ± 1.55 | 14.13 ± 1.67 | 18.53 ± 1.07 |
Month | |||||||
---|---|---|---|---|---|---|---|
Temperature °C | April | May | June | July | August | September | October |
70-year period * | 11.3 | 15.9 | 19.4 | 21.1 | 20.4 | 16.2 | 11.0 |
2018 | 16.1 | 19.5 | 21.4 | 22.5 | 23.7 | 17.7 | 13.7 |
2019 | 12.4 | 13.7 | 23.8 | 22.9 | 23.5 | 17.2 | 13.2 |
Precipitation mm | |||||||
70-year period * | 61.5 | 78.0 | 97.2 | 80.8 | 87.0 | 89.3 | 75.9 |
2018 | 65.8 | 68.7 | 127.8 | 85.2 | 40.7 | 59.0 | 88.6 |
2019 | 81.1 | 147.7 | 70.8 | 76.8 | 56.7 | 150.1 | 42.3 |
Parameters | LCM | SFD | LFD | LCM | SFD | LFD |
---|---|---|---|---|---|---|
Year | 2018 | 2019 | ||||
Dry matter (%) | 8.9 ± 0.1 | 20.3 ± 0.5 | 4.9 ± 0.2 | 9.3 ± 0.7 | 28.8 ± 0.9 | 5.4 ± 0.1 |
Organic matter (g kg−1) | 71.8 ± 2.4 | 87.3 ± 0.0 | 69.5 ± 0.1 | 77.6 ± 0.2 | 88.1 ± 0.2 | 69.6 ± 0.1 |
Organic carbon (g kg−1) | 41.5 ± 1.4 | 50.5 ± 0.0 | 40.2 ± 0.1 | 44.8 ± 0.1 | 50.9 ± 0.1 | 40.2 ± 0.1 |
pH | 6.6 ± 0.0 | 8.7 ± 0.0 | 7.7 ± 0.0 | 7.0 ± 0.0 | 8.9 ± 0.0 | 7.7 ± 0.0 |
EC (mS cm−1) | 13.0 ± 0.1 | 1.3 ± 0.0 | 15.2 ± 0.2 | 13.4 ± 0.2 | 1.5 ± 0.1 | 17.7 ± 0.2 |
N total (g kg−1) | 4.1 ± 0.6 | 12.7 ± 2.2 | 8.1 ± 0.4 | 3.9 ± 0.7 | 6.9 ± 0.4 | 4.0 ± 0.8 |
NH4-N (g kg−1) | 0.6 ± 0.0 | 0.6 ± 0.0 | 0.8 ± 0.0 | 1.3 ± 0.0 | 1.3 ± 0.0 | 1.7 ± 0.0 |
N organic (g kg−1) | 3.5 ± 0.0 | 12.1 ± 0.0 | 7.3 ± 0.0 | 2.6 ± 0.0 | 5.6 ± 0.0 | 2.3 ± 0.0 |
P total (g kg−1) | 2.0 ± 0.0 | 3.4 ± 0.0 | 1.2 ± 0.0 | 0.7 ± 0.0 | 2.2 ± 0.0 | 0.7 ± 0.1 |
K total (g kg−1) | 3.5 ± 0.0 | 2.8 ± 0.0 | 3.5 ± 0.0 | 2.8 ± 0.1 | 2.6 ± 0.3 | 3.3 ± 0.0 |
Ca total (g kg−1) | 4.4 ± 0.6 | 2.5 ± 0.1 | 1.9 ± 0.0 | 4.4 ± 0.1 | 3.0 ± 0.2 | 1.1 ± 0.0 |
Mg total (g kg−1) | 0.8 ± 0.0 | 1.4 ± 0.0 | 0.9 ± 0.0 | 0.9 ± 0.0 | 1.6 ± 0.0 | 0.6 ± 0.0 |
Fe total (mg kg−1) | 104.0 ± 2.1 | 193.6 ± 7.0 | 135.6 ± 4.9 | 82.7 ± 6.3 | 195.7 ± 12.8 | 79.1 ± 1.9 |
Zn total (mg kg−1) | 14.2 ± 0.2 | 15.6 ± 1.8 | 11.4 ± 0.3 | 19.9 ± 0.2 | 22.5 ± 0.2 | 14.1 ± 0.3 |
Mn total (mg kg−1) | 14.4 ± 0.4 | 84.0 ± 2.3 | 12.6 ± 0.0 | 23.6 ± 1.3 | 37.0 ± 0.6 | 21.7 ± 0.8 |
Cu total (mg kg−1) | 18.7 ± 0.6 | 20.7 ± 2.5 | 17.6 ± 0.5 | 5.7 ± 0.1 | 13.2 ± 0.9 | 7.5 ± 0.2 |
C/N total | 10.1 ± 0.0 | 4.0 ± 0.0 | 5.0 ± 0.0 | 11.5 ± 0.0 | 7.4 ± 0.0 | 10.1 ± 0.0 |
C/N organic | 11.9 ± 0.0 | 4.2 ± 0.0 | 5.5 ± 0.0 | 17.2 ± 0.0 | 9.1 ± 0.0 | 17.5 ± 0.0 |
N/P | 2.0 ± 0.0 | 3.8 ± 0.0 | 7.0 ± 0.0 | 5.8 ± 0.0 | 3.2 ± 0.0 | 5.9 ± 0.0 |
NH4-N/N total | 0.2 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.3 ± 0.0 | 0.2 ± 0.0 | 0.4 ± 0.0 |
N organic/N total | 0.9 ± 0.0 | 1.0 ± 0.0 | 0.9 ± 0.0 | 0.7 ± 0.0 | 0.8 ± 0.0 | 0.6 ± 0.0 |
Treatment | Year | BF b | NPK | CAN | LCM | SFD | LFD | Total N | N-NH4 | N-NO3 | P2O5 Contribution | K2O Contribution |
---|---|---|---|---|---|---|---|---|---|---|---|---|
kg N ha−1 Added to the Soil | kg ha−1 | kg ha−1 Added to the Soil | ||||||||||
C | 2018 | 30 | - | - | - | - | - | 30 | ||||
2019 | 30 | - | - | - | - | - | 30 | |||||
MF a | 2018 | 30 | 70 | 70 | - | - | - | 140 | 79 | 61 | 70 | 70 |
2019 | 30 | 70 | 70 | - | - | - | 140 | 75 | 65 | 70 | 70 | |
LCM | 2018 | 30 | - | - | 140 | - | - | 140 | 20 | - | 120 | 68 |
2019 | 30 | - | - | 140 | - | - | 140 | 47 | - | 100 | 24 | |
SFD | 2018 | 30 | - | - | - | 140 | - | 140 | 7 | - | 31 | 36 |
2019 | 30 | - | - | - | 140 | - | 140 | 26 | - | 53 | 44 | |
LFD | 2018 | 30 | - | - | - | - | 140 | 140 | 14 | - | 60 | 21 |
2019 | 30 | - | - | - | - | 140 | 140 | 60 | - | 117 | 24 | |
MF+SFD a | 2018 | 30 | 70 | - | - | 70 | - | 140 | 47 | 26 | 85 | 88 |
2019 | 30 | 70 | - | - | 70 | - | 140 | 53 | 30 | 97 | 92 | |
MF+LFD a | 2018 | 30 | 70 | - | - | - | 70 | 140 | 51 | 26 | 100 | 80 |
2019 | 30 | 70 | - | - | - | 70 | 140 | 69 | 30 | 129 | 82 |
Source | Df | FW Yield t ha−1 | DW Yield t ha−1 |
---|---|---|---|
p Value | |||
Year | 1 | <0.0001 | <0.0001 |
Treatment | 6 | <0.0001 | <0.0001 |
Year × treatment | 6 | 0.0714 | 0.1810 |
Vegetative stage | 2 | <0.0001 | <0.0001 |
Year × vegetative stage | 2 | <0.0001 | <0.0001 |
Treatment × vegetative stage | 12 | <0.0001 | <0.0001 |
Year × treatment × vegetative stage | 12 | 0.5710 | 0.7514 |
Parameters | C | MF | LCM | SFD | LFD | MF+SFD | MF+LFD |
---|---|---|---|---|---|---|---|
Total N (kg ha−1) | 153.1 d | 271.9 a | 201.7 c | 194.6 c | 209.7 c | 231.8 b | 249.3 b |
Total P (kg ha−1) | 56.2 b | 70.7 a | 67.3 a | 67.3 a | 65.0 ab | 68.0 a | 70.6 a |
Total K (kg ha−1) | 141.6 b | 181.9 a | 165.7 ab | 179.7 a | 167.5 ab | 181.6 a | 189.6 a |
Total Ca (kg ha−1) | 27.4 b | 43.5 a | 35.2 ab | 34.2 ab | 35.5 ab | 37.5 ab | 41.3 a |
Total Mg (kg ha−1) | 21.0 c | 29.3 a | 25.6 b | 25.6 b | 25.1 b | 26.3 ab | 28.4 ab |
Total Fe (kg ha−1) * | 3.5 | 3.4 | 3.3 | 3.6 | 3.1 | 3.7 | 3.7 |
Total Zn (g ha−1) ** | 0.36 | 0.40 | 0.41 | 0.39 | 0.38 | 0.41 | 0.40 |
Total Mn (g ha−1) | 0.57 b | 0.77 a | 0.62 ab | 0.66 ab | 0.68 ab | 0.78 a | 0.76 ab |
Total Cu (g ha−1) | 0.07 d | 0.12 a | 0.09 bc | 0.08 cd | 0.09 bc | 0.10 ab | 0.10 ab |
Treatment | ANR | NFRV % | ||
---|---|---|---|---|
2018 | 2019 | 2018 | 2019 | |
C | - | - | - | - |
MF | 0.77 ± 0.08 | 0.93 ± 0.08 | 100 ± 0 | 100 ± 0 |
LCM | 0.32 ± 0.04 | 0.38 ± 0.09 | 41 ± 10 | 41 ± 5 |
SFD | 0.30 ± 0.04 | 0.29 ± 0.06 | 39 ± 7 | 31 ± 6 |
LFD | 0.36 ± 0.01 | 0.45 ± 0.06 | 47 ± 7 | 48 ± 2 |
MF+SFD | 0.41 ± 0.06 | 0.72 ± 0.09 | 53 ± 10 | 77 ± 8 |
MF+LFD | 0.60 ± 0.07 | 0.77 ± 0.09 | 78 ± 10 | 83 ± 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šatvar Vrbančić, M.; Petek, M.; Lazarević, B.; Jukić, Ž.; Meers, E.; Čoga, L. Solid and Liquid Fraction of Digestate as an Alternative Mineral Nitrogen Source: Two-Year Field Research in Croatia. Agriculture 2024, 14, 1243. https://doi.org/10.3390/agriculture14081243
Šatvar Vrbančić M, Petek M, Lazarević B, Jukić Ž, Meers E, Čoga L. Solid and Liquid Fraction of Digestate as an Alternative Mineral Nitrogen Source: Two-Year Field Research in Croatia. Agriculture. 2024; 14(8):1243. https://doi.org/10.3390/agriculture14081243
Chicago/Turabian StyleŠatvar Vrbančić, Mihaela, Marko Petek, Boris Lazarević, Željko Jukić, Erik Meers, and Lepomir Čoga. 2024. "Solid and Liquid Fraction of Digestate as an Alternative Mineral Nitrogen Source: Two-Year Field Research in Croatia" Agriculture 14, no. 8: 1243. https://doi.org/10.3390/agriculture14081243
APA StyleŠatvar Vrbančić, M., Petek, M., Lazarević, B., Jukić, Ž., Meers, E., & Čoga, L. (2024). Solid and Liquid Fraction of Digestate as an Alternative Mineral Nitrogen Source: Two-Year Field Research in Croatia. Agriculture, 14(8), 1243. https://doi.org/10.3390/agriculture14081243