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Abstract: Climate change exerts significant impacts on regional agricultural production. This study
assesses the implications of climate change on winter wheat yields in the Huang-Huai-Hai Plain (3H
Plain), utilizing bias-corrected climate projections from the Coupled Model Intercomparison Project
Phase 6 (CMIP6) for mid-21st century (2041–2060) and late 21st century (2081–2100) periods under
two shared socioeconomic pathways (SSP2–4.5 and SSP5–8.5). These projections were incorporated
into the decision support system for agrotechnology transfer (DSSAT) CERES-Wheat model to forecast
potential alterations in winter wheat production. Initial findings reveal that uncorrected CMIP6
projections underestimated temperature and precipitation while overestimating solar radiation across
the southern 3H Plain. Following bias correction through the equidistant cumulative distribution
function (EDCDF) method, the regional average biases for temperature, precipitation, and solar
radiation were reduced by 18.3%, 5.6%, and 30.7%, respectively. Under the SSP2–4.5 and SSP5–
8.5 scenarios, mid-21st century simulations predicted a 13% increase in winter wheat yields. Late
21st century projections indicated yield increases of 11.3% and 3.6% under SSP2-4.5 and SSP5-8.5
scenarios, respectively, with a notable 8.4% decrease in yields south of 36◦ N under the SSP5-8.5
scenario. The analysis of climate change factors and winter wheat yields in the 3H Plain under both
scenarios identified precipitation as the key contributing factor to yield increases in the northern 3H
Plain, while temperature limitations were the primary constraint on yields in the southern region.
Consequently, adaptive strategies are essential to mitigate climate change impacts, with a particular
focus on addressing the challenges posed by elevated temperature in the southern 3H Plain.

Keywords: CMIP6; DSSAT; climate change; winter wheat yield; projection

1. Introduction

In response to the escalating challenges posed by future climate change to agricultural
production—challenges that are particularly acute in developing countries reliant on staple
crops—the importance of related studies becomes evident [1–4]. Such challenges include
increased evapotranspiration and agricultural water demand due to rising temperatures [5],
exacerbating water scarcity in some regions and thus threatening agricultural productivity
and food security [6].

In China, the past few decades have seen alterations in plant phenological events
due to climate change, affecting critical agricultural timelines such as sowing and crop
maturity dates [7]. This is particularly evident in the Huang-Huai-Hai Plain (3H Plain),
China’s leading wheat production area. Here, the irregular distribution of annual rainfall
throughout the winter wheat’s growing season could heighten drought risks [8], potentially
leading to reduced yields [9]. Given the anticipated complexities of future climate change,
it becomes imperative to explore its prospective impacts on winter wheat cultivation in the
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3H Plain. Undertaking such investigations is crucial for safeguarding food security and
fostering the sustainable development of agriculture.

Process-based crop models are extensively used to assess the potential impacts of
climate change on winter wheat production and growth rates [10–12]. Among these, the
decision support system for agrotechnology transfer (DSSAT) CERES-Wheat model stands
out for its widespread application in analyzing climate change effects on crop yield [13–15],
growth period [16,17], climate suitability [18,19], and agricultural planning [10,20]. The
DSSAT CERES-Wheat model has demonstrated strong adaptability in China [21]. For
example, the impacts of planning date shifts on the phenology of double cropping rice was
determined by changing the planning date in the DSSAT CERES-Wheat model [22]. Xu
et al. [23] analyze the effects of Pacific decadal oscillation (PDO) on winter wheat yields
by using the DSSAT CERES-Wheat model and found that when PDO was in the positive
(negative) phase, winter wheat yields tended to increase (decrease).

Global climate models (GCMs), especially those from the Coupled Model Intercom-
parison Project Phase 6 (CMIP6), play a crucial role in simulating future agricultural
changes under various scenarios [10,24]. The CMIP6, with its advanced models and pro-
cesses [25–28], has demonstrated a superior ability to capture large-scale climatological
spatial distributions compared to previous generations of GCMs [29]. Recent assessments
of CMIP6′s capability to accurately represent China’s climate have shown improvements
in the simulation of mean temperature and precipitation [30–32]. Projections for China’s
climate toward the end of the 21st century indicate annual increases in both temperature
and precipitation [32–35], with the discrepancies in mean temperature across different
scenarios becoming significantly pronounced over the long term [35].

Despite significant enhancements in CMIP6′s climatological variables for China, inac-
curacies in temperature, precipitation, and radiation persist [27,36,37]. Accuracy is pivotal
in making reliable climate forecasts and understanding climate change impacts on crop
yields, as inaccuracies in climate projections are among the primary sources of uncertainty
in yield predictions in the Northern Hemisphere [38,39]. Previous studies combining GCMs
with crop process models often overlooked this aspect, leading to divergent simulation out-
comes [40,41]. For instance, while some research [42–44] suggests potential yield increases
in the main winter wheat production areas of the 3H Plain, others, including Qu et al. [8],
indicate that future climate change could adversely affect winter wheat yields [45]. These
inconsistencies underscore the importance of precise climate data in crop yield simulations.
Our study, therefore, concentrates on enhancing the accuracy of climate projection inputs
for crop models to decrease yield projection uncertainties and investigates climate projec-
tions over the 3H Plain based on bias-corrected data, aiming to identify the climatic drivers
of future agricultural yield changes.

One approach to minimizing uncertainties in CMIP6 projections is using a multi-
model ensemble (MME) [36,37]. The MME approach has been proven to offer more reliable
confidence and robustness compared to individual models, as errors in simulations and
predictions tend to be canceled out when multiple models are considered [46–49]. An
alternative approach involves employing a scaling factor derived from comparing the
standard deviation of detrended reanalysis data to that of detrended CMIP6 data. The
equidistant cumulative distribution function (EDCDF) method has been employed for
developing bias-corrected and downscaled climate data. This method, which combines
observational data with GCM outputs using a quantile-based mapping approach, has
proven more efficient in reducing biases for monthly precipitation and temperature data
compared to traditional methods (CDF). The application of bias-corrected CMIP6 data thus
significantly contributes to the improved simulation of climate change effects on winter
wheat yields.

This paper seeks to integrate agricultural meteorological observations with CMIP6
data to assess the impacts of climate change on winter wheat yields in the 3H Plain, thereby
influencing regional climate suitability divisions. Utilizing the DSSAT CERES-Wheat
model and six CMIP6 models, this study aims to predict future winter wheat yields in
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the 3H Plain for the mid- and late 21st century under various scenarios, the flow chart
of which is depicted in Figure 1. The specific objectives of this study are to (1) refine the
climate projections generated by CMIP6 models to enhance their accuracy and identify the
variability in climatic variables; (2) to assess the production of winter wheat in the 3H Plain
for the mid- and late 21st century across varied scenarios; (3) to uncover the climatic factors
influencing future changes in winter wheat yields; and (4) to offer guidance on the optimal
sowing dates, the selection of wheat varieties, and strategic planning for the cultivation of
winter wheat.
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2. Materials and Methods
2.1. Study Area

The 3H Plain (112.3–120.7◦ E, 31.1–40.3◦ N), delimited by the Yellow Sea to the east and
covering an area of approximately 350,500 km2 (Figure 2), exhibits an extratropical monsoon
climate. Annual precipitation varies from 430 mm to 1390 mm, with mean temperatures
ranging between 8 ◦C and 15 ◦C [50]. Notably, over 70% of the annual precipitation occurs
during the summer season (June–September) [8], reflecting the region’s uneven precipitation
distribution. The 3H Plain, with its 140,000 km2 of arable land [51], is a key grain-producing
area in China, contributing over 70% to the country’s winter wheat yields. Winter wheat is
typically sown in October and harvested in June of the following year.

2.2. Data

This study identified five representative locations for winter wheat analysis, guided
by three distinct criteria: (1) the scale of winter wheat cultivation at these sites is substantial
and acknowledged by the National Bureau of Statistics of China, making them frequently
referenced in crop simulation studies concerning the 3H Plain [8,52,53]; (2) these locations
exhibit a range of geographical characteristics, a diversity underscored in the works of
Qu et al. [8] and Li et al. [52]; (3) comprehensive and accessible data on winter wheat yields,
spanning from 1995 to 2020, are available for these sites (Figure 2). Historical yield data
(kg/ha) and phenological information for winter wheat from these sites, spanning from
1995 to 2021, were sourced from the National Bureau of Statistics of China.

Climate simulations from seven CMIP6 models were examined, as summarized in
Table 1. For each model, monthly datasets covering temperature, precipitation, the number
of wet days, and solar radiation were employed. These datasets were derived from histor-
ical simulations spanning from 1995 to 2021 and future projections for the years 2041 to
2100, under two shared socioeconomic pathways (SSP2-4.5 and SSP5-8.5).
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Figure 2. The Huang-Huai-Hai Plain (3H Plain) and the locations of representative sites in this study.

Table 1. Summary of CMIP6 models used in this study.

Model Name Horizontal Resolutions Institution/Country

BCC-CSM2-MR 320 × 160 Beijing Climate Center (BCC)/China

MPI-ESM1-2-HR 384 × 192 Max Planck Institute (MPI) for
Meteorology/Germany

MIROC6 256 × 128 Model for Interdisciplinary Research on
Climate (MIROC)/Japan

GISS-E2-1-G 144 × 90 NASA Goddard Institute for Space
Studies (GISS)/USA

IPSL-CM6A-LR 144 × 143 Institute Pierre-Simon Laplace
(IPSL)/France

MRI-ESM2-0 320 × 160 Meteorological Research Institute
(MRI)/Japan

CESM2 288 × 192 National Center for Atmospheric
Research (NCAR)/USA

Given the constraints associated with long-term, ground-based observational data
in China, our study opted for reanalysis datasets as the primary source of observations.
This decision aligns with the types of data recommended in the official guidelines of
the DSSAT. The 0.5◦ grid monthly temperature, precipitation, and the number of wet
days spanning from 1902 to 2020 were sourced from the Climatic Research Unit (CRU TS
4.04) (http://www.cru.uea.ac.uk/data, accessed on 3 February 2024). Additionally, daily
solar radiation data for each grid were obtained from the NOAA-CIRES 20th Century
Reanalysis V2c (https://www.psl.noaa.gov/data/gridded/data.20thC_ReanV2c.html, ac-
cessed on 3 February 2024). These comprehensive meteorological datasets served as the
foundational observations for calibrating both the CMIP6 outputs and the winter wheat
cultivar simulations.

2.3. Crop Simulation

The DSSAT 4.8 CERES-Wheat model was employed to forecast daily wheat growth,
development, and yield for future periods. To operate the model, input datasets were
necessary, including data on climate variables, soil properties, management practices, and
cultivar coefficients. In this study, the grid served as the fundamental unit for simulation
using the DSSAT CERES-Wheat model to project productivity. To precisely evaluate the

http://www.cru.uea.ac.uk/data
https://www.psl.noaa.gov/data/gridded/data.20thC_ReanV2c.html
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impact of climate change on winter wheat yields, cultivar coefficients for winter wheat in
the 3H Plain were standardized, adhering to the methodology outlined by Li et al. [52].
Detailed general information about the 3H Plain, encompassing genetic coefficients and
average planting dates at the five sites, is presented in Tables 2 and 3. Soil characteristics
of the 3H Plain, predominantly sandy-loam with medium depth, neutral pH, and low-to-
moderate levels of organic carbon, were informed by prior research [54,55]. The planting
density was set at 200 plants/m2, referring to the studies [23,56]. All simulations proceeded
under conditions devoid of nitrogen application and reliant on rainfall.

Table 2. Representative site information.

Site Latitude Longitude Sowing Date

Shijiazhuang 38◦03′ N 114◦26′ E 4-October
Liaocheng 36◦26′ N 115◦57′ E 15-October
Xinxiang 35◦30′ N 113◦88′ E 30-October
Shangqiu 34◦26′ N 115◦38′ E 25-October
Huaian 33◦61′ N 119◦02′ E 20-October

Table 3. Genetic coefficients in the 3H Plain used for the DSSAT model.

Genetic Coefficients P1V P1D P5 G1 G2 G3 PHT

3H Plain 36.0 63.4 418.8 27.4 28.3 1.66 95
Note: P1V, days at an optimal vernalizing temperature required to complete vernalization; P1D, percentage
reduction in the development rate in a photoperiod hour shorter than the threshold relative to that at the threshold;
P5, grain-filling phase duration; G1, kernel number per unit canopy weight at anthesis; G2, standard kernel
size under optimal conditions; G3, standard, non-stressed dry weight (total, including grain) of a single tiller at
maturity; and PHT, interval between successive leaf tip appearances.

In order to validate the accuracy of the crop model parameters across the 3H Plain,
the root-mean-square error (RMSE) was employed as a statistical measure. This involved
calculating RMSE for the yields predicted by the model against the actual observed yields
at five key representative stations, covering the period from 2013 to 2020. A mean RMSE
of 10.66% validated the suitability of the genetic coefficients for this study (Figure 3),
suggesting that the chosen cultivar is appropriate across the 3H Plain. A pivotal rationale
for employing consistent genetic coefficients was to ensure that the results predominantly
reflect climate impacts, minimizing the influence of other variables.
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3. Results
3.1. Bias-Corrected Results for Main Climate Factors

Prior to simulating winter wheat yields, the EDCDF method was utilized to adjust the
CMIP6-simulated average temperature, precipitation, and solar radiation. This adjustment
aims to enhance the accuracy of future climate factor predictions, thereby reducing the
uncertainty associated with global ensemble simulations for future yield estimates [57].
The calibration phase used the 1901–1949 period to refine parameters, followed by cor-
rections applied to the main climate factors for the period 1950–2014. Spatial patterns of
the bias-corrected climate factors against observations and the original CMIP6 simulations
for the benchmark period (1950–2014) are illustrated in Figure 4. The raw CMIP6 simu-
lations generally underestimated temperature and precipitation (Figure 4a,b,d,e) while
overestimating solar radiation in the southern parts of the 3H Plain (Figure 4g,h).
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The MME approach, a method for reducing uncertainties in CMIP6 data, was also
subjected to bias correction using the EDCDF method to further refine CMIP6 data accu-
racy. The bias-corrected MME results aligned closely with observational data, particularly
concerning correcting biases in climate factor values (Figure 4). Specifically, the bias correc-
tion addressed the underestimation of temperature in the southern 3H Plain (Figure 4b,c)
and the precipitation in the 3H Plain (Figure 4e,f). Moreover, the overestimation of solar
radiation in the southern 3H Plain was corrected (Figure 4h,i). The regional average bi-
ases for temperature, precipitation, and solar radiation were reduced by 18.3%, 5.6%, and
30.7%, respectively. These results demonstrate that the bias-corrected ensemble of CMIP6
simulations offers an improved representation of spatial patterns for key climate factors,
making it suitable to be input into crop model simulations. This finding is consistent with
the outcomes reported by Yang et al. [57].
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3.2. Climate Variability in Future Scenarios in the 3H Plain

Utilizing the bias-corrected MME results via the EDCDF method, this study adjusted
climate factors for the mid-term (2041–2060) and long-term (2081–2100) periods under
SSP2-4.5 and SSP5-8.5 scenarios of CMIP6. Figure 5 illustrates the spatial patterns of the
projected climate changes in the bias-corrected MME of the CMIP6 models relative to the
baseline period (1995–2014). These projections reveal an overall increasing temperature
trend across the 3H Plain for both the mid- and late 21st century under both scenarios,
with a significant rise in temperature observed under the SSP5-8.5 scenario in the late
21st century (Figure 5a–d).
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21st (2081–2100) century across the 3H Plain, relative to the base period (1995–2014), under SSP2-4.5
and SSP5-8.5 scenarios, respectively.

Regarding precipitation, changes during the 2041–2060 period under both scenarios
exhibited similar spatial patterns, with decreases observed over the southern and northeast
3H Plain and increases in the northwest (Figure 5e–g). The late 21st century under the SSP5-
8.5 scenario showed a slight increase in precipitation, with a more pronounced increase
across the 3H Plain from the mid- to late 21st century under the same scenario (Figure 5f–h).
These findings aligned with previous research [29,58].

Figure 5 also depicts the spatial patterns of solar radiation across the 3H Plain during
the mid- and late 21st century, as simulated under the SSP2-4.5 and SSP5-8.5 scenarios.
Solar radiation projections indicate reductions across the 3H Plain in both the mid- and late
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21st century under both scenarios (Figure 5i–l), with a smaller decline in the late
21st century, primarily in the central and southern regions of the 3H Plain (Figure 5i–k).

3.3. Impacts of Climate Variability on Winter Wheat Yields in the 3H Plain

Using bias-corrected CMIP6 data under SSP2-4.5 and SSP5-8.5 scenarios, future winter
wheat yields were simulated (Figure 6). The SSP2-4.5 scenario predicted broadly high yields
in the central 3H Plain for both the 2041–2060 and 2081–2100 periods. Under the SSP5-8.5
scenario, yields in the middle of the 3H Plain were high during the mid-21st century
(2041–2060), similar to the SSP2-4.5 scenario, but showed a slight decrease in magnitude
and lower yields in the southern 3H Plain during the late 21st century (2081–2100).
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Figure 7 presents the spatial changes in winter wheat yields for the mid- and late
21st century in the 3H Plain relative to the base period under both scenarios. The results
indicate a 13% increase in yield across most of the 3H Plain in the mid-21st century under
both scenarios. The late 21st century showed an 11.3% increase under SSP2-4.5. However,
yields in the central and southeastern 3H Plain exhibited a decreasing trend under both
scenarios, with yields under SSP5-8.5 showing a marked decrease of 8.4% south of 36◦ N
and a significant increase of 21.1% north of 36◦ N.

To further analyze the impact of future climate change on winter wheat yields, correla-
tion coefficients between yields and main climate factors during the growing period were
calculated (Figure 8). Under the SSP2-4.5 and SSP5-8.5 scenarios, the future climate factors
exhibited varying effects on different regions within the 3H Plain. Under the SSP2-4.5
scenario, precipitation positively affected yields across most of the 3H Plain, with a mean
correlation coefficient of 0.35. Winter wheat yields displayed more significant responses to
precipitation in high-latitude areas compared to low-latitude areas. In the northern regions
above 36◦ N, the correlation coefficient stood at 0.59, whereas in the southern areas below
36◦ N, it was only 0.19. These findings suggest that the water deficit for winter wheat in
the northern 3H Plain is even more pronounced than in the southern regions.
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Figure 8. Correlation coefficients between winter wheat yields and (a,e) precipitation, (b,f) solar
radiation, (c,g) maximum temperature, and (d,h) minimum temperature during the growth period of
winter wheat for 2041–2100 across the 3H Plain under SSP2-4.5 and SSP5-8.5 scenarios, respectively.
The black shade represents the 99% confidence level.

Under the SSP5-8.5 scenario, there was a noticeable shift in the positive value center
toward the north. The correlation coefficients between winter wheat yields and temperature
(both maximum and minimum) across the 3H Plain indicate a positive relationship in
the northern regions and a negative one in the southern areas. This can be attributed
to the fact that increased temperature is beneficial for enhancing thermal resources and
reducing the risk of cold stress events, which are more prevalent in high-latitude areas [9].
Conversely, higher temperature can lead to a shorter optimal growth period in low-latitude
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regions where thermal resources are already abundant, resulting in reduced winter wheat
yields [59–61].

The magnitude of this effect was more pronounced under the SSP5-8.5 scenario, with a
significant correlation coefficient of −0.62 in the southern areas below 36◦ N and only 0.19
in the northern areas above 36◦ N. Additionally, most areas within the 3H Plain exhibited a
negative correlation between winter wheat yields and solar radiation under both scenarios,
with this effect becoming particularly evident under the SSP5-8.5 scenario. It is worth
noting that this negative impact of solar radiation on winter wheat yields aligns with
findings from Zhang et al. [62], although it is important to acknowledge that this negative
impact might be overestimated due to potential inaccuracies in CMIP6 models, such as the
underestimation of cloud albedo [63] and the presence of low and mid-level clouds [64].

4. Discussion

The calibration of climate data to improve accuracy is imperative for analyzing the
impact of future climate change on winter wheat yields throughout the crop cycle. The
observed underestimation of temperature by CMIP6 models in China mirrors similar trends
noted in Southeast Asia [63] and the Arctic [64], while contrasting with observations in
northern Eurasia [65]. This discrepancy in temperature projections is primarily attributed to
the models’ handling of cloud representation [31], a critical factor in the accurate simulation
of shortwave and longwave cloud forcing, which in turn significantly affects temperature
performance [66]. The raw CMIP6 simulations for the benchmark period underestimated
precipitation in the 3H Plain, a discrepancy potentially attributable to the models’ inade-
quate representation of terrain features and the representation of air–sea interactions by
GCMs [67–69]. Ta et al. [69] identified the inaccurate handling of topography, especially
in regions with a complex mountainous terrain, as a common source of precipitation bias.
Moreover, the aerosol–cloud interactions and aerosol forced in the emissions simulated by
GCMs were found to influence precipitation outcomes [70]. This underestimation aligns
with observed discrepancies in extreme precipitation events [71], a pattern also noted in
CMIP5 models, which further highlighted the uncertainty in precipitation variability [72].
To address these biases, the MME was corrected using the EDCDF method, which effec-
tively captured the spatial patterns of primary climate factors. This correction reduced
the regionally averaged bias for temperature, precipitation, and solar radiation by 18.3%,
5.6%, and 30.7%, respectively. These outcomes echo the findings of Tian et al. [73] and Su
et al. [74], demonstrating the efficacy of bias correction in improving model accuracy.

Climate projections suggest an increase in temperature and a decrease in solar radiation
throughout the mid- and late 21st century. Consistent with these findings,
You et al. [35] reported that temperatures across China are expected to rise by 2.06 ◦C
and 2.66 ◦C in the mid-term, and by 2.97 ◦C and 5.62 ◦C in the long-term, under the
SSP2-4.5 and SSP5-8.5 scenarios, respectively. This trend of increasing temperatures aligns
with observations in Thailand, where Arunrat et al. [75] confirmed that both maximum
and minimum temperatures are projected to rise throughout the 21st century under the
SSP2-4.5 and SSP5-8.5 scenarios. In terms of precipitation, forecasts indicate a decrease
over the southern and northeast parts of the 3H Plain, with an increase over the northwest
during the mid-21st century. Furthermore, a more significant rise in precipitation across
the 3H Plain from the mid- to late 21st century is anticipated, primarily driven by changes
in thermodynamic factors. Moon et al. [76] specifically noted that convective precipita-
tion over East Asia is expected to significantly increase by the late 21st century under
the SSP5-8.5 scenario, showing sensitivity to the rise in temperature. This suggests that
extreme precipitation events are likely to occur with higher probability in East Asia under
high-emission scenarios.

The yield projections for winter wheat in the 3H Plain show an average increase during
the mid- and late 21st century under both the SSP2-4.5 and SSP5-8.5 scenarios. Similar
findings have been reported by other studies using CMIP6 models, indicating that winter
wheat yields across China are expected to rise [76,77]. These results contrast with those
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of Lv et al. [42], potentially due to updates and revisions in the CMIP6 data. Specifically,
under the SSP5-8.5 scenario, there is a notable yield increase of 21.1% in regions north
of 36◦ N, while a decrease of 8.4% is observed in areas south of 36◦ N during the late
21st century. This pattern suggests that under higher SSP scenarios, the northern parts of
the 3H Plain could become more favorable for winter wheat cultivation compared to the
southern regions. These observations align with projections indicating a northward shift in
the winter wheat planting boundaries in China [10].

Temperature and precipitation emerge as dominant factors affecting winter wheat
yields in the 3H Plain. The relationship between yield and climate change factors exhibits
similarities under both SSP2-4.5 and SSP5-8.5 scenarios, with responses to climate change
varying by latitude. An anticipated increase in precipitation across most of the 3H Plain
under both scenarios suggests improved water resource conditions, potentially reducing
drought probability and meeting the water demands of winter wheat in the northern 3H
Plain, which has been a major constraint on production [8]. In contrast, the southern 3H
Plain, with its relatively abundant water resources, may experience rainfall in excess of
the winter wheat’s water demand, leading to potential increases in plant diseases, pest
outbreaks, and flooding, thus resulting in lower yields [21,78].

Furthermore, the correlation between temperature and winter wheat yields is posi-
tive in the northern 3H Plain and negative in the southern region under both scenarios.
Increased temperature may alleviate cold stress events threatening the overwintering of
crops at higher latitudes but could shorten the optimal growth period for winter wheat in
the south, adversely affecting yields [60]. Therefore, regional strategies to enhance crop
resilience to warmer temperatures are expected to be most beneficial in the southern 3H
Plain. Adaptation measures, such as late sowing of winter wheat or selecting late-maturing
cultivars, could extend the growth period, mitigating the adverse effects of rising tem-
perature [79]. Additionally, selecting genotypes with higher heat tolerance than current
varieties could offer further adaptation benefits. Notably, winter wheat yields in areas
south of 36◦ N are projected to decrease by 8.4% relative to the baseline period in the late
21st century under the SSP5-8.5 scenario, which is largely due to increased temperature
and precipitation changes [80].

In this study, bias-corrected future climate projections were utilized to enhance the
accuracy of yield projections; however, uncertainties still persist. The reanalysis datasets
served as a critical tool for calibrating both the CMIP6 outputs and the winter wheat
cultivar simulations. This approach was primarily adopted due to the constraints associ-
ated with the availability of long-term, ground-based observational data in China. While
these datasets are an aggregation of interpolated monthly climate anomalies, leverag-
ing extensive networks of weather station observations, it is imperative to acknowledge
and consider the inherent discrepancies between reanalysis data and direct observational
data [81]. Process-based crop models, such as the DSSAT CERES models, can offer a
detailed understanding of the timing, frequency, and intensity of extreme events on crop
growth [82], whilst imprecise descriptions of certain processes can introduce uncertainties
into the simulation results [83]. For instance, most crop models simulate the effects of
high temperature on leaf senescence rather than directly modeling damage to reproductive
organs and processes [84,85]. Ongoing research on the impact of extreme events on crop
yield failures and the effectiveness of crop models in addressing these challenges warrants
further attention [84].

5. Conclusions

This study investigated the impacts of future climate change on winter wheat yields
in the 3H Plain using a crop process model and bias-corrected climate projections under
SSP2-4.5 and SSP5-8.5 scenarios for the periods 2041–2060 and 2081–2100. The key findings
are summarized as follows:

(1) By applying the EDCDF method for bias correction, the regionally averaged discrep-
ancies in temperature, precipitation, and solar radiation across the 3H Plain were
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significantly reduced by 18.3%, 5.6%, and 30.7%, respectively. Compared to the
reference climate period of 1995–2014, forecasts suggest a general uptrend in tem-
peratures and a downtrend in solar radiation throughout the 3H Plain over the mid-
to late 21st century under both SSP scenarios. Furthermore, precipitation levels are
anticipated to decline in the southern and northeast parts of the 3H Plain during the
mid-21st century, but an overall rise across the plain is expected from the mid- to late
21st century.

(2) The model projections indicate an anticipated average uplift in winter wheat yields
by 13% in the mid-21st century under both SSP2-4.5 and SSP5-8.5 scenarios. Moving
into the late 21st century, the yield increases are forecasted at 11.3% under SSP2-4.5
and 3.6% under SSP5-8.5. Particularly under the SSP5-8.5 scenario, in the late 21st
century, a pronounced disparity in yield trends is observed; yields are projected to
surge by 21.1% in areas north of 36◦ N, contrasting with an 8.4% reduction in areas
south of 36◦ N.

(3) Precipitation has been identified as a critical driver behind the yield boosts in the
northern parts of the 3H Plain, showing correlation coefficients of 0.59 under SSP2-4.5
and 0.48 under SSP5-8.5. On the other hand, temperature constraints emerge as a
significant hindrance to yields in the southern 3H Plain, evidenced by a correlation
coefficient of −0.62 under both scenarios.

(4) This investigation highlights a shift in climatic suitability for winter wheat production in
the future, with the northern regions of the 3H Plain showing enhanced prospects for
yield improvements. To leverage the increased precipitation forecasts, northern areas
should refine water management strategies to maximize crop yield potential. Conversely,
the southern regions might need to explore adopting heat-resistant wheat varieties or
adjusting planting timelines to mitigate yield losses due to rising temperatures.
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