1H-NMR Spectroscopy Coupled with Chemometrics to Classify Wines According to Different Grape Varieties and Different Terroirs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wine Terroirs
2.2. Wine Elaboration
2.3. 1H-NMR-Based Metabolomic Analyses of Wines
Untargeted and Targeted Metabolomic Approaches
2.4. Chemometrics
3. Results and Discussion
3.1. 1H-NMR-Based Metabolomics to Classify Wines According to Different Grape Varieties
3.1.1. Wines Fingerprinting
3.1.2. Wine Profiling
The Study of the H-Bond Network
3.2. 1H-NMR-Based Metabolomics to Discriminate Wines from Different Terroirs
3.3. Correlations between Soil Features and Grillo Wines’ Metabolic Profile
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Jiménez-Carvelo, A.M.; Martín-Torres, S.; Ortega-Gavilán, F.; Camacho, J. PLS-DA vs. Sparse PLS-DA in Food Traceability. A Case Study: Authentication of Avocado Samples. Talanta 2021, 224, 121904. [Google Scholar] [CrossRef] [PubMed]
- Medina, S.; Pereira, J.A.; Silva, P.; Perestrelo, R.; Câmara, J.S. Food Fingerprints—A Valuable Tool to Monitor Food Authenticity and Safety. Food Chem. 2019, 278, 144–162. [Google Scholar] [CrossRef] [PubMed]
- Ellis, D.I.; Muhamadali, H.; Allen, D.P.; Elliott, C.T.; Goodacre, R. A Flavour of Omics Approaches for the Detection of Food Fraud. Curr. Opin. Food Sci. 2016, 10, 7–15. [Google Scholar] [CrossRef]
- Fiehn, O. Metabolomics—The Link between Genotypes and Phenotypes. In Functional Genomics; Town, C., Ed.; Springer: Dordrecht, The Netherlands, 2002; pp. 155–171. ISBN 978-94-010-3903-1. [Google Scholar]
- Wishart, D.S.; Sayeeda, Z.; Budinski, Z.; Guo, A.; Lee, B.L.; Berjanskii, M.; Rout, M.; Peters, H.; Dizon, R.; Mah, R.; et al. NP-MRD: The Natural Products Magnetic Resonance Database. Nucleic Acids Res. 2022, 50, D665–D677. [Google Scholar] [CrossRef]
- Fuhrer, T.; Zamboni, N. High-Throughput Discovery Metabolomics. Curr. Opin. Biotechnol. 2015, 31, 73–78. [Google Scholar] [CrossRef]
- Gika, H.; Virgiliou, C.; Theodoridis, G.; Plumb, R.S.; Wilson, I.D. Untargeted LC/MS-Based Metabolic Phenotyping (Metabonomics/Metabolomics): The State of the Art. J. Chromatogr. B 2019, 1117, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Bothwell, J.H.F.; Griffin, J.L. An Introduction to Biological Nuclear Magnetic Resonance Spectroscopy. Biol. Rev. 2011, 86, 493–510. [Google Scholar] [CrossRef] [PubMed]
- Beckner Whitener, M.E.; Stanstrup, J.; Panzeri, V.; Carlin, S.; Divol, B.; Du Toit, M.; Vrhovsek, U. Untangling the Wine Metabolome by Combining Untargeted SPME–GCxGC-TOF-MS and Sensory Analysis to Profile Sauvignon Blanc Co-Fermented with Seven Different Yeasts. Metabolomics 2016, 12, 53. [Google Scholar] [CrossRef]
- Tabago, M.K.A.G.; Calingacion, M.N.; Garcia, J. Recent Advances in NMR-Based Metabolomics of Alcoholic Beverages. Food Chem. Mol. Sci. 2021, 2, 100009. [Google Scholar] [CrossRef] [PubMed]
- Martins, C.; Brandão, T.; Almeida, A.; Rocha, S.M. Metabolomics Strategy for the Mapping of Volatile Exometabolome from Saccharomyces spp. Widely Used in the Food Industry Based on Comprehensive Two-dimensional Gas Chromatography. J. Sep. Sci. 2017, 40, 2228–2237. [Google Scholar] [CrossRef] [PubMed]
- Amargianitaki, M.; Spyros, A. NMR-Based Metabolomics in Wine Quality Control and Authentication. Chem. Biol. Technol. Agric. 2017, 4, 9. [Google Scholar] [CrossRef]
- Alañón, M.E.; Pérez-Coello, M.S.; Marina, M.L. Wine Science in the Metabolomics Era. TrAC Trends Anal. Chem. 2015, 74, 1–20. [Google Scholar] [CrossRef]
- Son, H.-S.; Kim, K.M.; Van Den Berg, F.; Hwang, G.-S.; Park, W.-M.; Lee, C.-H.; Hong, Y.-S. 1 H Nuclear Magnetic Resonance-Based Metabolomic Characterization of Wines by Grape Varieties and Production Areas. J. Agric. Food Chem. 2008, 56, 8007–8016. [Google Scholar] [CrossRef]
- Gougeon, L.; Da Costa, G.; Le Mao, I.; Ma, W.; Teissedre, P.-L.; Guyon, F.; Richard, T. Wine Analysis and Authenticity Using 1H-NMR Metabolomics Data: Application to Chinese Wines. Food Anal. Methods 2018, 11, 3425–3434. [Google Scholar] [CrossRef]
- Godelmann, R.; Fang, F.; Humpfer, E.; Schütz, B.; Bansbach, M.; Schäfer, H.; Spraul, M. Targeted and Nontargeted Wine Analysis by 1 H NMR Spectroscopy Combined with Multivariate Statistical Analysis. Differentiation of Important Parameters: Grape Variety, Geographical Origin, Year of Vintage. J. Agric. Food Chem. 2013, 61, 5610–5619. [Google Scholar] [CrossRef]
- Lee, J.-E.; Hwang, G.-S.; Van Den Berg, F.; Lee, C.-H.; Hong, Y.-S. Evidence of Vintage Effects on Grape Wines Using 1H NMR-Based Metabolomic Study. Anal. Chim. Acta 2009, 648, 71–76. [Google Scholar] [CrossRef]
- López-Rituerto, E.; Savorani, F.; Avenoza, A.; Busto, J.H.; Peregrina, J.M.; Engelsen, S.B. Investigations of La Rioja Terroir for Wine Production Using 1 H NMR Metabolomics. J. Agric. Food Chem. 2012, 60, 3452–3461. [Google Scholar] [CrossRef] [PubMed]
- Solovyev, P.A.; Fauhl-Hassek, C.; Riedl, J.; Esslinger, S.; Bontempo, L.; Camin, F. NMR Spectroscopy in Wine Authentication: An Official Control Perspective. Comp. Rev. Food Sci. Food Safe 2021, 20, 2040–2062. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.R.; Gawel, R.; Francis, I.L.; Waters, E.J. The Influence of Interactions between Major White Wine Components on the Aroma, Flavour and Texture of Model White Wine. Food Qual. Prefer. 2008, 19, 596–607. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; De Rességuier, L. Major Soil-Related Factors in Terroir Expression and Vineyard Siting. Elements 2018, 14, 159–165. [Google Scholar] [CrossRef]
- White, R.E. The Value of Soil Knowledge in Understanding Wine Terroir. Front. Environ. Sci. 2020, 8, 12. [Google Scholar] [CrossRef]
- Coipel, J.; Lovelle, B.R.; Sipp, C.; Leeuwen, C.V. «Terroir» Effect, as a Result of Environmental Stress, Depends More on Soil Depth than on Soil Type (Vitis vinifera L. Cv. Grenache noir, Côtes Du Rhône, France, 2000). J. Int. Sci. Vigne Vin 2006, 40, 177–185. [Google Scholar]
- de Andrés-de Prado, R.; Yuste-Rojas, M.; Sort, X.; Andrés-Lacueva, C.; Torres, M.; Lamuela-Raventós, R.M. Effect of Soil Type on Wines Produced from Vitis vinifera L. Cv. Grenache in Commercial Vineyards. J. Agric. Food Chem. 2007, 55, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Blotevogel, S.; Schreck, E.; Laplanche, C.; Besson, P.; Saurin, N.; Audry, S.; Viers, J.; Oliva, P. Soil Chemistry and Meteorological Conditions Influence the Elemental Profiles of West European Wines. Food Chem. 2019, 298, 125033. [Google Scholar] [CrossRef] [PubMed]
- Bambina, P.; Spinella, A.; Lo Papa, G.; Chillura Martino, D.F.; Lo Meo, P.; Corona, O.; Cinquanta, L.; Conte, P. 1H NMR-Based Metabolomics to Assess the Impact of Soil Type on the Chemical Composition of Nero d’Avola Red Wines. J. Agric. Food Chem. 2023, 71, 5823–5835. [Google Scholar] [CrossRef] [PubMed]
- Bambina, P.; Gancel, A.-L.; Corona, O.; Jourdes, M.; Teissedre, P.-L. Soil Effect on Proanthocyanidins Composition of Red and White Wines Obtained from Nero d’Avola and Grillo Vitis vinifera L. Cultivars. Food Chem. 2024, 443, 138521. [Google Scholar] [CrossRef]
- Bambina, P.; Pollon, M.; Vitaggio, C.; Papa, G.L.; Conte, P.; Cinquanta, L.; Corona, O. Effect of Soil Type on Some Composition Parameters of Vitis vinifera L. Cv. Nero d’Avola Grapes at Different Stages of Ripening. Int. J. Food Sci. Technol. 2024, 59, 2361–2374. [Google Scholar] [CrossRef]
- Keys to Soil Taxonomy, 13th ed.; U.S. Department of Agriculture: Washington, DC, USA, 2022.
- Rahman, M.d.A.; Rahman, M.d.M.; Asma-Ul-Husna; Haque Mollah, M.d.N. Robust Hierarchical Clustering for Metabolomics Data Analysis in Presence of Cell-Wise and Case-Wise Outliers. In Proceedings of the 2018 International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2), Rajshahi, Bangladesh, 8–9 February 2018; IEEE: New York, NY, USA, 2018; pp. 1–4. [Google Scholar]
- Kurita, T. Principal Component Analysis (PCA). In Computer Vision; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–4. ISBN 978-3-030-03243-2. [Google Scholar]
- Szymańska, E.; Saccenti, E.; Smilde, A.K.; Westerhuis, J.A. Double-Check: Validation of Diagnostic Statistics for PLS-DA Models in Metabolomics Studies. Metabolomics 2012, 8, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.C.; Liong, C.-Y.; Jemain, A.A. Partial Least Squares-Discriminant Analysis (PLS-DA) for Classification of High-Dimensional (HD) Data: A Review of Contemporary Practice Strategies and Knowledge Gaps. Analyst 2018, 143, 3526–3539. [Google Scholar] [CrossRef] [PubMed]
- Van Den Berg, R.A.; Hoefsloot, H.C.; Westerhuis, J.A.; Smilde, A.K.; Van Der Werf, M.J. Centering, Scaling, and Transformations: Improving the Biological Information Content of Metabolomics Data. BMC Genom. 2006, 7, 142. [Google Scholar] [CrossRef] [PubMed]
- Keast, R.S.J. A Psychophysical Investigation of Binary Bitter-Compound Interactions. Chem. Senses 2003, 28, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Pacios, L.F.; Gómez, P.C. Dependence of Calculated NMR Proton Chemical Shifts on Electron Density Properties in Proton-Transfer Processes on Short Strong Hydrogen Bonds. J. Phys. Chem. A 2004, 108, 11783–11792. [Google Scholar] [CrossRef]
- Villamor, R.R.; Ross, C.F. Wine Matrix Compounds Affect Perception of Wine Aromas. Annu. Rev. Food Sci. Technol. 2013, 4, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Pittari, E.; Moio, L.; Piombino, P. Interactions between Polyphenols and Volatile Compounds in Wine: A Literature Review on Physicochemical and Sensory Insights. Appl. Sci. 2021, 11, 1157. [Google Scholar] [CrossRef]
- Monteiro, A.; Lopes, C.M. Influence of Cover Crop on Water Use and Performance of Vineyard in Mediterranean Portugal. Agric. Ecosyst. Environ. 2007, 121, 336–342. [Google Scholar] [CrossRef]
- Koundouras, S.; Marinos, V.; Gkoulioti, A.; Kotseridis, Y.; Van Leeuwen, C. Influence of Vineyard Location and Vine Water Status on Fruit Maturation of Nonirrigated Cv. Agiorgitiko (Vitis vinifera L.). Effects on Wine Phenolic and Aroma Components. J. Agric. Food Chem. 2006, 54, 5077–5086. [Google Scholar] [CrossRef] [PubMed]
- Bouzas-Cid, Y.; Trigo-Córdoba, E.; Falqué, E.; Orriols, I.; Mirás-Avalos, J.M. Influence of Supplementary Irrigation on the Amino Acid and Volatile Composition of Godello Wines from the Ribeiro Designation of Origin. Food Res. Int. 2018, 111, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Sun, Q.; Chang, Q. Soil Types Effect on Grape and Wine Composition in Helan Mountain Area of Ningxia. PLoS ONE 2015, 10, e0116690. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, D.E.; Christy, A.G. The Role of Soil Chemistry in Wine Grape Quality and Sustainable Soil Management in Vineyards. Water Sci. Technol. 2005, 51, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Conte, P.; Nestle, N. Water Dynamics in Different Biochar Fractions. Magn. Reson. Chem. 2015, 53, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Esteban, M.A.; Villanueva, M.J.; Lissarrague, J.R. Effect of Irrigation on Changes in the Anthocyanin Composition of the Skin of Cv Tempranillo (Vitis vinifera L) Grape Berries during Ripening. J. Sci. Food Agric. 2001, 81, 409–420. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, D.; Sun, W.; Wang, T. The Adaptive Mechanism of Plants to Iron Deficiency via Iron Uptake, Transport, and Homeostasis. Int. J. Mol. Sci. 2019, 20, 2424. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Álvarez, E.P.; Martínez-Vidaurre, J.M.; Martín, I.; García-Escudero, E.; Peregrina, F. Relationships among Soil Nitrate Nitrogen and Nitrogen Nutritional Status, Yield Components, and Must Quality in Semi-Arid Vineyards from Rioja AOC, Spain. Commun. Soil Sci. Plant Anal. 2013, 44, 232–242. [Google Scholar] [CrossRef]
Spectral Fragment | Contribution to PC1 (Positive Side) | Spectral Fragment | Contribution to PC2 (Positive Side) |
0.89 | 0.06 | 3.43 | 0.06 |
2.08 | 0.06 | 3.45 | 0.06 |
2.37 | 0.06 | 3.52 | 0.05 |
3.67 | 0.06 | 3.61 | 0.05 |
3.75 | 0.06 | 3.70 | 0.05 |
3.76 | 0.06 | 3.71 | 0.06 |
5.68 | 0.06 | 5.42 | 0.07 |
5.89 | 0.06 | 5.93 | 0.05 |
6.52 | 0.06 | 6.17 | 0.06 |
7.18 | 0.05 | 6.18 | 0.05 |
7.23 | 0.06 | 7.12 | 0.05 |
7.24 | 0.05 | 7.26 | 0.06 |
7.39 | 0.05 | 7.28 | 0.06 |
7.88 | 0.06 | 7.35 | 0.06 |
7.93 | 0.06 | 8.58 | 0.06 |
7.95 | 0.06 | 8.94 | 0.07 |
8.29 | 0.06 | 9.26 | 0.07 |
8.38 | 0.06 | 9.28 | 0.05 |
8.39 | 0.06 | ||
Spectral Fragment | Contribution to PC1 (Negative Side) | Spectral Fragment | Contribution to PC2 (Negative Side) |
3.89 | −0.07 | 2.67 | −0.08 |
3.90 | −0.07 | 2.92 | −0.08 |
3.98 | −0.07 | 3.35 | −0.08 |
4.42 | −0.07 | 3.56 | −0.08 |
4.43 | −0.07 | 3.58 | −0.08 |
4.44 | −0.07 | 3.59 | −0.07 |
5.15 | −0.07 | 3.93 | −0.07 |
5.20 | −0.07 | 5.23 | −0.08 |
6.03 | −0.07 | 5.24 | −0.08 |
6.04 | −0.07 | 5.25 | −0.08 |
6.05 | −0.07 | 5.26 | −0.08 |
6.07 | −0.07 | 5.31 | −0.08 |
6.12 | −0.07 | 5.44 | −0.08 |
6.79 | −0.07 | 5.45 | −0.07 |
6.80 | −0.07 | 6.15 | −0.08 |
6.82 | −0.07 | 6.32 | −0.08 |
6.89 | −0.07 | 6.64 | −0.08 |
6.91 | −0.07 | 7.74 | −0.08 |
7.61 | −0.07 | 8.19 | −0.08 |
8.63 | −0.07 | 8.67 | −0.07 |
Spectral Fragment | Contribution to PC1 (Positive Side) | Spectral Fragment | Contribution to PC2 (Positive Side) |
5.35 | 0.09 | 2.25 | 0.12 |
5.48 | 0.10 | 2.27 | 0.12 |
5.49 | 0.09 | 2.28 | 0.12 |
6.50 | 0.09 | 2.29 | 0.12 |
6.76 | 0.10 | 2.56 | 0.11 |
6.77 | 0.10 | 2.57 | 0.12 |
7.09 | 0.07 | 2.58 | 0.12 |
7.20 | 0.07 | 2.59 | 0.12 |
7.49 | 0.10 | 2.60 | 0.12 |
7.55 | 0.07 | 2.61 | 0.12 |
7.58 | 0.08 | 2.71 | 0.12 |
7.69 | 0.07 | 2.72 | 0.11 |
7.73 | 0.08 | 2.73 | 0.12 |
7.91 | 0.09 | 3.00 | 0.12 |
7.94 | 0.09 | 3.01 | 0.11 |
7.96 | 0.09 | 3.17 | 0.11 |
8.43 | 0.09 | 3.18 | 0.12 |
9.05 | 0.08 | 3.19 | 0.12 |
9.07 | 0.08 | 5.46 | 0.11 |
9.08 | 0.09 | 6.75 | 0.11 |
Spectral Fragment | Contribution to PC1 (Negative Side) | Spectral Fragment | Contribution to PC2 (Negative Side) |
1.37 | −0.11 | 5.44 | −0.11 |
1.38 | −0.12 | 5.82 | −0.10 |
1.45 | −0.12 | 5.85 | −0.10 |
1.47 | −0.12 | 6.46 | −0.10 |
1.49 | −0.11 | 6.74 | −0.11 |
1.50 | −0.11 | 6.97 | −0.10 |
1.51 | −0.11 | 7.00 | −0.11 |
1.52 | −0.11 | 7.02 | −0.10 |
1.54 | −0.11 | 7.83 | −0.09 |
1.56 | −0.11 | 7.84 | −0.11 |
1.57 | −0.11 | 8.19 | −0.11 |
1.58 | −0.11 | 8.23 | −0.10 |
1.59 | −0.11 | 8.24 | −0.10 |
1.60 | −0.11 | 8.31 | −0.10 |
1.61 | −0.11 | 8.46 | −0.11 |
1.63 | −0.11 | 8.57 | −0.09 |
1.68 | −0.11 | 8.61 | −0.11 |
1.71 | −0.11 | 8.68 | −0.09 |
1.73 | −0.11 | 8.69 | −0.10 |
2.74 | −0.11 | 8.79 | −0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bambina, P.; Spinella, A.; Lo Papa, G.; Chillura Martino, D.F.; Lo Meo, P.; Cinquanta, L.; Conte, P. 1H-NMR Spectroscopy Coupled with Chemometrics to Classify Wines According to Different Grape Varieties and Different Terroirs. Agriculture 2024, 14, 749. https://doi.org/10.3390/agriculture14050749
Bambina P, Spinella A, Lo Papa G, Chillura Martino DF, Lo Meo P, Cinquanta L, Conte P. 1H-NMR Spectroscopy Coupled with Chemometrics to Classify Wines According to Different Grape Varieties and Different Terroirs. Agriculture. 2024; 14(5):749. https://doi.org/10.3390/agriculture14050749
Chicago/Turabian StyleBambina, Paola, Alberto Spinella, Giuseppe Lo Papa, Delia Francesca Chillura Martino, Paolo Lo Meo, Luciano Cinquanta, and Pellegrino Conte. 2024. "1H-NMR Spectroscopy Coupled with Chemometrics to Classify Wines According to Different Grape Varieties and Different Terroirs" Agriculture 14, no. 5: 749. https://doi.org/10.3390/agriculture14050749
APA StyleBambina, P., Spinella, A., Lo Papa, G., Chillura Martino, D. F., Lo Meo, P., Cinquanta, L., & Conte, P. (2024). 1H-NMR Spectroscopy Coupled with Chemometrics to Classify Wines According to Different Grape Varieties and Different Terroirs. Agriculture, 14(5), 749. https://doi.org/10.3390/agriculture14050749