Soil Bacterial Community of Medicinal Plant Rhizosphere in a Mediterranean System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Researched Plants—Ecophysiology and Medicinal Use
2.3. Soil Sample Collection
2.4. Soil Analysis
2.5. Molecular—Taxonomy Determination
2.6. Data Analysis
3. Results
Abiotic Variables
4. Taxonomic Analysis
4.1. Phyla
4.2. Order
4.3. Genus
4.4. Potential Bacterial Functions Captured by 16S rDNA
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Philippot, L.; Raaijmakers, J.M.; Lemanceau, P.; Van Der Putten, W.H. Going Back to the Roots: The Microbial Ecology of the Rhizosphere. Nat. Rev. Microbiol. 2013, 11, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Hortal, S.; Bastida, F.; Moreno, J.L.; Armas, C.; García, C.; Pugnaire, F.I. Benefactor and Allelopathic Shrub Species Have Different Effects on the Soil Microbial Community along an Environmental Severity Gradient. Soil. Biol. Biochem. 2015, 88, 48–57. [Google Scholar] [CrossRef]
- Mendes, R.; Raaijmakers, J.M. Cross-Kingdom Similarities in Microbiome Functions. ISME J. 2015, 9, 1905–1907. [Google Scholar] [CrossRef]
- Broeckling, C.D.; Broz, A.K.; Bergelson, J.; Manter, D.K.; Vivanco, J.M. Root Exudates Regulate Soil Fungal Community Composition and Diversity. Appl. Environ. Microbiol. 2008, 74, 738–744. [Google Scholar] [CrossRef]
- Kaplan, D.; Maymon, M.; Agapakis, C.M.; Lee, A.; Wang, A.; Prigge, B.A.; Volkogon, M.; Hirsch, A.M. A Survey of the Microbial Community in the Rhizosphere of Two Dominant Shrubs of the Negev Desert Highlands, Zygophyllum dumosum (Zygophyllaceae) and Atriplex halimus (Amaranthaceae), Using Cultivation-Dependent and Cultivation-Independent Methods. Am. J. Bot. 2013, 100, 1713–1725. [Google Scholar] [CrossRef]
- Veen, G.F.; Fry, E.L.; ten Hooven, F.C.; Kardol, P.; Morriën, E.; De Long, J.R. The Role of Plant Litter in Driving Plant-Soil Feedbacks. Front. Environ. Sci. 2019, 7, 168. [Google Scholar] [CrossRef]
- Trivedi, P.; Leach, J.E.; Tringe, S.G.; Sa, T.; Singh, B.K. Plant–Microbiome Interactions: From Community Assembly to Plant Health. Nat. Rev. Microbiol. 2020, 18, 607–621. [Google Scholar] [CrossRef]
- Mansfield, J.; Genin, S.; Magori, S.; Citovsky, V.; Sriariyanum, M.; Ronald, P.; Dow, M.; Verdier, V.; Beer, S.V.; Machado, M.A.; et al. Top 10 Plant Pathogenic Bacteria in Molecular Plant Pathology. Mol. Plant Pathol. 2012, 13, 614–629. [Google Scholar] [CrossRef]
- Expósito, R.G.; de Bruijn, I.; Postma, J.; Raaijmakers, J.M. Current Insights into the Role of Rhizosphere Bacteria in Disease Suppressive Soils. Front. Microbiol. 2017, 8, 2529. [Google Scholar] [CrossRef] [PubMed]
- Richardson, A.E.; Barea, J.M.; McNeill, A.M.; Prigent-Combaret, C. Acquisition of Phosphorus and Nitrogen in the Rhizosphere and Plant Growth Promotion by Microorganisms. Plant Soil. 2009, 321, 305–339. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, Y.; Xie, X.; Kim, M.S.; Dowd, S.E.; Paré, P.W. A Soil Bacterium Regulates Plant Acquisition of Iron via Deficiency-Inducible Mechanisms. Plant J. 2009, 58, 568–577. [Google Scholar] [CrossRef]
- Colombo, C.; Palumbo, G.; He, J.Z.; Pinton, R.; Cesco, S. Review on Iron Availability in Soil: Interaction of Fe Minerals, Plants, and Microbes. J. Soils Sediments 2014, 14, 538–548. [Google Scholar] [CrossRef]
- Mayak, S.; Tirosh, T.; Glick, B.R. Plant Growth-Promoting Bacteria That Confer Resistance to Water Stress in Tomatoes and Peppers. Plant Sci. 2004, 166, 525–530. [Google Scholar] [CrossRef]
- Wolters, V. Soil Invertebrates—Effects on Nutrient Turnover and Soil Structure—A Review. Z. Für Pflanzenernährung Und Bodenkd. 1991, 154, 389–402. [Google Scholar] [CrossRef]
- Baudoin, E.; Benizri, E.; Guckert, A. Impact of Growth Stage on the Bacterial Community Structure along Maize Roots, as Determined by Metabolic and Genetic Fingerprinting. Appl. Soil Ecol. 2002, 19, 135–145. [Google Scholar] [CrossRef]
- Petrovska, B.B. Historical Review of Medicinal Plants’ Usage. Pharmacogn. Rev. 2012, 6, 1–5. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- De Smet, P.A.G.M. The Role of Plant-Derived Drugs and Herbal. Medicines in Healthcare. Drugs 1997, 54, 801–840. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, V.; Tripathi, A.K.; Khanuja, S.P.S.; Kumar, S. Anti-Insect Screening of Medicinal Plants from Kukrail Forest, Lucknow, India. Pharm. Biol. 2003, 41, 166–170. [Google Scholar] [CrossRef]
- Musilova, L.; Ridl, J.; Polivkova, M.; Macek, T.; Uhlik, O. Effects of Secondary Plant Metabolites on Microbial Populations: Changes in Community Structure and Metabolic Activity in Contaminated Environments. Int. J. Mol. Sci. 2016, 17, 1205. [Google Scholar] [CrossRef]
- Dohrmann, A.B.; Küting, M.; Jünemann, S.; Jaenicke, S.; Schlüter, A.; Tebbe, C.C. Importance of Rare Taxa for Bacterial Diversity in the Rhizosphere of Bt-and Conventional Maize Varieties. ISME J. 2013, 7, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Schmalenberger, A.; Tebbe, C.C. Bacterial Community Composition in the Rhizosphere of a Transgenic, Herbicide-Resistant Maize (Zea Mays) and Comparison to Its Non-Transgenic Cultivar Bosphore. FEMS Microbiol. Ecol. 2006, 40, 29–37. [Google Scholar] [CrossRef]
- Levi, M.; Applebaum, I.; Sherman, C.; Doniger, T.; Steinberger, Y. Soil Fungal Community of Wheat Triticum Aestivum Rhizosphere at Different Phenological Stages under a Rain-Fed Management. Rhizosphere 2022, 24, 100605. [Google Scholar] [CrossRef]
- Applebaum, I.; Jeyaraman, M.; Sherman, C.; Doniger, T.; Steinberger, Y. Structure and Function of the Soil Rhizosphere Fungal Communities in Medicinal Plants—A Preliminary Study. Agriculture 2022, 12, 152. [Google Scholar] [CrossRef]
- Mowafy, A.M.; Alraey, D.A.; Omar, M.N.; Elshobaky, A.; Haroun, S.A. Origanum Syriacum Ssp. Sinaicum Associated Growth Promoting Bacteria. IOSR J. Environ. Sci. Toxicol. Food Technol. 2016, 10, 53–60. [Google Scholar] [CrossRef]
- Ahmed, E.A.; Hassan, E.A.; Tobgy, K.M.K.E.; Ramadan, E.M. Evaluation of Rhizobacteria of Some Medicinal Plants for Plant Growth Promotion and Biological Control. Ann. Agric. Sci. 2014, 59, 273–280. [Google Scholar] [CrossRef]
- Feinbrun-dothan, N.; Danin, A.; Plitmann, U. Analytical Flora of Eretz-Israel; Cana Publishing House: Toronto, ON, USA, 1998. [Google Scholar]
- Yaniv, Z.; Dudai, N. Medicinal and Aromatic Plants of the World Medicinal and Aromatic Plants of the Middle-East; Springer: Dordrecht, The Netherlands; Heidelberg, Germany; New York, NY, USA; London, UK, 2014. [Google Scholar]
- Perfumia, M.; Arnoldb, N.; Tacconid, R. Hypoglycemic Activity of Salvia fruticosa Mill. from Cyprus. J. Ethnopharmacol. 1991, 34, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Nawash, O.; Shudiefat, M.; Al-Tabini, R.; Al-Khalidi, K. Ethnobotanical Study of Medicinal Plants Commonly Used by Local Bedouins in the Badia Region of Jordan. J. Ethnopharmacol. 2013, 148, 921–925. [Google Scholar] [CrossRef]
- Maccioni, A.; Falconieri, D.; Porcedda, S.; Piras, A.; Gonçalves, M.J.; Alves-Silva, J.M.; Salgueiro, L.; Maxia, A. Antifungal Activity and Chemical Composition of the Essential Oil from the Aerial Parts of Two New Teucrium capitatum L. Chemotypes from Sardinia Island, Italy. Nat. Prod. Res. 2021, 35, 6007–6013. [Google Scholar] [CrossRef]
- Chabane, S.; Boudjelal, A.; Napoli, E.; Benkhaled, A.; Ruberto, G. Phytochemical Composition, Antioxidant and Wound Healing Activities of Teucrium polium Subsp. Capitatum (L.) Briq. Essential Oil. J. Essent. Oil Res. 2021, 33, 143–151. [Google Scholar] [CrossRef]
- Alipour, G.; Dashti, S.; Hosseinzadeh, H. Review of Pharmacological Effects of Myrtus communis L. and Its Active Constituents. Phytother. Res. 2014, 28, 1125–1136. [Google Scholar] [CrossRef] [PubMed]
- Louca, S.; Doebeli, M. Efficient Comparative Phylogenetics on Large Trees. Bioinformatics 2018, 34, 1053–1055. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’hara, R.B.; Simpson, G.L.; Solymos, P. Vegan: Community Ecology Package. 2018. Available online: https://github.com/vegandevs/vegan/ (accessed on 19 March 2024).
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PICRUSt2: An Improved and Customizable Approach for Metagenome Inference. BioRxiv 2019, 672295. [Google Scholar] [CrossRef]
- Langille, M.G.I.; Zaneveld, J.; Caporaso, J.G.; McDonald, D.; Knights, D.; Reyes, J.A.; Clemente, J.C.; Burkepile, D.E.; Vega Thurber, R.L.; Knight, R.; et al. Predictive Functional Profiling of Microbial Communities Using 16S RRNA Marker Gene Sequences. Nat. Biotechnol. 2013, 31, 814–821. [Google Scholar] [CrossRef]
- Czech, L.; Barbera, P.; Stamatakis, A. Supplementary Text: Software Comparison Genesis and Gappa: Processing, Analyzing and Visualizing Phylogenetic (Placement) Data. Bioinformatics 2020, 36, 3263–3265. [Google Scholar] [CrossRef] [PubMed]
- Barbera, P.; Kozlov, A.M.; Czech, L.; Morel, B.; Darriba, D.; Flouri, T.; Stamatakis, A. EPA-Ng: Massively Parallel Evolutionary Placement of Genetic Sequences. Syst. Biol. 2019, 68, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Doak, T.G. A Parsimony Approach to Biological Pathway Reconstruction/Inference for Genomes and Metagenomes. PLoS Comput. Biol. 2009, 5, e1000465. [Google Scholar] [CrossRef] [PubMed]
- Parks, D.H.; Tyson, G.W.; Hugenholtz, P.; Beiko, R.G. STAMP: Statistical Analysis of Taxonomic and Functional Profiles. Bioinformatics 2014, 30, 3123–3124. [Google Scholar] [CrossRef] [PubMed]
- Package “vegan3d” Title Static and Dynamic 3D. 2024. Available online: https://cran.r-project.org (accessed on 19 March 2024).
- Buscot, F.; Varma, A. Microorganisms in Soils: Roles in Genesis and Functions; Springer: Berlin/Heidelberg, Germany, 2005; ISBN 3540222200. [Google Scholar]
- Afonso, A.F.; Pereira, O.R.; Fernandes, Â.S.F.; Calhelha, R.C.; Silva, A.M.S.; Ferreira, I.C.F.R.; Cardoso, S.M. The Health-Benefits and Phytochemical Profile of Salvia apiana and Salvia farinacea var. Victoria Blue Decoctions. Antioxidants 2019, 8, 241. [Google Scholar] [CrossRef]
- Epelde, L.; Lanzén, A.; Blanco, F.; Urich, T.; Garbisu, C. Adaptation of Soil Microbial Community Structure and Function to Chronic Metal Contamination at an Abandoned Pb-Zn Mine. FEMS Microbiol. Ecol. 2015, 91, 1–11. [Google Scholar] [CrossRef]
- Tiedje, J.M.; Cho, J.C.; Murray, A.; Treves, D.; Xia, B.; Zhou, J. Soil teeming with life new frontiers for soil science. In Sustainable Management of Soil Organic Matter; CABi: Wallingford, UK, 2001; pp. 393–425. [Google Scholar]
- Torsvik, V.; Øvreås, L. Microbial diversity and function in soil: From genes to ecosystems. Curr. Opin. Microbiol. 2002, 5, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Steinberger, Y.; Doniger, T.; Sherman, C.; Applebaum, I.; Eshel, G. Effect of Soil Aggregate Size on Vineyard Bacterial Communities under Organic and Conventional Agro-Managements. Land 2022, 11, 1517. [Google Scholar] [CrossRef]
Soil Properties | Sampled Rhizosphere | |||||
---|---|---|---|---|---|---|
Control | O. syriacum | S. fruticosa | T. capitatum | M. communis | P. lentiscus | |
SM (%) | 07.83 ± 02.99 b | 13.37 ± 01.86 ab | 14.23 ± 04.02 ab | 10.33 ± 00.87 b | 21.73 ± 03.71 a | 20.07 ± 10.25 a |
OM (%) | 06.37 ± 10.84 a | 08.40 ± 00.66 a | 07.00 ± 01.57 a | 07.67 ± 02.57 a | 10.07 ± 05.84 a | 16.57 ± 12.11 a |
pH | 08.00 ± 00.06 ab | 08.10 ± 00.05 a | 07.91 ± 00.07 bc | 07.92 ± 00.06 bc | 07.91 ± 00.08 bc | 07.79 ± 00.09 c |
EC | 78.57 ± 01.18 a | 84.77 ± 12.18 a | 83.43 ± 04.65 a | 86.30 ± 06.59 a | 80.37 ± 05.06 a | 83.93 ± 20.40 a |
Control Soil | M. communis | O. syriacum | P. lentiscus | S. fruticosa | T. capitatum | |
---|---|---|---|---|---|---|
Actinobacteria | 33.03 ± 7.89 | 40.95 ± 0.38 | 38.61 ± 2.82 | 34.47 ± 5.85 | 37.09 ± 5.12 | 37 ± 1.95 |
Proteobacteria | 29.07 ± 7.59 | 33.19 ± 1.88 | 29.76 ± 7.09 | 33.33 ± 4.4 | 26.62 ± 3.49 | 24.89 ± 2.56 |
Chloroflexi | 10.34 ± 1.06 abc | 8.9 ± 0.72 bc | 12.25 ± 1.95 a | 8.01 ± 1.26 c | 11.62 ± 1.66 a | 11.03 ± 0.3 ab |
Acidobacteria | 10.81 ± 2.22 | 6.85 ± 0.05 | 7.42 ± 3.73 | 9.72 ± 1.5 | 9.73 ± 2.68 | 10.89 ± 1.43 |
Planctomycetes | 6.24 ± 0.62 | 3.17 ± 0.73 | 3.47 ± 3.05 | 3.81 ± 0.88 | 4.68 ± 0.64 | 6.09 ± 0.43 |
Bacteroidetes | 3.85 ± 0.69 | 3.32 ± 1.16 | 2.5 ± 2.18 | 5.17 ± 2.07 | 4.05 ± 1.44 | 3.75 ± 0.47 |
Verrucomicrobia | 2.93 ± 0.73 | 1.77 ± 0.43 | 2.75 ± 1.01 | 2.71 ± 0.82 | 3.15 ± 1.34 | 2.68 ± 0.22 |
Gemmatimonadetes | 2.2 ± 0.1 | 1.04 ± 0.16 | 2.32 ± 1.13 | 1.74 ± 0.29 | 1.93 ± 0.34 | 2.39 ± 0.37 |
TM7 | 0.41 ± 0.18 | 0.28 ± 0.22 | 0.57 ± 0.49 | 0.5 ± 0.23 | 0.36 ± 0.03 | 0.36 ± 0.11 |
Cyanobacteria | 0.35 ± 0.26 | 0.2 ± 0.29 | 0.12 ± 0.12 | 0.07 ± 0.05 | 0.25 ± 0.19 | 0.41 ± 0.08 |
Other | 0.78 ± 0.41 | 0.34 ± 0.13 | 0.22 ± 0.2 | 0.47 ± 0.13 | 0.52 ± 0.17 | 0.52 ± 0.1 |
H’ | 1.85 ± 0.02 a | 1.57 ± 0.04 b | 1.66 ± 0.21 ab | 1.72 ± 0.07 ab | 1.79 ± 0.13 a | 1.86 ± 0.03 a |
Control Soil | M. communis | O. syriacum | P. lentiscus | S. fruticosa | T. capitatum | |
---|---|---|---|---|---|---|
Actinomycetales | 13.77 ± 2.84 | 18.05 ± 2.44 | 11.9 ± 3.7 | 16.13 ± 1.48 | 11.84 ± 2.28 | 13.73 ± 0.83 |
Solirubrobacterales | 7.82 ± 1.6 | 8.34 ± 1.16 | 10.34 ± 1.03 | 7.79 ± 2.22 | 9.48 ± 0.64 | 10.02 ± 0.54 |
Acidimicrobiales | 5.24 ± 0.79 | 8.96 ± 0.44 | 8.34 ± 1.39 | 5.85 ± 2.53 | 8.45 ± 2.27 | 6.19 ± 1.44 |
Rhizobiales | 6.41 ± 0.34 | 7.04 ± 1.52 | 7.32 ± 0.97 | 7.16 ± 0.78 | 5.84 ± 0.71 | 7.37 ± 0.2 |
Pseudomonadales | 4.33 ± 0.39 | 9.5 ± 4.74 | 8.47 ± 6.22 | 5.4 ± 4.05 | 5.23 ± 4.15 | 3.14 ± 1.36 |
RB41 | 6.09 ± 2.43 | 2.73 ± 0.67 | 3.81 ± 1.91 | 4.56 ± 0.84 | 4.95 ± 2.08 | 6.18 ± 1.55 |
Sphingomonadales | 4.46 ± 0.46 | 3.98 ± 0.74 | 2.96 ± 1.01 | 4.38 ± 1.42 | 3.6 ± 1.03 | 4.57 ± 0.35 |
JG30-KF-CM45 | 3.52 ± 1.07 | 2.96 ± 0.37 | 7.44 ± 4.49 | 2.14 ± 1.24 | 4.67 ± 0.91 | 4.36 ± 0.43 |
iii1-15 | 3.43 ± 0.76 | 3.31 ± 0.68 | 2.84 ± 1.18 | 4.22 ± 1.78 | 3.55 ± 0.43 | 3.27 ± 0.63 |
Gaiellales | 3.22 ± 1.85 | 2.81 ± 1.22 | 2.82 ± 0.91 | 2.35 ± 1.09 | 3.62 ± 0.97 | 2.95 ± 0.51 |
Burkholderiales | 5.82 ± 5.96 | 3.07 ± 1.37 | 3 ± 1.56 | 2.91 ± 0.6 | 2.92 ± 1.34 | 1.65 ± 0.32 |
(Saprospirales) | 2.68 ± 0.34 | 1.91 ± 0.68 | 1.71 ± 1.49 | 3.24 ± 0.84 | 2.55 ± 1.07 | 2.79 ± 0.41 |
Xanthomonadales | 1.97 ± 0.24 | 2.81 ± 0.79 | 2.48 ± 0.98 | 3.34 ± 1.92 | 2.34 ± 0.33 | 1.76 ± 0.22 |
Rubrobacterales | 2.06 ± 0.89 | 1.49 ± 0.46 | 4.16 ± 2.66 | 1.21 ± 0.86 | 2.11 ± 0.68 | 2.53 ± 0.08 |
Gemmatales | 2.15 ± 1.09 | 1.44 ± 0.06 | 1.37 ± 1.2 | 1.15 ± 0.43 | 1.77 ± 0.46 | 2.52 ± 0.42 |
Myxococcales | 1.37 ± 0.13 bc | 1.87 ± 0.24 ab | 0.88 ± 0.77 c | 2.28 ± 0.47 a | 1.67 ± 0.09 ab | 1.49 ± 0.3 bc |
c_Ellin6529 | 1.61 ± 0.37 | 1.19 ± 0.14 | 0.97 ± 0.85 | 1.59 ± 0.27 | 1.83 ± 0.38 | 2 ± 0.21 |
WD2101 | 2.43 ± 0.14 a | 0.48 ± 0.17 c | 1.13 ± 1.06 c | 1.18 ± 0.42 bc | 1.42 ± 0.51 bc | 2.15 ± 0.27 ab |
Rhodospirillales | 0.91 ± 0.19 | 1.22 ± 0.51 | 1.04 ± 0.92 | 1.92 ± 1.46 | 1.12 ± 0.3 | 1.09 ± 0.15 |
(Pedosphaerales) | 1.42 ± 0.45 | 0.43 ± 0.03 | 0.51 ± 0.52 | 1.06 ± 0.53 | 1.01 ± 0.58 | 1.15 ± 0.07 |
Other | 19.3 ± 1.33 | 16.4 ± 1.19 | 16.53 ± 3.28 | 20.11 ± 4.41 | 20.03 ± 2.62 | 19.09 ± 0.63 |
H’ | 3.44 ± 0.01 | 3.21 ± 0.06 | 3.14 ± 0.45 | 3.4 ± 0.14 | 3.46 ± 0.13 | 3.44 ± 0.02 |
Df | Sums of Sqs | Mean Sqs | F. Model | R2 | Pr (>F) | |
---|---|---|---|---|---|---|
Q2.1.3 | 5.000 | 0.841 | 0.168 | 1.348 | 0.360 | 0.010 |
Residuals | 12.000 | 1.498 | 0.125 | 0.640 | ||
Total | 17.000 | 2.339 | 1.000 |
Co. | M. | P. | T. | O. | S. | |
---|---|---|---|---|---|---|
p__Bacteroidetes…c__Saprospirae…o__Saprospirales…f__ | 0.038 | |||||
p__Proteobacteria…c__Alphaproteobacteria…o__Ellin329…f__ | 0.035 | |||||
p__Acidobacteria…c_Sva0725…o__Sva0725…f__ | 0.045 | |||||
p__Actinobacteria…c__Actinobacteria…o__Actinomcetales…f__Microbacteriaceae | 0.013 | |||||
p__Chlorflexi…c__o__f__ | 0.033 | |||||
p__Actinobacteria…c__Actinobacteria…o__Actinomycetales…f__Pseudonomcardiaceae | 0.001 | 0.001 | ||||
p__Actinobacteria…c__Actinobacteria…o__Actinomycetales…f__Glycomycetaceae | 0.027 | 0.027 | ||||
p__Proteobacteria…c__Deltaproteobacteria…o__Myxococcales…f__ | 0.022 | 0.022 | ||||
p__Proteobacteria…c__Alphproteobacteria…o__Rhizobiales…f__ | 0.046 | 0.046 | ||||
p__Gemmatimonadetes…c__Gemmatimonadetes…o__Gemmatimonaldales…f__Gemmatimonadaceae | 0.017 | 0.017 | ||||
p__Planctomycetes…c__028H05.P.BN.P5…o__…f__ | 0.041 | 0.041 | ||||
p__Gemmatimonadetes…c__ Gemm.2…o__f__ | 0.034 | 0.034 | ||||
p__Planctomycetes…c__Phycissphaerae…o__WD02101…f__ | 0.021 | 0.021 | ||||
p__Chlorobi…c__o__…f__ | 0.029 | 0.029 | ||||
p__Proteobacteria…c__Deltaproteobacteria…o__Myxococcales…f__Halliangiaceae | 0.003 | 0.003 | 0.003 | |||
p__Proteobacteria…c__Alphproteobacteria…o__Rhizobiales…f__Bradyrhizobiaceae | 0.038 | 0.038 | 0.038 | |||
p__Gemmatimonadetes…c__Gemm.5…o__f__ | 0.018 | 0.018 | 0.018 | |||
p__Ntrospiae…c__Nitrospira…o__Nitrospirales…f__0319.6A21 | 0.028 | 0.028 | 0.028 | |||
p__actinobacteria…c__ Actinobacteria…o__Actinomcetales…f__Micromonosporaceae | 0.021 | 0.021 | 0.021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steinberger, Y.; Doniger, T.; Sherman, C.; Jeyaraman, M.; Applebaum, I. Soil Bacterial Community of Medicinal Plant Rhizosphere in a Mediterranean System. Agriculture 2024, 14, 664. https://doi.org/10.3390/agriculture14050664
Steinberger Y, Doniger T, Sherman C, Jeyaraman M, Applebaum I. Soil Bacterial Community of Medicinal Plant Rhizosphere in a Mediterranean System. Agriculture. 2024; 14(5):664. https://doi.org/10.3390/agriculture14050664
Chicago/Turabian StyleSteinberger, Yosef, Tirza Doniger, Chen Sherman, Mareeswaran Jeyaraman, and Itaii Applebaum. 2024. "Soil Bacterial Community of Medicinal Plant Rhizosphere in a Mediterranean System" Agriculture 14, no. 5: 664. https://doi.org/10.3390/agriculture14050664
APA StyleSteinberger, Y., Doniger, T., Sherman, C., Jeyaraman, M., & Applebaum, I. (2024). Soil Bacterial Community of Medicinal Plant Rhizosphere in a Mediterranean System. Agriculture, 14(5), 664. https://doi.org/10.3390/agriculture14050664