Assessing Climate Change Effects on Winter Wheat Production in the 3H Plain: Insights from Bias-Corrected CMIP6 Projections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Crop Simulation
3. Results
3.1. Bias-Corrected Results for Main Climate Factors
3.2. Climate Variability in Future Scenarios in the 3H Plain
3.3. Impacts of Climate Variability on Winter Wheat Yields in the 3H Plain
4. Discussion
5. Conclusions
- (1)
- By applying the EDCDF method for bias correction, the regionally averaged discrepancies in temperature, precipitation, and solar radiation across the 3H Plain were significantly reduced by 18.3%, 5.6%, and 30.7%, respectively. Compared to the reference climate period of 1995–2014, forecasts suggest a general uptrend in temperatures and a downtrend in solar radiation throughout the 3H Plain over the mid- to late 21st century under both SSP scenarios. Furthermore, precipitation levels are anticipated to decline in the southern and northeast parts of the 3H Plain during the mid-21st century, but an overall rise across the plain is expected from the mid- to late 21st century.
- (2)
- The model projections indicate an anticipated average uplift in winter wheat yields by 13% in the mid-21st century under both SSP2-4.5 and SSP5-8.5 scenarios. Moving into the late 21st century, the yield increases are forecasted at 11.3% under SSP2-4.5 and 3.6% under SSP5-8.5. Particularly under the SSP5-8.5 scenario, in the late 21st century, a pronounced disparity in yield trends is observed; yields are projected to surge by 21.1% in areas north of 36° N, contrasting with an 8.4% reduction in areas south of 36° N.
- (3)
- Precipitation has been identified as a critical driver behind the yield boosts in the northern parts of the 3H Plain, showing correlation coefficients of 0.59 under SSP2-4.5 and 0.48 under SSP5-8.5. On the other hand, temperature constraints emerge as a significant hindrance to yields in the southern 3H Plain, evidenced by a correlation coefficient of −0.62 under both scenarios.
- (4)
- This investigation highlights a shift in climatic suitability for winter wheat production in the future, with the northern regions of the 3H Plain showing enhanced prospects for yield improvements. To leverage the increased precipitation forecasts, northern areas should refine water management strategies to maximize crop yield potential. Conversely, the southern regions might need to explore adopting heat-resistant wheat varieties or adjusting planting timelines to mitigate yield losses due to rising temperatures.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, Y.; Chen, D.; Dong, W. Influence of climate on winter wheat productivity in different climate regions of China, 1961–2000. Clim. Res. 2006, 32, 219–227. [Google Scholar] [CrossRef]
- Alexandrov, V.; Hoogenboom, G. The impact of climate variability and change on crop yield in Bulgaria. Agric. For. Meteorol. 2000, 104, 315–327. [Google Scholar] [CrossRef]
- Godden, D.; Batterham, R.; Drynan, R. Climate change and Australian wheat yield. Nature 1998, 391, 447–448. [Google Scholar] [CrossRef]
- Emami, M.; Almassi, M.; Bakhoda, H.; Kalantari, I. Agricultural mechanization, a key to food security in developing countries: Strategy formulating for Iran. Agric. Food Secur. 2018, 7, 24. [Google Scholar] [CrossRef]
- Bannayan, M.; Rezaei, E.E. Future production of rainfed wheat in Iran (Khorasan province): Climate change scenario analysis. Mitig. Adapt. Strateg. Glob. Chang. 2014, 19, 211–227. [Google Scholar] [CrossRef]
- Maghrebi, M.; Noori, R.; Bhattarai, R.; Yaseen, Z.M.; Tang, Q.; Al-Ansari, N.; Mehr, A.D.; Karbassi, A.; Omidvar, J.; Farnoush, H. Iran’s agriculture in the anthropocene. Earth’s Future 2020, 8, e2020EF001547. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, L.; Zhang, Z.; Chen, Y. Climate warming outweighed agricultural managements in affecting wheat phenology across China during 1981–2018. Agric. For. Meteorol. 2022, 316, 108865. [Google Scholar] [CrossRef]
- Qu, C.-H.; Li, X.-X.; Hui, J.; Qin, L. The impacts of climate change on wheat yield in the Huang-Huai-Hai Plain of China using DSSAT-CERES-Wheat model under different climate scenarios. J. Integr. Agric. 2019, 18, 1379–1391. [Google Scholar] [CrossRef]
- Yue, Y.; Yang, W.; Wang, L. Assessment of drought risk for winter wheat on the Huanghuaihai Plain under climate change using an EPIC model-based approach. Int. J. Digit. Earth 2022, 15, 690–711. [Google Scholar] [CrossRef]
- Sun, Z.; Jia, S.; Lv, A.; Yang, K.; Svensson, J.; Gao, Y. Impacts of climate change on growth period and planting boundaries of winter wheat in China under RCP4. 5 scenario. Earth Syst. Dyn. Discuss. 2015, 6, 2181–2210. [Google Scholar]
- Shang, S.; Zhang, X.; Shang, Z.; Wu, J. Effect of Climate Change on Yield of Winter Wheat in Jiangsu Province. Agric. Biotechnol. 2019, 8, 224–234. [Google Scholar]
- White, J.W.; Hoogenboom, G.; Kimball, B.A.; Wall, G.W. Methodologies for simulating impacts of climate change on crop production. Field Crops Res. 2011, 124, 357–368. [Google Scholar] [CrossRef]
- Chen, C.; Qian, C.; Deng, A.; Zhang, W. Progressive and active adaptations of cropping system to climate change in Northeast China. Eur. J. Agron. 2012, 38, 94–103. [Google Scholar] [CrossRef]
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate trends and global crop production since 1980. Science 2011, 333, 616–620. [Google Scholar] [CrossRef] [PubMed]
- Palosuo, T.; Kersebaum, K.C.; Angulo, C.; Hlavinka, P.; Moriondo, M.; Olesen, J.E.; Patil, R.H.; Ruget, F.; Rumbaur, C.; Takáč, J. Simulation of winter wheat yield and its variability in different climates of Europe: A comparison of eight crop growth models. Eur. J. Agron. 2011, 35, 103–114. [Google Scholar] [CrossRef]
- Chen, Q.; Yu, H.; Hou, W.; Fu, W.; Geng, T.; Chen, C. Impacts of climate warming on growth development process and yield of winter wheat in Huang-Huai-Hai region of China. J. Triticeae Crops 2014, 34, 1363–1372. [Google Scholar]
- Tao, F.; Yokozawa, M.; Zhang, Z. Modelling the impacts of weather and climate variability on crop productivity over a large area: A new process-based model development, optimization, and uncertainties analysis. Agric. For. Meteorol. 2009, 149, 831–850. [Google Scholar] [CrossRef]
- Challinor, A.J.; Simelton, E.S.; Fraser, E.D.; Hemming, D.; Collins, M. Increased crop failure due to climate change: Assessing adaptation options using models and socio-economic data for wheat in China. Environ. Res. Lett. 2010, 5, 034012. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, J.; Shi, B.; Zhang, Y. Variation of climate suitability of winter wheat in Central Plains under the condition of climate warming. Geogr. Res. 2012, 31, 1479–1489. [Google Scholar]
- Yang, X.; Chen, F.; Lin, X.; Liu, Z.; Zhang, H.; Zhao, J.; Li, K.; Ye, Q.; Li, Y.; Lv, S. Potential benefits of climate change for crop productivity in China. Agric. For. Meteorol. 2015, 208, 76–84. [Google Scholar] [CrossRef]
- Xu, Y.; Li, T.; Xu, M.; Shen, S.; Hu, Z. Evaluation of the Pacific Decadal Oscillation from 1901 to 2014 in CMIP6 models. Clim. Res. 2023, 90, 1–15. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Y.L.X.; Wang, Y.; Niu, B.; Liu, D.L.; He, J.; Hassan, I.; Meng, Q. Impact of climate change and planting date shifts on growth and yields of double cropping rice in southeastern China in future. Agric. Syst. 2023, 205, 103581. [Google Scholar] [CrossRef]
- Xu, Y.; Li, T.; Shen, S.; Xu, G.; Islam, A.R.M.T.; Hu, Z. Effects of cyclic variability in Pacific decadal oscillation on winter wheat production in China. Int. J. Climatol. 2021, 41, 2239–2252. [Google Scholar] [CrossRef]
- Wolf, J.; Evans, L.; Semenov, M.; Eckersten, H.; Iglesias, A. Comparison of wheat simulation models under climate change. I. Model calibration and sensitivity analyses. Clim. Res. 1996, 7, 253–270. [Google Scholar] [CrossRef]
- Fasullo, J.T.; Phillips, A.S.; Deser, C. Evaluation of Leading Modes of Climate Variability in the CMIP Archives. J. Clim. 2020, 33, 5527–5545. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Zhou, T. Preface to Special Issue on CMIP6 Experiments: Model and Dataset Descriptions. Adv. Atmos. Sci. 2020, 37, 1033. [Google Scholar] [CrossRef]
- Simpkins, G. Progress in climate modelling. Nat. Clim. Chang. 2017, 7, 684–685. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, B.; Xu, Y.; Han, Z. CMIP6 evaluation and projection of temperature and precipitation over China. Adv. Atmos. Sci. 2021, 38, 817–830. [Google Scholar] [CrossRef]
- Chen, H.; Sun, J.; Lin, W.; Xu, H. Comparison of CMIP6 and CMIP5 models in simulating climate extremes. Sci. Bull. 2020, 65, 1415–1418. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Hu, D.; Tian, Z.; Lang, X. Differences between CMIP6 and CMIP5 models in simulating climate over China and the East Asian monsoon. Adv. Atmos. Sci. 2020, 37, 1102–1118. [Google Scholar] [CrossRef]
- Zhu, H.; Jiang, Z.; Li, J.; Li, W.; Sun, C.; Li, L. Does CMIP6 inspire more confidence in simulating climate extremes over China? Adv. Atmos. Sci. 2020, 37, 1119–1132. [Google Scholar] [CrossRef]
- Su, B.; Huang, J.; Mondal, S.K.; Zhai, J.; Wang, Y.; Wen, S.; Gao, M.; Lv, Y.; Jiang, S.; Jiang, T. Insight from CMIP6 SSP-RCP scenarios for future drought characteristics in China. Atmos. Res. 2021, 250, 105375. [Google Scholar] [CrossRef]
- Li, S.-Y.; Miao, L.-J.; Jiang, Z.-H.; Wang, G.-J.; Gnyawali, K.R.; Zhang, J.; Zhang, H.; Fang, K.; He, Y.; Li, C. Projected drought conditions in Northwest China with CMIP6 models under combined SSPs and RCPs for 2015–2099. Adv. Clim. Chang. Res. 2020, 11, 210–217. [Google Scholar] [CrossRef]
- You, Q.; Cai, Z.; Wu, F.; Jiang, Z.; Pepin, N.; Shen, S.S. Temperature dataset of CMIP6 models over China: Evaluation, trend and uncertainty. Clim. Dyn. 2021, 57, 17–35. [Google Scholar] [CrossRef]
- Manning, L.J.; Hall, J.W.; Fowler, H.J.; Kilsby, C.G.; Tebaldi, C. Using probabilistic climate change information from a multimodel ensemble for water resources assessment. Water Resour. Res. 2009, 45, 2471–2481. [Google Scholar] [CrossRef]
- Brunner, L.; Pendergrass, A.G.; Lehner, F.; Merrifield, A.L.; Knutti, R. Reduced global warming from CMIP6 projections when weighting models by performance and independence. Earth Syst. Dyn. 2020, 11, 995–1012. [Google Scholar] [CrossRef]
- Xie, W.; Wang, S.; Yan, X. DTR in Winter Wheat Growing Regions of China: CMIP6 Models Evaluation and Comparation. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Xiong, W.; Asseng, S.; Hoogenboom, G.; Hernandez-Ochoa, I.; Robertson, R.; Sonder, K.; Pequeno, D.; Reynolds, M.; Gerard, B. Different uncertainty distribution between high and low latitudes in modelling warming impacts on wheat. Nat. Food 2020, 1, 63–69. [Google Scholar] [CrossRef]
- Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J.W.; Hatfield, J.L.; Ruane, A.C.; Boote, K.J.; Thorburn, P.J.; Rötter, R.P.; Cammarano, D. Uncertainty in simulating wheat yields under climate change. Nat. Clim. Chang. 2013, 3, 827–832. [Google Scholar] [CrossRef]
- Rötter, R.P.; Carter, T.R.; Olesen, J.E.; Porter, J.R. Crop–climate models need an overhaul. Nat. Clim. Chang. 2011, 1, 175–177. [Google Scholar] [CrossRef]
- Lv, Z.; Liu, X.; Cao, W.; Zhu, Y. Climate change impacts on regional winter wheat production in main wheat production regions of China. Agric. For. Meteorol. 2013, 171, 234–248. [Google Scholar] [CrossRef]
- Xiao, D.; Li Liu, D.; Wang, B.; Feng, P.; Bai, H.; Tang, J. Climate change impact on yields and water use of wheat and maize in the North China Plain under future climate change scenarios. Agric. Water Manag. 2020, 238, 106238. [Google Scholar] [CrossRef]
- Rashid, M.A.; Jabloun, M.; Andersen, M.N.; Zhang, X.; Olesen, J.E. Climate change is expected to increase yield and water use efficiency of wheat in the North China Plain. Agric. Water Manag. 2019, 222, 193–203. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Z.; Tao, F. Impacts of climate change and climate extremes on major crops productivity in China at a global warming of 1.5 and 2.0 °C. Earth Syst. Dyn. 2018, 9, 543–562. [Google Scholar] [CrossRef]
- Kim, H.M.; Webster, P.J.; Curry, J.A. Evaluation of short-term climate change prediction in multi-model CMIP5 decadal hindcasts. Geophys. Res. Lett. 2012, 39, 10701. [Google Scholar] [CrossRef]
- Chen, H.; Sun, J. How the “best” models project the future precipitation change in China. Adv. Atmos. Sci. 2009, 26, 773–782. [Google Scholar] [CrossRef]
- Yu, H.; Wei, Y.; Zhang, Q.; Liu, X.; Huang, J.; Feng, T.; Zhang, M. Multi-model assessment of global temperature variability on different time scales. Int. J. Climatol. 2019, 40, 273–291. [Google Scholar] [CrossRef]
- Konda, G.; Vissa, N.K. Robustness of BSISO and air-sea interactions in the CMIP (Phase-6) models over the North Indian Ocean. Dyn. Atmos. Ocean. 2022, 99, 101316. [Google Scholar] [CrossRef]
- Shirazi, S.Z.; Mei, X.; Liu, B.; Liu, Y. Estimating potential yield and change in water budget for wheat and maize across Huang-Huai-Hai Plain in the future. Agric. Water Manag. 2022, 260, 107282. [Google Scholar] [CrossRef]
- Zhao, Y.; Xiao, D.; Bai, H.; Tang, J.; Liu, D. Future Projection for Climate Suitability of Summer Maize in the North China Plain. Agriculture 2022, 12, 348. [Google Scholar] [CrossRef]
- Li, Y.; Huang, H.; Ju, H.; Lin, E.; Xiong, W.; Han, X.; Wang, H.; Peng, Z.; Wang, Y.; Xu, J.; et al. Assessing vulnerability and adaptive capacity to potential drought for winter-wheat under the RCP 8.5 scenario in the Huang-Huai-Hai Plain. Agric. Ecosyst. Environ. 2015, 209, 125–131. [Google Scholar] [CrossRef]
- Yang, Y.; Watanabe, M.; Zhang, X.; Hao, X.; Zhang, J. Estimation of groundwater use by crop production simulated by DSSAT-wheat and DSSAT-maize models in the piedmont. Hydrological Processes 2006, 20, 2787–2802. [Google Scholar] [CrossRef]
- Jin, Z.; Ge, D.; Chen, H.; Fang, J. Effects of climate change on rice production and strategies for adaptation in southern China. Clim. Chang. Agric. Anal. Potential Int. Impacts 1995, 59, 307–323. [Google Scholar]
- Rosenzweig, C.; Iglesias, A.; Fischer, G.; Liu, Y.; Baethgen, W.; Jones, J.W. Wheat yield functions for analysis of land-use change in China. Environ. Model. Assess. 1999, 4, 115–132. [Google Scholar] [CrossRef]
- Tian, D.; Asseng, S.; Martinez, C.J.; Misra, V.; Cammarano, D.; Ortiz, B.V. Does decadal climate variation influence wheat and maize production in the southeast USA? Agric. For. Meteorol. 2015, 204, 1–9. [Google Scholar] [CrossRef]
- Yang, X.; Wood, E.F.; Sheffield, J.; Ren, L.; Zhang, M.; Wang, Y. Bias Correction of Historical and Future Simulations of Precipitation and Temperature for China from CMIP5 Models. J. Hydrometeorol. 2019, 19, 609–623. [Google Scholar] [CrossRef]
- Shin, Y.; Shin, Y.; Hong, J.; Kim, M.-K.; Byun, Y.-H.; Boo, K.-O.; Chung, I.-U.; Park, D.-S.R.; Park, J.-S. Future projections and uncertainty assessment of precipitation extremes in the Korean peninsula from the cmip5 ensemble with a statistical framework. Atmosphere 2021, 12, 97. [Google Scholar] [CrossRef]
- Liu, S.; Mo, X.; Lin, Z.; Xu, Y.; Ji, J.; Wen, G.; Richey, J. Crop yield responses to climate change in the Huang-Huai-Hai Plain of China. Agric. Water Manag. Int. J. 2010, 97, 1195–1209. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, S.; Zhang, F.; Guo, S.; Guo, E.; Liu, Z.; Zhao, J.; Zhao, C.; Li, T.; Yang, X. Using estimated radiation in crop models amplified the negative impacts of climate variability on maize and winter wheat yields in China. Agric. For. Meteorol. 2022, 318, 108914. [Google Scholar] [CrossRef]
- Jian, B.; Li, J.; Wang, G.; Zhao, Y.; Huang, J. Evaluation of the CMIP6 marine subtropical stratocumulus cloud albedo and its controlling factors. Atmos. Chem. Phys. 2021, 21, 9809–9828. [Google Scholar] [CrossRef]
- Zhang, X.; Liang, S.; Wang, G.; Yao, Y.; Cheng, J. Evaluation of the Reanalysis Surface Incident Shortwave Radiation Products from NCEP, ECMWF, GSFC, and JMA Using Satellite and Surface Observations. Remote Sens. 2016, 8, 225. [Google Scholar] [CrossRef]
- Li, J.; Liu, Z.; Yao, Z.; Wang, R. Comprehensive assessment of CMIP5 GCMs using observed temperature and precipitation over mainland Southeast Asia. Int. J. Climatol. 2019, 39, 4139–4153. [Google Scholar] [CrossRef]
- Cai, Z.; You, Q.; Wu, F.; Chen, H.W.; Chen, D.; Cohen, J. Arctic Warming Revealed by Multiple CMIP6 Models: Evaluation of Historical Simulations and Quantification of Future Projection Uncertainties. J. Clim. 2021, 34, 4871–4892. [Google Scholar] [CrossRef]
- Miao, C.; Duan, Q.; Sun, Q.; Huang, Y.; Kong, D.; Yang, T.; Ye, A.; Di, Z.; Gong, W. Assessment of CMIP5 climate models and projected temperature changes over Northern Eurasia. Environ. Res. Lett. 2014, 9, 055007. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers, in Climate Change 2013: The Physical Science Basis. In Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers. In Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; pp. 1–30. Available online: https://www.ipcc.ch/report/ar5/wg1/ (accessed on 3 February 2024). [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q. Comparative analysis of CMIP3 and CMIP5 global climate models for simulating the daily mean, maximum, and minimum temperatures and daily precipitation over China. J. Geophys. Res. Atmos. 2015, 120, 4806–4824. [Google Scholar] [CrossRef]
- Gu, H.; Yu, Z.; Wang, J.; Wang, G.; Yang, T.; Ju, Q.; Yang, C.; Xu, F.; Fan, C. Assessing CMIP5 general circulation model simulations of precipitation and temperature over China. Int. J. Climatol. J. R. Meteorol. Soc. 2015, 35, 2431–2440. [Google Scholar] [CrossRef]
- Ta, Z.; Yu, Y.; Sun, L.; Chen, X.; Mu, G.; Yu, R. Assessment of precipitation simulations in Central Asia by CMIP5 climate models. Water 2018, 10, 1516. [Google Scholar] [CrossRef]
- Lin, L.; Wang, Z.; Xu, Y.; Fu, Q. Sensitivity of precipitation extremes to radiative forcing of greenhouse gases and aerosols. Geophys. Res. Lett. 2016, 43, 9860–9868. [Google Scholar] [CrossRef]
- Ou, T.; Chen, D.; Linderholm, H.W.; Jeong, J.H. Evaluation of global climate models in simulating extreme precipitation in China. Tellus Ser. A-Dyn. Meteorol. Oceanogr. 2013, 65, 19799. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q. Projected changes in temperature and precipitation in ten river basins over China in 21st century. Int. J. Climatol. 2015, 35, 1125–1141. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, Z.; Ahmed, Z.; Zhang, L.; Su, B.; Tao, H.; Jiang, T. Projections of precipitation over China based on CMIP6 models. Stoch. Environ. Res. Risk Assess. 2021, 35, 831–848. [Google Scholar] [CrossRef]
- Su, B.; Huang, J.; Fischer, T.; Wang, Y.; Kundzewicz, Z.W.; Zhai, J.; Sun, H.; Wang, A.; Zeng, X.; Wang, G.; et al. Drought losses in China might double between the 1.5 degrees C and 2.0 degrees C warming. Proc. Natl. Acad. Sci. USA 2018, 115, 10600–10605. [Google Scholar] [CrossRef] [PubMed]
- Arunrat, N.; Sereenonchai, S.; Chaowiwat, W.; Wang, C. Climate change impact on major crop yield and water footprint under CMIP6 climate projections in repeated drought and flood areas in Thailand. Sci. Total Environ. 2022, 807, 150741. [Google Scholar] [CrossRef]
- Moon, S.; Ha, K.-J. Future changes in monsoon duration and precipitation using CMIP6. npj Clim. Atmos. Sci. 2020, 3, 45. [Google Scholar] [CrossRef]
- Liu, X.; Chu, B.; Tang, R.; Liu, Y.; Qiu, B.; Gao, M.; Li, X.; Xiao, J.; Sun, H.Z.; Huang, X.; et al. Air quality improvements can strengthen China’s food security. Nat. Food 2024, 5, 158–170. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, F.; Song, H.; Zhang, T.; Wang, D.; Xia, H.; Zhai, S.; Liu, Y.; Wang, T.; Wang, Y.; et al. Effects of projected climate change on winter wheat yield in Henan, China. J. Clean. Prod. 2022, 379, 134734. [Google Scholar] [CrossRef]
- Wiik, L. Control of Fungal Diseases in Winter Wheat—Evaluation of Long-Term Field Research in Southern Sweden. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2009. [Google Scholar]
- Ali, M.G.M.; Ahmed, M.; Ibrahim, M.M.; El Baroudy, A.A.; Ali, E.F.; Shokr, M.S.; Aldosari, A.A.; Majrashi, A.; Kheir, A.M.S. Optimizing sowing window, cultivar choice, and plant density to boost maize yield under RCP8.5 climate scenario of CMIP5. Int. J. Biometeorol. 2022, 66, 971–985. [Google Scholar] [CrossRef]
- Prasad, G.; Singh, S.M.; Patel, C.; Nema, A.K.; Singh, K.K. Impact of Temperature and Solar Radiation on Wheat Crop for Varanasi Region of Uttar Pradesh. Vayu Mandal 2019, 44, 47–52. [Google Scholar]
- Watson, J.; Zheng, B.; Chapman, S.; Chenu, K. Projected impact of future climate on water-stress patterns across the Australian wheatbelt. J. Exp. Bot. 2017, 68, 5907–5921. [Google Scholar] [CrossRef]
- Eitzinger, J.; Thaler, S.; Schmid, E.; Strauss, F.; Ferrise, R. Sensitivities of crop models to extreme weather conditions during flowering period demonstrated for maize and winter wheat in Austria. J. Agric. Sci. 2013, 151, 813–835. [Google Scholar] [CrossRef]
- Feng, P.; Wang, B.; Li Liu, D.; Waters, C.; Yu, Q. Incorporating machine learning with biophysical model can improve the evaluation of climate extremes impacts on wheat yield in south-eastern Australia. Agric. For. Meteorol. 2019, 275, 100–113. [Google Scholar] [CrossRef]
- Schauberger, B.; Archontoulis, S.; Arneth, A.; Balkovic, J.; Ciais, P.; Deryng, D.; Elliott, J.; Folberth, C.; Khabarov, N.; Müller, C. Consistent negative response of US crops to high temperatures in observations and crop models. Nat. Commun. 2017, 8, 13931. [Google Scholar] [CrossRef] [PubMed]
Model Name | Horizontal Resolutions | Institution/Country |
---|---|---|
BCC-CSM2-MR | 320 × 160 | Beijing Climate Center (BCC)/China |
MPI-ESM1-2-HR | 384 × 192 | Max Planck Institute (MPI) for Meteorology/Germany |
MIROC6 | 256 × 128 | Model for Interdisciplinary Research on Climate (MIROC)/Japan |
GISS-E2-1-G | 144 × 90 | NASA Goddard Institute for Space Studies (GISS)/USA |
IPSL-CM6A-LR | 144 × 143 | Institute Pierre-Simon Laplace (IPSL)/France |
MRI-ESM2-0 | 320 × 160 | Meteorological Research Institute (MRI)/Japan |
CESM2 | 288 × 192 | National Center for Atmospheric Research (NCAR)/USA |
Site | Latitude | Longitude | Sowing Date |
---|---|---|---|
Shijiazhuang | 38°03′ N | 114°26′ E | 4-October |
Liaocheng | 36°26′ N | 115°57′ E | 15-October |
Xinxiang | 35°30′ N | 113°88′ E | 30-October |
Shangqiu | 34°26′ N | 115°38′ E | 25-October |
Huaian | 33°61′ N | 119°02′ E | 20-October |
Genetic Coefficients | P1V | P1D | P5 | G1 | G2 | G3 | PHT |
---|---|---|---|---|---|---|---|
3H Plain | 36.0 | 63.4 | 418.8 | 27.4 | 28.3 | 1.66 | 95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Li, T.; Xu, M.; Tan, L.; Shen, S. Assessing Climate Change Effects on Winter Wheat Production in the 3H Plain: Insights from Bias-Corrected CMIP6 Projections. Agriculture 2024, 14, 469. https://doi.org/10.3390/agriculture14030469
Xu Y, Li T, Xu M, Tan L, Shen S. Assessing Climate Change Effects on Winter Wheat Production in the 3H Plain: Insights from Bias-Corrected CMIP6 Projections. Agriculture. 2024; 14(3):469. https://doi.org/10.3390/agriculture14030469
Chicago/Turabian StyleXu, Yifei, Te Li, Min Xu, Ling Tan, and Shuanghe Shen. 2024. "Assessing Climate Change Effects on Winter Wheat Production in the 3H Plain: Insights from Bias-Corrected CMIP6 Projections" Agriculture 14, no. 3: 469. https://doi.org/10.3390/agriculture14030469
APA StyleXu, Y., Li, T., Xu, M., Tan, L., & Shen, S. (2024). Assessing Climate Change Effects on Winter Wheat Production in the 3H Plain: Insights from Bias-Corrected CMIP6 Projections. Agriculture, 14(3), 469. https://doi.org/10.3390/agriculture14030469