Pleurotus ostreatus Mushroom: A Promising Feed Supplement in Poultry Farming
Abstract
:1. Introduction
2. Methodology of the Review
3. Valorization of Oyster By-Products
Substrate | Cellulose (%) | Hemicellulose (%) | Lignin (%) | Ref. |
---|---|---|---|---|
Apple pomace | 21.78 | 15.82 | 13.33 | [39] |
Banana peel | 41.38 | 9.9 | 8.9 | [40] |
Barley straw | 33.25 | 20.36 | 17.13 | [41] |
Corn cobs | 45.43 | 29.92 | 10.93 | [42] |
Corn husks | 45.7 | 35.8 | 4.03 | [17] |
Cornstalk | 35.0–39.6 | 16.8–35.0 | 7.0–18.4 | [43] |
Cotton seed hairs | 80–95 | 5–20 | 0 | [44] |
Empty fruit bunch | 34.9 | 26.64 | 31.1 | [45] |
Japanese red cedar | 52.3 | 7.3 | 32.6 | [46] |
Nutshell | 35.70 | 18.70 | 30.20 | [42] |
Rice husk | 30.43 | 28.03 | 36.02 | [47] |
Sawdust | 32.63 | 37.23 | 22.16 | [48] |
Soybean straw | 34.4 | 19.3 | 21.6 | [15] |
Sorghum leaf and stalk | 31 | 30 | 11 | [44] |
Sugarcane leaf and stalk | 40 | 29 | 13 | [44] |
Sugar palm | 43.88 | 7.24 | 33.24 | [49] |
Sunflower stalk | 34 | 20.8 | 29.7 | [50] |
Wheat bran | 31.10 | 34.30 | 16.30 | [51] |
Wheat straw | 30 | 50 | 15 | [52] |
4. The Environmental Importance of SMS
5. Applications of Oyster Mushrooms and Their Derivatives in Poultry Farming
6. P. ostreatus for Feed Supplement in Poultry Industry
6.1. Common Infections in Poultry Industry
6.2. Alternatives to Antibiotics in the Poultry Industry
6.3. Oyster Mushrooms for Feed Supplement
7. Why Is SSF a Promising Strategy to Improve the Bioactivity of Oyster and Agricultural By-Products?
8. A Comprehensive Overview
9. Conclusions and Further Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Cianni, R.; Varese, G.C.; Mancuso, T. A Further Step toward Sustainable Development: The Case of the Edible Mushroom Supply Chain. Foods 2023, 12, 3433. [Google Scholar] [CrossRef] [PubMed]
- Töros, G.H.; El-Ramady, H.; Prokisch, J. Edible Mushroom of Pleurotus spp.: A Case Study of Oyster Mushroom (Pleurotus ostreatus L.). Environ. Biodivers. Soil Secur. 2022, 6, 51–59. [Google Scholar]
- Melanouri, E.-M.; Dedousi, M.; Diamantopoulou, P. Cultivating Pleurotus Ostreatus and Pleurotus Eryngii Mushroom Strains on Agro-Industrial Residues in Solid-State Fermentation. Part I: Screening for Growth, Endoglucanase, Laccase and Biomass Production in the Colonization Phase. Carbon Resour. Convers. 2022, 5, 61–70. [Google Scholar] [CrossRef]
- Širić, I.; Humar, M. Preface to the Special Issue ‘Heavy Metals in Mushrooms. J. Fungi 2023, 9, 1163. [Google Scholar] [CrossRef] [PubMed]
- Huynh, N.-H.T.; Trung, L.D.; Phung Loc, N.; Duong, D.V.; Tran, T. Circular Economy Approach: Cultivating Grey Oyster Mushroom Using Cassava (Manihot esculenta) Peel Waste from Starch Production. E3S Web Conf. 2023, 405, 01009. [Google Scholar] [CrossRef]
- Bijla, S.; Sharma, V.P. Status of Mushroom Production: Global and National Scenario. Mushroom Res. 2023, 32, 91–98. [Google Scholar] [CrossRef]
- Wan Mahari, W.A.; Peng, W.; Nam, W.L.; Yang, H.; Lee, X.Y.; Lee, Y.K.; Liew, R.K.; Ma, N.L.; Mohammad, A.; Sonne, C.; et al. A Review on Valorization of Oyster Mushroom and Waste Generated in the Mushroom Cultivation Industry. J. Hazard. Mater. 2020, 400, 123156. [Google Scholar] [CrossRef] [PubMed]
- Rangsinth, P.; Sharika, R.; Pattarachotanant, N.; Duangjan, C.; Wongwan, C.; Sillapachaiyaporn, C.; Nilkhet, S.; Wongsirojkul, N.; Prasansuklab, A.; Tencomnao, T.; et al. Potential Beneficial Effects and Pharmacological Properties of Ergosterol, a Common Bioactive Compound in Edible Mushrooms. Foods 2023, 12, 2529. [Google Scholar] [CrossRef] [PubMed]
- Töros, G.; El-Ramady, H.; Prokisch, J.; Velasco, F.; Llanaj, X.; Nguyen, D.H.; Peles, F. Modulation of the Gut Microbiota with Prebiotics and Antimicrobial Agents from Pleurotus Ostreatus Mushroom. Foods 2023, 12, 2010. [Google Scholar] [CrossRef] [PubMed]
- Singh, U.; Tiwari, P.; Kelkar, S.; Kaul, D.; Tiwari, A.; Kapri, M.; Sharma, S. Edible Mushrooms: A Sustainable Novel Ingredient for Meat Analogs. eFood 2023, 4, e122. [Google Scholar] [CrossRef]
- Mizuno, M.; Minato, K. Anti-Inflammatory and Immunomodulatory Properties of Polysaccharides in Mushrooms. Curr. Opin. Biotechnol. 2024, 86, 103076. [Google Scholar] [CrossRef] [PubMed]
- Galarneau, K.D.; Singer, R.S.; Wills, R.W. A System Dynamics Model for Disease Management in Poultry Production. Poult. Sci. 2020, 99, 5547–5559. [Google Scholar] [CrossRef] [PubMed]
- Mallioris, P.; Teunis, G.; Lagerweij, G.; Joosten, P.; Dewulf, J.; Wagenaar, J.A.; Stegeman, A.; Mughini-Gras, L.; The EFFORT Consortium. Biosecurity and Antimicrobial Use in Broiler Farms across Nine European Countries: Toward Identifying Farm-Specific Options for Reducing Antimicrobial Usage. Epidemiol. Infect. 2023, 151, e13. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Gupta, V.; Yadav, A.N.; Sain, D.; Rahi, R.K.; Bera, S.P.; Neelam, D. Aspects of mushrooms and their extracts as natural Antimicrobial Agents: Microbiology. J. Microb. Biotechnol. Food Sci. 2023, 12, e9191. [Google Scholar] [CrossRef]
- Sun, X.; Dou, Z.; Shurson, G.C.; Hu, B. Bioprocessing to Upcycle Agro-Industrial and Food Wastes into High-Nutritional Value Animal Feed for Sustainable Food and Agriculture Systems. Resour. Conserv. Recycl. 2024, 201, 107325. [Google Scholar] [CrossRef]
- Elsakhawy, T.; Omara, A.E.-D.; Abowaly, M.; El-Ramady, H.; Badgar, K.; Llanaj, X.; Töros, G.; Hajdú, P.; Prokisch, J. Green Synthesis of Nanoparticles by Mushrooms: A Crucial Dimension for Sustainable Soil Management. Sustainability 2022, 14, 4328. [Google Scholar] [CrossRef]
- Ibrahim, M.I.; Sapuan, S.M.; Zainudin, E.S.; Zuhri, M.Y.M. Extraction, Chemical Composition, and Characterization of Potential Lignocellulosic Biomasses and Polymers from Corn Plant Parts. BioResources 2019, 14, 6485–6500. [Google Scholar] [CrossRef]
- Baptista, F.; Almeida, M.; Paié-Ribeiro, J.; Barros, A.N.; Rodrigues, M. Unlocking the Potential of Spent Mushroom Substrate (SMS) for Enhanced Agricultural Sustainability: From Environmental Benefits to Poultry Nutrition. Life 2023, 13, 1948. [Google Scholar] [CrossRef]
- El Sheikha, A.F.; Ray, R.C. Bioprocessing of Horticultural Wastes by Solid-State Fermentation into Value-Added/Innovative Bioproducts: A Review. Food Rev. Int. 2023, 39, 3009–3065. [Google Scholar] [CrossRef]
- Canoy, T.S.; Wiedenbein, E.S.; Bredie, W.L.P.; Meyer, A.S.; Wösten, H.A.B.; Nielsen, D.S. Solid-State Fermented Plant Foods as New Protein Sources. Annu. Rev. Food Sci. Technol. 2024, 15, annurev-food-060721-013526. [Google Scholar] [CrossRef] [PubMed]
- Neri, A.; Bernardi, B.; Zimbalatti, G.; Benalia, S. An Overview of Anaerobic Digestion of Agricultural By-Products and Food Waste for Biomethane Production. Energies 2023, 16, 6851. [Google Scholar] [CrossRef]
- Mondor, M.; Plamondon, P.; Drolet, H. Valorization of Agri-Food By-Products from Plant Sources Using Pressure-Driven Membrane Processes to Recover Value-Added Compounds: Opportunities and Challenges. Food Rev. Int. 2023, 39, 5761–5785. [Google Scholar] [CrossRef]
- Kosre, A.; Koreti, D.; Mahish, P.K.; Chandrawanshi, N.K. Current Perspective of Sustainable Utilization of Agro Waste and Biotransformation of Energy in Mushroom. In Energy; Singh, P., Singh, S., Kumar, G., Baweja, P., Eds.; Wiley: Hoboken, NJ, USA, 2021; pp. 274–302. ISBN 978-1-119-74144-2. [Google Scholar]
- Faustino, M.; Veiga, M.; Sousa, P.; Costa, E.M.; Silva, S.; Pintado, M. Agro-Food Byproducts as a New Source of Natural Food Additives. Molecules 2019, 24, 1056. [Google Scholar] [CrossRef] [PubMed]
- Rațu, R.N.; Veleșcu, I.D.; Stoica, F.; Usturoi, A.; Arsenoaia, V.N.; Crivei, I.C.; Postolache, A.N.; Lipșa, F.D.; Filipov, F.; Florea, A.M. Application of Agri-Food By-Products in the Food Industry. Agriculture 2023, 13, 1559. [Google Scholar] [CrossRef]
- Facchini, F.; Silvestri, B.; Digiesi, S.; Lucchese, A. Agri-Food Loss and Waste Management: Win-Win Strategies for Edible Discarded Fruits and Vegetables Sustainable Reuse. Innov. Food Sci. Emerg. Technol. 2023, 83, 103235. [Google Scholar] [CrossRef]
- Sorrenti, V.; Burò, I.; Consoli, V.; Vanella, L. Recent Advances in Health Benefits of Bioactive Compounds from Food Wastes and By-Products: Biochemical Aspects. Int. J. Mol. Sci. 2023, 24, 2019. [Google Scholar] [CrossRef] [PubMed]
- Ogbu, C.C.; Okechukwu, S.N. Agro-Industrial Waste Management: The Circular and Bioeconomic Perspective. In Agricultural Waste-New Insights; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Hotz, E.C.; Bradshaw, A.J.; Elliott, C.; Carlson, K.; Dentinger, B.T.M.; Naleway, S.E. Effect of Agar Concentration on Structure and Physiology of Fungal Hyphal Systems. J. Mater. Res. Technol. 2023, 24, 7614–7623. [Google Scholar] [CrossRef]
- Leong, Y.K.; Ma, T.-W.; Chang, J.-S.; Yang, F.-C. Recent Advances and Future Directions on the Valorization of Spent Mushroom Substrate (SMS): A Review. Bioresour. Technol. 2022, 344, 126157. [Google Scholar] [CrossRef]
- Qin, H.; Dongmeng, H.; Wang, X.; Pan, S.; Liu, H.; Zhang, L.; Wang, Q. Study on Molecular Structure Model and Reactivity of Spent Mushroom Substrate: Experiment and Simulation. Waste Biomass Valorization 2023, 14, 2191–2209. [Google Scholar] [CrossRef]
- Jabeen, N.; Atif, M. Polysaccharides Based Biopolymers for Biomedical Applications: A Review. Polym. Adv. Technol. 2024, 35, e6203. [Google Scholar] [CrossRef]
- Ungureanu, N.; Vlăduț, V.; Biriș, S. Sustainable Valorization of Waste and By-Products from Sugarcane Processing. Sustainability 2022, 14, 11089. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, X.; Cui, L.; Ma, C. Extraction and Bioactivities of the Chemical Composition from Pleurotus ostreatus: A Review. J. Future Foods 2024, 4, 111–118. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, Z.; Li, W.; Sun, H.; Chai, Y.; Li, T.; Liu, C.; Gong, X.; Liang, Y.; Qin, P. Expanding the Valorization of Waste Mushroom Substrates in Agricultural Production: Progress and Challenges. Environ. Sci. Pollut. Res. 2023, 30, 2355–2373. [Google Scholar] [CrossRef] [PubMed]
- Koutrotsios, G.; Kalogeropoulos, N.; Kaliora, A.C.; Zervakis, G.I. Toward an Increased Functionality in Oyster (Pleurotus) Mushrooms Produced on Grape Marc or Olive Mill Wastes Serving as Sources of Bioactive Compounds. J. Agric. Food Chem. 2018, 66, 5971–5983. [Google Scholar] [CrossRef] [PubMed]
- Koutrotsios, G.; Patsou, M.; Mitsou, E.K.; Bekiaris, G.; Kotsou, M.; Tarantilis, P.A.; Pletsa, V.; Kyriacou, A.; Zervakis, G.I. Valorization of Olive By-Products as Substrates for the Cultivation of Ganoderma lucidum and Pleurotus ostreatus Mushrooms with Enhanced Functional and Prebiotic Properties. Catalysts 2019, 9, 537. [Google Scholar] [CrossRef]
- Mkhize, S.S.; Simelane, M.B.C.; Mongalo, N.I.; Pooe, O.J. Bioprospecting the Biological Effects of Cultivating Pleurotus ostreatus Mushrooms from Selected Agro-Wastes and Maize Flour Supplements. J. Food Biochem. 2023, 2023, 2762972. [Google Scholar] [CrossRef]
- Lang, C.V.; Jung, J.; Wang, T.; Zhao, Y. Investigation of Mechanisms and Approaches for Improving Hydrophobicity of Molded Pulp Biocomposites Produced from Apple Pomace. Food Bioprod. Process. 2022, 133, 1–15. [Google Scholar] [CrossRef]
- Paudel, S.; Dhakal, D. Yield Performance of Oyster Mushroom (Pleurotus ostreatus) on Various Crop Residues as Substrate. agriRxiv 2019, 27. [Google Scholar] [CrossRef]
- Srivastava, N.; Shrivastav, A.; Singh, R.; Abohashrh, M.; Srivastava, K.R.; Irfan, S.; Srivastava, M.; Mishra, P.K.; Gupta, V.K.; Thakur, V.K. Advances in the Structural Composition of Biomass: Fundamental and Bioenergy Applications. J. Renew. Mater. 2021, 9, 615–636. [Google Scholar] [CrossRef]
- Sartika, D.; Firmansyah, A.P.; Junais, I.; Arnata, I.W.; Fahma, F.; Firmanda, A. High Yield Production of Nanocrystalline Cellulose from Corn Cob through a Chemical-Mechanical Treatment under Mild Conditions. Int. J. Biol. Macromol. 2023, 240, 124327. [Google Scholar] [CrossRef] [PubMed]
- Zárate-Salazar, J.R.; Santos, M.N.; Caballero, E.N.M.; Martins, O.G.; Herrera, Á.A.P. Use of Lignocellulosic Corn and Rice Wastes as Substrates for Oyster Mushroom (Pleurotus ostreatus Jacq.) Cultivation. SN Appl. Sci. 2020, 2, 1904. [Google Scholar] [CrossRef]
- Sarkar, A.; Singh, R.P. Waste Management: Challenges, Threats and Opportunities; Waste and Waste Management; Nova Science Publishers Inc.: Hauppauge, NY, USA, 2015; ISBN 978-1-63482-150-6. [Google Scholar]
- Hernández-Beltrán, J.U.; Hernández-De Lira, I.O.; Cruz-Santos, M.M.; Saucedo-Luevanos, A.; Hernández-Terán, F.; Balagurusamy, N. Insight into Pretreatment Methods of Lignocellulosic Biomass to Increase Biogas Yield: Current State, Challenges, and Opportunities. Appl. Sci. 2019, 9, 3721. [Google Scholar] [CrossRef]
- Okano, K.; Kitagawa, M.; Sasaki, Y.; Watanabe, T. Conversion of Japanese Red Cedar (Cryptomeria japonica) into a Feed for Ruminants by White-Rot Basidiomycetes. Anim. Feed Sci. Technol. 2005, 120, 235–243. [Google Scholar] [CrossRef]
- Bebarta, P.P. An Overview on Oyster Mushroom: Improving Human Health and Quality of Life. Pharma Innov. J. 2022, SP-11, 1189–1192. [Google Scholar]
- Hultberg, M.; Asp, H.; Bergstrand, K.-J.; Golovko, O. Production of Oyster Mushroom (Pleurotus ostreatus) on Sawdust Supplemented with Anaerobic Digestate. Waste Manag. 2023, 155, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Azrita, A.; Syandri, H.; Aryani, N.; Mardiah, A. Effect of Feed Enriched by Products Formulated from Coconut Water, Palm Sap Sugar, and Mushroom on the Chemical Composition of Feed and Carcass, Growth Performance, Body Indices, and Gut Micromorphology of Giant Gourami, Osphronemus Goramy (Lacepède, 1801), Juveniles. F1000Research 2023, 12, 140. [Google Scholar] [PubMed]
- Monlau, F.; Barakat, A.; Steyer, J.P.; Carrere, H. Comparison of Seven Types of Thermo-Chemical Pretreatments on the Structural Features and Anaerobic Digestion of Sunflower Stalks. Bioresour. Technol. 2012, 120, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Okere, S.E.; Ojiako, F.O.; Ibeanu, C.A.; LC Emma-Okafor, E.M. Bioconversion and Yield Evaluation of an Edible Mushroom (Pleurotus ostreatus) Cultivated on Cassava and Sugarcane Peels with Wheat Bran. Mycopath 2022, 19, 7–13. [Google Scholar]
- Khalid, K.A.; Ahmad, A.A.; Yong, T.L.-K. Lignin Extraction from Lignocellulosic Biomass Using Sub- and Supercritical Fluid Technology as Precursor for Carbon Fiber Production. J. Jpn. Inst. Energy 2017, 96, 255–260. [Google Scholar] [CrossRef]
- Cao, L.; Li, J.; Zhang, J.; Huang, H.; Gui, F.; Xu, W.; Zhang, L.; Bi, S. Beta-Glucan Enhanced Immune Response to Newcastle Disease Vaccine and Changed mRNA Expression of Spleen in Chickens. Poult. Sci. 2023, 102, 102414. [Google Scholar] [CrossRef] [PubMed]
- Solis-Cruz, B.; Hernandez-Patlan, D.; Hargis, B.M.; Tellez, G. Use of Prebiotics as an Alternative to Antibiotic Growth Promoters in the Poultry Industry. In Prebiotics and Probiotics-Potential Benefits in Nutrition and Health; IntechOpen: London, UK, 2019. [Google Scholar]
- Abdul-Malek, A.; Nazimah, H.; Razifah, M.R.; Bellere, A.D.; Raseetha, S. Beneficial Properties of Edible Mushrooms and Their Potential Utilisation of Mushroom Waste in Food Products. Food Res. 2023, 7, 21–36. [Google Scholar]
- Jasińska, A. Spent Mushroom Compost (SMC)—Retrieved Added Value Product Closing Loop in Agricultural Production. Acta Agrar. Debreceniensis 2018, 185–202. [Google Scholar] [CrossRef] [PubMed]
- Klausen, S.J.; Falck-Ytter, A.B.; Strætkvern, K.O.; Martin, C. Evaluation of the Extraction of Bioactive Compounds and the Saccharification of Cellulose as a Route for the Valorization of Spent Mushroom Substrate. Molecules 2023, 28, 5140. [Google Scholar] [CrossRef] [PubMed]
- Devi, P.V.; Islam, J.; Narzary, P.; Sharma, D.; Sultana, F. Bioactive Compounds, Nutraceutical Values and Its Application in Food Product Development of Oyster Mushroom. J. Future Foods 2024, 4, 335–342. [Google Scholar] [CrossRef]
- Xhensila, L.; Töros, G.; Hajdu, P.; El-Ramady, H.; Peles, F.; Prokisch, J. Mushroom Cultivation Systems: Exploring Antimicrobial and Prebiotic Benefits. Environ. Biodivers. Soil Secur. 2023, 7, 101–120. [Google Scholar] [CrossRef]
- Malik, N.A.; Kumar, J.; Wani, M.S.; Tantray, Y.R.; Ahmad, T. Role of Mushrooms in the Bioremediation of Soil. In Microbiota and Biofertilizers; Dar, G.H., Bhat, R.A., Mehmood, M.A., Hakeem, K.R., Eds.; Springer International Publishing: Cham, Switzerland, 2021; Volume 2, pp. 77–102. ISBN 978-3-030-61009-8. [Google Scholar]
- Hassan, R.A.; Shafi, M.E.; Attia, K.M.; Assar, M.H. Influence of Oyster Mushroom Waste on Growth Performance, Immunity and Intestinal Morphology Compared with Antibiotics in Broiler Chickens. Front. Vet. Sci. 2020, 7, 333. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, S.; Kannan, P. Growth Efficiency of Elm Oyster Mushroom (Hypsizygus ulmarius) Using Plant—Based Waste Substrates. Recycl. Sustain. Dev. 2023, 16, 29–40. [Google Scholar] [CrossRef]
- Asadi, D.A.; Aghdam, S.H.; Shaddel, T.A.; Maheri, S.N.; Ghiasi, G.J. Effect of Feeding Edible Mushrooms Powder on Intestinal Microbiology and Morphology of Male Japanese Quails (Coturnix coturnix Japonica). Qual. Durab. Agric. Prod. Food Stuffs 2022, 2, 84–94. Available online: https://sid.ir/paper/1030694/en (accessed on 22 March 2024).
- Daneshmand, A.; Sadeghi, G.H.; Karimi, A.; Vaziry, A. Effect of Oyster Mushroom (Pleurotus ostreatus) with and without Probiotic on Growth Performance and Some Blood Parameters of Male Broilers. Anim. Feed Sci. Technol. 2011, 170, 91–96. [Google Scholar] [CrossRef]
- Devnath, R. The Productivity and Meat Quality of Broiler Chicken Fed Mushroom Supplemented Diet. Ph.D. Thesis, Chattogram Veterinary and Animal Sciences University Chattogram, Chattogram, Bangladesh, 2021. [Google Scholar]
- Fard, S.H.; Toghyani, M.; Tabeidian, S.A. Effect of Oyster Mushroom Wastes on Performance, Immune Responses and Intestinal Morphology of Broiler Chickens. Int. J. Recycl. Org. Waste Agric. 2014, 3, 141–146. [Google Scholar] [CrossRef]
- Chang, S.-C.; Lin, M.-J.; Chao, Y.-P.; Chiang, C.-J.; Jea, Y.-S.; Lee, T.-T. Effects of Spent Mushroom Compost Meal on Growth Performance and Meat Characteristics of Grower Geese. Rev. Bras. De Zootec. 2016, 45, 281–287. [Google Scholar] [CrossRef]
- Foluke, A.; Olutayo, A.; Olufemi, A. Assessing Spent Mushroom Substrate as a Replacement to Wheat Bran in the Diet of Broilers. Am. Int. J. Contemp. Res. 2014, 4, 178–183. [Google Scholar]
- Sogunle, O.M. Growth Performance and Blood Profile of Cockerel Chickens on Administration of Oyster Mushroom (Pleurotus ostreatus) in Water and Feed. Arch. Zootec. 2019, 68, 24–30. [Google Scholar] [CrossRef]
- Natsir, M.H.; Wicaksono, M.I.T. The Effect of White Oyster Mushroom (Pleurotus ostreatus) Flour Addition in Feed to the Performances of Laying Hens. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 478, p. 012085. [Google Scholar]
- Oyedeji, A.B.; Wu, J. Food-Based Uses of Brewers Spent Grains: Current Applications and Future Possibilities. Food Biosci. 2023, 54, 102774. [Google Scholar] [CrossRef]
- Riseh, R.S.; Vazvani, M.G.; Kennedy, J.F. β–Glucan-Induced Disease Resistance in Plants: A Review. Int. J. Biol. Macromol. 2023, 253, 127043. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Bassart, Z.; Fabra, M.J.; Martínez-Abad, A.; López-Rubio, A. Compositional Differences of β-Glucan-Rich Extracts from Three Relevant Mushrooms Obtained through a Sequential Extraction Protocol. Food Chem. 2023, 402, 134207. [Google Scholar] [CrossRef] [PubMed]
- Chioru, A.; Chirsanova, A. β-Glucans: Characterization, Extraction Methods, and Valorization. Food Nutr. Sci. 2023, 14, 963–983. [Google Scholar]
- Ayser, M.; Tonny, W.; Hernandez, I.S.; Kuriakose, R.; Smith, J.D.; Wallaert, S.J.; Karim, A.; Robertson, M.L.; Balan, V. Fractionating Chitin-Glucan Complex and Coproducts from Pleurotus ostreatus Mushrooms. Waste Biomass Valorization 2023, 15, 2897–2910. [Google Scholar] [CrossRef]
- Rezende, E.S.V.; Lima, G.C.; Naves, M.M.V. Dietary Fibers as Beneficial Microbiota Modulators: A Proposed Classification by Prebiotic Categories. Nutrition 2021, 89, 111217. [Google Scholar] [CrossRef] [PubMed]
- Panyako, P.M.; Lichoti, J.K.; Ommeh, S.C. Antimicrobial Drug Resistance in Poultry Pathogens: Challenges and Opportunities. J. Agric. Sci. Technol. 2022, 21, 62–82. [Google Scholar]
- Silva, V.; Araújo, S.; Monteiro, A.; Eira, J.; Pereira, J.E.; Maltez, L.; Igrejas, G.; Lemsaddek, T.S.; Poeta, P. Staphylococcus aureus and MRSA in Livestock: Antimicrobial Resistance and Genetic Lineages. Microorganisms 2023, 11, 124. [Google Scholar] [CrossRef]
- Domán, M.; Makrai, L.; Vásárhelyi, B.; Balka, G.; Bányai, K. Molecular Epidemiology of Candida Albicans Infections Revealed Dominant Genotypes in Waterfowls Diagnosed with Esophageal Mycosis. Front. Vet. Sci. 2023, 10, 1215624. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.A.F.; Olinda, R.G.; Pimentel, L.A.; Maia, L.Â.; Frade, M.T.S.; Kommers, G.D.; Galiza, G.J.N.; Dantas, A.F.M. Cutaneous Fungal Infections Secondary to Avian Pox in Northeast Brazil. Pesq. Vet. Bras. 2023, 43, e07342. [Google Scholar] [CrossRef]
- Ventola, C.L. The Antibiotic Resistance Crisis: Part 1: Causes and Threats. Pharm. Ther. 2015, 40, 277. [Google Scholar]
- Parkhi, C.M.; Liverpool-Tasie, L.S.O.; Reardon, T. Do Smaller Chicken Farms Use More Antibiotics? Evidence of Antibiotic Diffusion from Nigeria. Agribusiness 2023, 39, 242–262. [Google Scholar] [CrossRef]
- Farooq, M.; Smoglica, C.; Ruffini, F.; Soldati, L.; Marsilio, F.; Di Francesco, C.E. Antibiotic Resistance Genes Occurrence in Conventional and Antibiotic-Free Poultry Farming, Italy. Animals 2022, 12, 2310. [Google Scholar] [CrossRef] [PubMed]
- Al-Halawa, D.A.; Seir, R.A.; Qasrawi, R. Antibiotic Resistance Knowledge, Attitudes, and Practices among Pharmacists: A Cross-Sectional Study in West Bank, Palestine. J. Environ. Public Health 2023, 2023, 2294048. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, B.; Zhu, W.; Lin, Y.; Linlin, J.; Zhu, F.; Guo, Y. In Vitro Screening of Non-Antibiotic Alternative Growth Promoter Combinations in Broilers. bioRxiv 2023. [Google Scholar] [CrossRef]
- Tabashsum, Z.; Scriba, A.; Biswas, D. Alternative Approaches to Therapeutics and Sub-Therapeutics for Sustainable Poultry Production. Poult. Sci. 2023, 102, 102750. [Google Scholar] [CrossRef]
- Kumar, K.; Kumar, S.; Kumar, V.; Prakash, V.; Singh, S.; Singh, B.; Rout, S. Performance of Broiler Chickens Supplemented with Dried Mushroom in Their Diet. Int. J. Environ. Clim. Chang. 2023, 13, 356–364. [Google Scholar] [CrossRef]
- Wickramasuriya, S.S.; Park, I.; Lee, K.; Lee, Y.; Kim, W.H.; Nam, H.; Lillehoj, H.S. Role of Physiology, Immunity, Microbiota, and Infectious Diseases in the Gut Health of Poultry. Vaccines 2022, 10, 172. [Google Scholar] [CrossRef]
- Al Sattar, A.; Chisty, N.N.; Irin, N.; Uddin, M.H.; Hasib, F.Y.; Hoque, M.A. Knowledge and Practice of Antimicrobial Usage and Resistance among Poultry Farmers: A Systematic Review, Meta-Analysis, and Meta-Regression. Vet. Res. Commun. 2023, 47, 1047–1066. [Google Scholar] [CrossRef] [PubMed]
- Beldowska, A.; Barszcz, M.; Dunislawska, A. State of the Art in Research on the Gut-Liver and Gut-Brain Axis in Poultry. J. Anim. Sci. Biotechnol. 2023, 14, 37. [Google Scholar] [CrossRef] [PubMed]
- Amer, M.M.; Amer, A.M.; El-Bayoumi, K.M. Chicken Gastrointestinal Microbiota, Composition, Function, and Importance. Egypt. J. Vet. Sci. 2023, 54, 403–420. [Google Scholar] [CrossRef]
- Ahmed, A.F.; Mahmoud, G.A.-E.; Hefzy, M.; Liu, Z.; Ma, C. Overview on the Edible Mushrooms in Egypt. J. Future Foods 2023, 3, 8–15. [Google Scholar] [CrossRef]
- Seidavi, A.; Tavakoli, M.; Asroosh, F.; Scanes, C.G.; Abd El-Hack, M.E.; Naiel, M.A.; Taha, A.E.; Aleya, L.; El-Tarabily, K.A.; Swelum, A.A. Antioxidant and Antimicrobial Activities of Phytonutrients as Antibiotic Substitutes in Poultry Feed. Environ. Sci. Pollut. Res. 2022, 29, 5006–5031. [Google Scholar] [CrossRef] [PubMed]
- Landi, N.; Clemente, A.; Pedone, P.V.; Ragucci, S.; Di Maro, A. An Updated Review of Bioactive Peptides from Mushrooms in a Well-Defined Molecular Weight Range. Toxins 2022, 14, 84. [Google Scholar] [CrossRef] [PubMed]
- Lesa, K.N.; Khandaker, M.U.; Mohammad Rashed Iqbal, F.; Sharma, R.; Islam, F.; Mitra, S.; Emran, T.B. Nutritional Value, Medicinal Importance, and Health-Promoting Effects of Dietary Mushroom (Pleurotus ostreatus). J. Food Qual. 2022, 2022, 2454180. [Google Scholar] [CrossRef]
- Izham, I.; Avin, F.; Raseetha, S. Systematic Review: Heat Treatments on Phenolic Content, Antioxidant Activity, and Sensory Quality of Malaysian Mushroom: Oyster (Pleurotus spp.) and Black Jelly (Auricularia spp.). Front. Sustain. Food Syst. 2022, 6, 882939. [Google Scholar] [CrossRef]
- Changqing, T.; Xingyue, Z.; Fei, Z.; Qiancheng, Z.; Wei, L. Anti-Tumor, Immunomodulatory, Hepatoprotective and Antioxidant Activity of Oysters Polysaccharides. Научные Труды Дальрыбвтуза 2022, 59, 6–21. [Google Scholar]
- Morgan, N.K. Advances in Prebiotics for Poultry: Role of the Caeca and Oligosaccharides. Anim. Prod. Sci. 2023, 63, 1911–1925. [Google Scholar] [CrossRef]
- Bedford, M.R.; Svihus, B.; Cowieson, A.J. Dietary Fibre Effects and the Interplay with Exogenous Carbohydrases in Poultry Nutrition. Anim. Nutr. 2024, 16, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Murati, E.; Murati, A.; Karadelev, M. Exploring the potency of wild mushrooms: A compressive review of antifungal activity in the republic of north macedonia. J. Agric. Sustain. Rural Dev. 2023, 1, 80–85. [Google Scholar]
- Ebeid, T.A.; T\uumová, E.; Al-Homidan, I.H.; Ketta, M.; Chodová, D. Recent Advances in the Role of Feed Restriction in Poultry Productivity: Part I-Performance, Gut Development, Microbiota and Immune Response. World’s Poult. Sci. J. 2022, 78, 971–988. [Google Scholar] [CrossRef]
- Lobiuc, A.; Pavăl, N.-E.; Mangalagiu, I.I.; Gheorghiță, R.; Teliban, G.-C.; Amăriucăi-Mantu, D.; Stoleru, V. Future Antimicrobials: Natural and Functionalized Phenolics. Molecules 2023, 28, 1114. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Rico, M.; Renwick, S.; Vancuren, S.J.; Robinson, A.V.; Gianetto-Hill, C.; Allen-Vercoe, E.; Barat, J.M. Impact of Food Preservatives Based on Immobilized Phenolic Compounds on an in Vitro Model of Human Gut Microbiota. Food Chem. 2023, 403, 134363. [Google Scholar] [CrossRef] [PubMed]
- Rama, E.N.; Bailey, M.; Kumar, S.; Leone, C.; den Bakker, H.C.; Thippareddi, H.; Singh, M. Characterizing the Gut Microbiome of Broilers Raised under Conventional and No Antibiotics Ever Practices. Poult. Sci. 2023, 102, 102832. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zhao, Y.; Li, F.; Liu, P. Active Polysaccharides from Lentinula Edodes and Pleurotus Ostreatus by Addition of Corn Straw and Xylosma Sawdust through Solid-State Fermentation. Int. J. Biol. Macromol. 2023, 228, 647–658. [Google Scholar] [CrossRef] [PubMed]
- Hahn, V. Potential of the Enzyme Laccase for the Synthesis and Derivatization of Antimicrobial Compounds. World J. Microbiol. Biotechnol. 2023, 39, 107. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.Z.; Zeng, X.G.; Ding, X.L. Effects of Replacing Soybean Meal with Fermented Rapeseed Meal on Performance, Serum Biochemical Variables and Intestinal Morphology of Broilers. Asian Australas. J. Anim. Sci 2012, 25, 1734–1741. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, D.; El-sayed, H.I.; Mahmoud, E.R.; El-Rahman, G.I.A.; Bazeed, S.M.; Abdelwarith, A.A.; Elgamal, A.; Khalil, S.S.; Younis, E.M.; Kishawy, A.T.Y.; et al. Impacts of Solid-State Fermented Barley with Fibrolytic Exogenous Enzymes on Feed Utilization, and Antioxidant Status of Broiler Chickens. Vet. Sci. 2023, 10, 594. [Google Scholar] [CrossRef]
- Zhu, X.; Tao, L.; Liu, H.; Yang, G. Effects of Fermented Feed on Growth Performance, Immune Organ Indices, Serum Biochemical Parameters, Cecal Odorous Compound Production, and the Microbiota Community in Broilers. Poult. Sci. 2023, 102, 102629. [Google Scholar] [CrossRef] [PubMed]
- Okoye, C.O.; Okeke, E.S.; Ezeorba, T.P.C.; Chukwudozie, K.I.; Chiejina, C.O.; Fomena Temgoua, N.S. Microbial and Bio-Based Preservatives: Recent Advances in Antimicrobial Compounds. In Microbes for Natural Food Additives; Nadda, A.K., Goel, G., Eds.; Microorganisms for Sustainability; Springer Nature: Singapore, 2022; Volume 38, pp. 53–74. ISBN 978-981-19571-0-9. [Google Scholar]
- Šelo, G.; Planinić, M.; Tišma, M.; Tomas, S.; Koceva Komlenić, D.; Bucić-Kojić, A. A Comprehensive Review on Valorization of Agro-Food Industrial Residues by Solid-State Fermentation. Foods 2021, 10, 927. [Google Scholar] [CrossRef] [PubMed]
- Bonilla Loaiza, A.M.; Rodríguez-Jasso, R.M.; Belmares, R.; López-Badillo, C.M.; Araújo, R.G.; Aguilar, C.N.; Chávez, M.L.; Aguilar, M.A.; Ruiz, H.A. Fungal Proteins from Sargassum spp. Using Solid-State Fermentation as a Green Bioprocess Strategy. Molecules 2022, 27, 3887. [Google Scholar] [CrossRef] [PubMed]
- Heidari, F.; Øverland, M.; Hansen, J.Ø.; Mydland, L.T.; Urriola, P.E.; Chen, C.; Shurson, G.C.; Hu, B. Solid-State Fermentation of Pleurotus Ostreatus to Improve the Nutritional Profile of Mechanically-Fractionated Canola Meal. Biochem. Eng. J. 2022, 187, 108591. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Salem, H.M.; El-Tahan, A.M.; Soliman, M.M.; Youssef, G.B.; Taha, A.E.; Soliman, S.M.; Ahmed, A.E.; El-Kott, A.F. Alternatives to Antibiotics for Organic Poultry Production: Types, Modes of Action and Impacts on Bird’s Health and Production. Poult. Sci. 2022, 101, 101696. [Google Scholar] [CrossRef] [PubMed]
Substrate | Protein (g kg−1) | Carbohydrate (g kg−1) | Fat (g kg−1) | Ash (g kg−1) | Ref. |
---|---|---|---|---|---|
SMS from Pleurotus ostreatus | 16.1 + 0.32 | 63.57 + 0.02 | 23.78 + 0.04 70.67 + 0.06 | 5.29 + 0.011 | [53] |
SMS from Pleurotus sajor-caju | 14.5 + 0.32 | 61.45 + 0.03 | 23.22 + 0.03 70.27 + 0.02 | 5.14 + 0.002 | [53] |
Fruiting body from Pleurotus ostretus | 30.40 | 57.60 | 2.20 | 9.80 | [54] |
Fruiting body from Pleurotus sajor-caju | 19.23 | 63.40 | 2.70 | 6.32 | [54] |
Applied Dose of P. ostreatus (%) | Animal Models | Main Results | Ref. |
---|---|---|---|
0.5–2 | Japanese quail (Coturnix japonica) | Positive impacts on crypt depth and papillae height across various gut segments were observed with the inclusion of 0.5–2%, 2% of P. ostreatus powder. | [63] |
1–2 | Broiler chicken (ROSS 308) | Positively influence the morphology of their intestines (higher relative length of the ileum). | [64] |
1.5 | Broiler chicken (ROSS 308) | High live weight and greater profitability. | [65] |
1–2 | Broiler chicken (ROSS 308) | A notable enhancement in the elevation of villi and the profundity of crypts within the jejunum. | [66] |
5, 10 and 15 | Grower geese | A 5% inclusion of SMS in the diet positively influences sensory attributes, especially meat flavor and overall acceptability. | [67] |
1–2 | Broiler chicken (ROSS 308) | 1% inclusion of oyster mushroom waste positively influences poultry performance, and immune response to disease vaccines, and reduces meat lipid oxidative rancidity. | [61] |
25, 50, 75, and 100% replacement of wheat bran | Broiler chicken (ROSS 308) | The dietary treatment did not exhibit a significant effect (p > 0.05) on the breast, thigh drumstick, back, neck, wings, and shoulder. | [68] |
0, 5, 10, and 15 mL/L of water and 0, 500, 750, and 1000 ppm | Cockerel chickens | 15 mL/L in water and 750 ppm in feed resulted in improved growth performance and blood profile in production. | [69] |
0.3, 0.6, 0.9 and 1.2% | Hy-line laying hens | 0.6% of mushroom powder led to the maximum egg weight and IOFC (Income Over Feed Cost). | [70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Törős, G.; El-Ramady, H.; Béni, Á.; Peles, F.; Gulyás, G.; Czeglédi, L.; Rai, M.; Prokisch, J. Pleurotus ostreatus Mushroom: A Promising Feed Supplement in Poultry Farming. Agriculture 2024, 14, 663. https://doi.org/10.3390/agriculture14050663
Törős G, El-Ramady H, Béni Á, Peles F, Gulyás G, Czeglédi L, Rai M, Prokisch J. Pleurotus ostreatus Mushroom: A Promising Feed Supplement in Poultry Farming. Agriculture. 2024; 14(5):663. https://doi.org/10.3390/agriculture14050663
Chicago/Turabian StyleTörős, Gréta, Hassan El-Ramady, Áron Béni, Ferenc Peles, Gabriella Gulyás, Levente Czeglédi, Mahendra Rai, and József Prokisch. 2024. "Pleurotus ostreatus Mushroom: A Promising Feed Supplement in Poultry Farming" Agriculture 14, no. 5: 663. https://doi.org/10.3390/agriculture14050663