Effects of Water–Nitrogen Interaction on Sandy Soil, Physiology, and Morphology of Tall Fescue (Festuca arundinacea Schreb) Turf
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Design
2.2. Sampling and Measurements
2.2.1. Collection of Samples
2.2.2. Measurement Methods
2.3. Data Analysis
3. Results
3.1. SWC, NO3−–N, and NH4+–N Levels
3.2. Physiological Indexes
3.3. Morphological Parameters
3.4. WUE and NUE
4. Discussion
4.1. Effects of Irrigation Treatment
4.2. Effects of N Fertilizer
4.3. Synergistic Effects of Irrigation and N Fertilizer Application
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bachman, M.; Inamdar, S.; Barton, S.; Duke, J.M.; Tallamy, D.; Bruck, J. A Comparative Assessment of Runoff Nitrogen from Turf, Forest, Meadow, And Mixed Landuse Watersheds. J. Am. Water Resour. Assoc. 2016, 2, 397–408. [Google Scholar] [CrossRef]
- Hanks, J.D.; Waldron, B.L.; Johnson, P.G.; Jensen, K.B.; Asay, K.H. Breeding CWG-R Crested Wheatgrass for Reduced-Maintenance Turf. Crop Sci. 2005, 2, 524–528. [Google Scholar] [CrossRef]
- Li, D.; Liu, J.; Guo, H.; Zong, J.; Li, J.; Wang, J.; Li, L.; Chen, J. Effects of Low Nitrogen Supply on Nitrogen Uptake, Assimilation and Remobilization in Wild Bermudagrass. Plant Physiol. Biochem. 2022, 191, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Li, J.; Sun, L.; Gao, Y.; Cao, M.; Luo, J. Impacts of Water Deficit and Post-Drought Irrigation on Transpiration Rate, Root Activity, and Biomass Yield of Festuca arundinacea During Phytoextraction. Chemosphere 2022, 294, 133842. [Google Scholar] [CrossRef] [PubMed]
- Chapman, C.; Rossi, S.; Yuan, B.; Huang, B. Differential Regulation of Amino Acids and Nitrogen for Drought Tolerance and Poststress Recovery in Creeping Bentgrass. J. Am. Soc. Hortic. Sci. 2022, 4, 208–215. [Google Scholar] [CrossRef]
- DaCosta, M.; Huang, B. Deficit Irrigation Effects on Water Use Characteristics of Bentgrass Species. Crop Sci. 2006, 4, 1779–1786. [Google Scholar] [CrossRef]
- King, K.W.; Balogh, J.C.; Hughes, K.L.; Harmel, R.D. Nutrient Load Generated by Storm Event Runoff from A Golf Course Watershed. J. Environ. Qual. 2007, 4, 1021–1030. [Google Scholar] [CrossRef]
- Ulen, B.; Johansson, G.; Simonsson, M. Changes in Nutrient Leaching and Groundwater Quality During Long-Term Studies of an Arable Field on The Swedish South-West Coast. Hydrol. Res. 2008, 1, 63–77. [Google Scholar] [CrossRef]
- Chen, L.; Yue, S.; Sun, L.; Gao, M.; Wang, R. Study on the Effects of Irrigation Quotas and Amendments on Salinized Soil and Maize Growth. Water 2024, 16, 2194. [Google Scholar] [CrossRef]
- Bayat, H.; Nemati, H.; Tehranifar, A.; Gazanchian, A. Screening Different Crested Wheatgrass (Agropyron cristatum (L.) Gaertner.) Accessions for Drought Stress Tolerance. Arch. Agron. Soil Sci. 2016, 6, 769–780. [Google Scholar] [CrossRef]
- Gazanchian, A.; Hajheidari, M.; Sima, N.K.; Salekdeh, G.H. Proteome Response of Elymus elongatum to Severe Water Stress and Recovery. J. Exp. Bot. 2007, 2, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Saud, S.; Li, X.; Chen, Y.; Zhang, L.; Fahad, S.; Hussain, S.; Sadiq, A.; Chen, Y. Silicon Application Increases Drought Tolerance of Kentucky Bluegrass by Improving Plant Water Relations and Morphophysiological Functions. Sci. World J. 2014, 2014, 368694. [Google Scholar] [CrossRef] [PubMed]
- Széles, A.V.; Megyes, A.; Nagy, J. Irrigation and Nitrogen Effects on The Leaf Chlorophyll Content and Grain Yield of Maize in Different Crop Years. Agric. Water Manag. 2012, 107, 133–144. [Google Scholar] [CrossRef]
- Zhang, X.; Taylor, Z.; Goatley, M.; Wang, K.; Brown, I.; Kosiarski, K. Photosynthetic Rate and Root Growth Responses to ascophyllum nodosum Extract-Based Biostimulant in Creeping Bentgrass Under Heat and Drought Stress. Hortscience 2023, 8, 917–921. [Google Scholar] [CrossRef]
- Zhang, C. Nitrate Uptake of Kentucky Bluegrass as a Determinant of Nitrogen Use Efficiency; North Carolina State University: Raleigh, NC, USA, 2012. [Google Scholar]
- Bowman, D.C.; Cramer, G.R.; Devitt, D.A. Effect of Salinity and Nitrogen Status on Nitrogen Uptake by Tall Fescue Turf. J. Plant Nutr. 2006, 8, 1481–1490. [Google Scholar] [CrossRef]
- Li, D.; Chen, J.; Zong, J.; Wang, Y.; Guo, H.; Zhang, B.; Liu, J. Variation in Growth Response and Nitrogen Accumulation and Partitioning of Bermudagrass Under Low Nitrogen Levels. Fresenius Environ. Bull. 2017, 1A, 654–660. [Google Scholar]
- Zere, S.; Bilgili, U. Effects of Different Nitrogen Sources on Turf Quality and Plants Growth of Some Warm-Season Turfgrasses. Turk. J. Field Crops 2022, 1, 167–174. [Google Scholar] [CrossRef]
- Giagnoni, L.; Pastorelli, R.; Mocali, S.; Arenella, M.; Nannipieri, P.; Renella, G. Availability of Different Nitrogen Forms Changes the Microbial Communities and Enzyme Activities in the Rhizosphere of Maize Lines with Different Nitrogen Use Efficiency. Appl. Soil Ecol. 2016, 98, 30–38. [Google Scholar] [CrossRef]
- Sun, X.; Zheng, Q.; Xiong, L.; Xie, F.; Li, X.; Li, Y.; Zhang, L.; Saud, S.; Guo, Z.; Yan, Y.; et al. Nitrogen Assimilation and Gene Regulation of Two Kentucky Bluegrass Cultivars Differing in Response to Nitrate Supply. Sci. Hortic. 2021, 288, 110315. [Google Scholar] [CrossRef]
- Li, G.; Guo, X.; Sun, W.; Hou, L.; Wang, G.; Tian, R.; Wang, X.; Qu, C.; Zhao, C. Nitrogen Application in Pod Zone Improves Yield and Quality of Two Peanut Cultivars by Modulating Nitrogen Accumulation and Metabolism. Bmc Plant Biol. 2024, 1, 1471–2229. [Google Scholar] [CrossRef]
- Cui, J.; Lamade, E.; Fourel, F.; Tcherkez, G. δ15N values in Plants are Determined by Both Nitrate Assimilation and Circulation. New Phytol. 2020, 6, 1696–1707. [Google Scholar] [CrossRef]
- Jiang, Z.; Xu, C.; Huang, B. Enzymatic Metabolism of Nitrogen in Leaves and Roots of Creeping Bentgrass Under Nitrogen Deficiency Conditions. J. Am. Soc. Hortic. Sci. 2011, 5, 320–328. [Google Scholar] [CrossRef]
- Ghaffari, H.; Tadayon, M.R.; Bahador, M.; Razmjoo, J. Investigation of the Proline Role in Controlling Traits Related to Sugar and Root Yield of Sugar Beet Under Water Deficit Conditions. Agric. Water Manag. 2021, 243, 106448. [Google Scholar] [CrossRef]
- Li, Y.H.; Tian, P.; Li, C.Z.; Yu, X.Z. Elucidating Comportment of the Glutamate and Ornithine Pathway on Proline Accumulation in Rice Under Different Nitrogenous Nutrition. Int. J. Environ. Sci. Technol. 2022, 4, 2993–3000. [Google Scholar] [CrossRef]
- Candogan, B.N.; Bilgili, U.; Yazgan, S.; Acikgoz, E. Irrigation Level and Nitrogen Rate Affect Evapotranspiration and Quality of Perennial Ryegrass (Lolium perenne). Int. J. Agric. Biol. 2015, 3, 431–439. [Google Scholar] [CrossRef]
- Latiri-Souki, K.; Nortcliff, S.; Lawlor, D.W. Nitrogen Fertilizer Can Increase Dry Matter, Grain Production and Radiation and Water Use Efficiencies for Durum Wheat Under Semi-Arid Conditions. Eur. J. Agron. 1998, 1, 21–34. [Google Scholar] [CrossRef]
- Candogan, B.N.; Bilgili, U.; Yazgan, S.; Acikgoz, E. Growth and Quality Responses of Tall Fescue (festuca arundinacea schreb.) to Different Irrigation Levels and Nitrogen Rates. Turk. J. Field Crops 2014, 1, 142–152. [Google Scholar]
- Wright, I.J.; Reich, P.B.; Westoby, M. Strategy Shifts in Leaf Physiology, Structure and Nutrient Content Between Species of High- and Low-Rainfall and High- and Low-Nutrient Habitats. Funct. Ecol. 2001, 15, 423–434. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Westoby, M. Least—Cost Input Mixtures of Water and Nitrogen for Photosynthesis. Am. Nat. 2003, 161, 98–111. [Google Scholar] [CrossRef]
- Wang, H.; Prentice, I.C.; Keenan, T.F.; Davis, T.W.; Wright, I.J.; Cornwell, W.K.; Evans, B.J.; Peng, C. Towards a Universal Model for Carbon Dioxide Uptake by Plants. Nat. Plants 2017, 9, 734–741. [Google Scholar] [CrossRef]
- Prentice, I.C.; Dong, N.; Gleason, S.M.; Maire, V.; Wright, I.J. Balancing the Costs of Carbon Gain and Water Transport: Testing a New Theoretical Framework for Plant Functional Ecology. Ecol. Lett. 2014, 17, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.A.; Devitt, D.A.; Morris, R.L. Water Use and Physiological Response of Tall Fescue Turf Water Deficit Irrigation in an Arid Environment. J. Exp. Bot. 2004, 39, 388–393. [Google Scholar] [CrossRef]
- Kunrath, T.R.; Lemaire, G.; Sadras, V.O.; Gastal, F. Water Use Efficiency in Perennial Forage Species: Interactions Between Nitrogen Nutrition and Water Deficit. Field Crop. Res. 2018, 222, 1–11. [Google Scholar] [CrossRef]
- Baird, J.; Schwenke, G.; Macdonald, B.; Nachimuthu, G.; McPherson, A.; Mercer, C. Efficiency Over Excess: Maximising Cotton Lint Yields with Optimum Irrigation and Nitrogen Fertiliser Application. Field Crop. Res. 2024, 315, 109484. [Google Scholar] [CrossRef]
- Riaz, A.; Younis, A.; Hameed, M.; Kiran, S. Morphological and Biochemical Responses of Turf Grasses to Water Deficit Conditions. Pak. J. Bot. 2010, 5, 3441–3448. [Google Scholar]
- Hunt, K.L. Morphology and Associated Turfgrass Quality of Tall Fescue Cultivars in Response to Management Regimes. Doctoral Dissertation, University of Missouri, Columbia, MO, USA, 1988. [Google Scholar]
- Bilgili, U.; Acikgoz, E. Effect of Nitrogen Fertilization on Quality Characteristics of Four Turf Mixtures Under Different Wear Treatments. J. Plant Nutr. 2007, 30, 1139–1152. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, S.; Wang, R.; Chen, Y.; Siddique, K.H.M.; Xia, G.; Chi, D. Ameliorative roles of Biochar-Based Fertilizer on Morpho-Physiological Traits, Nutrient Uptake and Yield in Peanut (Arachis hypogaea L.) Under Water Stress. Agric. Water Manag. 2021, 257, 107129. [Google Scholar] [CrossRef]
- Ebrahimian, E.; Seyyedi, S.M.; Bybordi, A.; Damalas, C.A. Seed Yield and Oil Quality of sunflower, Safflower, and Sesame Under Different Levels of Irrigation Water Availability. Agric. Water Manag. 2019, 218, 149–157. [Google Scholar] [CrossRef]
- Li, Z.W.; Wang, G.Y.; Khan, K.; Yang, L.; Chi, Y.X.; Wang, Y.; Zhou, X.B. Irrigation Combines with Nitrogen Application to Optimize Soil Carbon and Nitrogen, Increase Maize Yield, and Nitrogen Use Efficiency. Plant Soil 2024, 1–2, 605–620. [Google Scholar] [CrossRef]
- Ding, Y.; Luo, W.; Xu, G. Characterisation of Magnesium Nutrition and Interaction of Magnesium and Potassium in Rice. Ann. Appl. Biol. 2006, 2, 111–123. [Google Scholar] [CrossRef]
- Orta, A.H.; Kuyumcu, S. Evapotranspiration and the Response of Cool-Season and Warm-Season Turfgrass Species to Deficit Irrigation Under a Sprinkler Irrigation Method. Irrig. Sci. 2023, 41, 81–91. [Google Scholar] [CrossRef]
- Qin, X.; Huang, T.; Lu, C.; Dang, P.; Zhang, M.; Guan, X.; Wen, P.; Wang, T.; Chen, Y.; Siddique, K.H.M. Benefits and Limitations of Straw Mulching and Incorporation on Maize Yield, Water Use Efficiency, and Nitrogen Use Efficiency. Agric. Water Manag. 2021, 256, 107128. [Google Scholar] [CrossRef]
- Yu, J.; Fan, N.; Hao, T.; Bian, Y.; Zhuang, L.; Li, Q.; Yang, Z. Ethionine-Mitigation of Drought Stress Associated with Changes in Root Viability, Antioxidant Defense, Osmotic Adjustment, and Endogenous Hormones in Tall Fescue. Plant Growth Regul. 2023, 1, 119–132. [Google Scholar] [CrossRef]
- J, G.P. Plant Roots: Growth, Activity and Interactions with the Soil; John Wiley&Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Geza, M.; Deb, S.K.; Leinauer, B.; Stanek, S.; Sevostianova, E.; Serena, M. Modeling NO3-N Leaching During Establishment of Turfgrasses Irrigated with Tailored Reclaimed Water. Vadose Zone J. 2021, 20, e201123. [Google Scholar] [CrossRef]
- Sainju, U.M.; Stevens, W.B.; Caesar-TonThat, T.; Montagne, C. Nitrogen Dynamics Affected by Management Practices in Croplands Transitioning from Conservation Reserve Program. Agron. J. 2014, 5, 1677–1689. [Google Scholar] [CrossRef]
- Ma, H.; Li, L.; Liu, S.; Shi, W.; Wang, C.; Zhao, Q.; Cui, N.; Wang, Y. Physiological Response, Phytohormone Signaling, Biomass Production and Water Use Efficiency of the CAM Plant Ananas comosus Under Different Water and Nitrogen Regimes. Agric. Water Manag. 2022, 266, 107563. [Google Scholar] [CrossRef]
- Kattge, J.; Bonisch, G.; Diaz, S.; Lavorel, S. TRY Plant Trait Database—Enhanced Coverage and Open Access. Glob. Chang. Biol. 2020, 1, 119–188. [Google Scholar] [CrossRef]
- Chen, L.; Khan, S.; Long, X.; Shao, F.; Huang, J.; Yin, L. Effects of The Ammonium Stress on Photosynthesis and Ammonium Assimilation in Submerged Leaves of Ottelia Cordata—An Endangered Aquatic Plant. Aquat. Toxicol. 2023, 261, 106606. [Google Scholar] [CrossRef]
- Jafarinasab, A.; Azari, A.; Siddique, K.H.M.; Madahhosseini, S. Variation of Yield and Physiological Characteristics of Lathyrus Sativus L. Populations Under Terminal Drought. Agric. Water Manag. 2022, 273, 107886. [Google Scholar] [CrossRef]
- Saud, S.; Fahad, S.; Cui, G.; Chen, Y.; Anwar, S. Determining Nitrogen Isotopes Discrimination Under Drought Stress on Enzymatic Activities, Nitrogen Isotope Abundance and Water Contents of Kentucky Bluegrass. Sci. Rep. 2020, 10, 64151. [Google Scholar] [CrossRef]
- Li, S.; Zhou, L.; Addo-Danso, S.D.; Ding, G.; Sun, M.; Wu, S.; Lin, S. Nitrogen Supply Enhances the Physiological Resistance of Chinese Fir Plantlets Under Polyethylene Glycol (PEG)-Induced Drought Stress. Sci. Rep. 2020, 460, 117905. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Deng, M.; Zhang, N.; Li, Y.; Jia, L.; Niu, D. NADK-Mediated Proline Synthesis Enhances High-Salinity Tolerance in the razor Clam. Comp. Biochem. 2024, 291, 111610. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Liang, H.; Gao, D.; Wang, Y.; Jin, K.; Liu, J.; Xue, D.; Chen, Y.; Li, Y.; Gao, T.; et al. Comparative Study on the Effects of Soil Quality Improvement Between Urban Spontaneous Groundcover and Lawn. Ecol. Indic. 2023, 148, 110056. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, H.; Cline, V. Correlations of Leaf Relative Water Content, Canopy Temperature, and Spectral Reflectance in Perennial Ryegrass Under Water Deficit Conditions. Hortscience 2009, 2, 459–462. [Google Scholar] [CrossRef]
- Jiang, Y.H.B. Drought and Heat Stress Injury to Two Cool-Season Turf Grass in Relation to Antioxidant Metabolism and Lipid Peroxidation. Crop Sci. 2001, 41, 436–442. [Google Scholar] [CrossRef]
- Sanchez-Blanco, M.J.; Alvarez, S.; Navarro, A.; Banon, S. Changes in Leaf Water Relations, Gas Exchange, Growth and Flowering Quality in Potted Geranium Plants Irrigated with Different Water Regimes. J. Plant Physiol. 2009, 5, 467–476. [Google Scholar] [CrossRef]
- Shi, J.; Yasuor, H.; Yermiyahu, U.; Zuo, Q.; Ben-Gal, A. Dynamic Responses of Wheat to Drought and Nitrogen Stresses During Re-Watering Cycles. Agric. Water Manag. 2014, 146, 163–172. [Google Scholar] [CrossRef]
- Roseli, A.N.M.; Ying, T.F.; Ramlan, M.F. Morphological and Physiological Response of Syzygium Myrtifolium (Roxb.) Walp. To Paclobutrazol. Sains Malays. 2012, 10, 1187–1192. [Google Scholar]
- Zhang, C.; Liu, Y.; Li, D.; Jiang, J. Influence of Soil Moisture Content on Pullout Properties of Hippophae rhamnoides Linn. Roots. J. Mt. Sci. 2020, 11, 2816–2826. [Google Scholar] [CrossRef]
- Kim, E.; Yejin, L.; Son, H.; Yu, Y.B.; Bae, C. Growth and Ingredient Contents of Platycodon Grandiflorum Roots Under Sensor-Based Soil Moisture Contents of Farmland Conditions. Korean J. Plant Reources 2022, 6, 762–769. [Google Scholar]
- Márquez, A.J.; Betti, M.; García-Calderón, M.; Pal’Ove-Balang, P.; Díaz, P.; Monza, J. Nitrate assimilation in Lotus Japonicus. J. Exp. Bot. 2005, 417, 1741–1749. [Google Scholar] [CrossRef] [PubMed]
- Britto, D.T.; Kronzucker, H.J. NH4+ Toxicity in Higher Plants: A Critical Review. J. Plant Physiol. 2002, 6, 567–584. [Google Scholar] [CrossRef]
- Ireland, R.J.L.P. Plant Amino Acids; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Qi, Z.; Ling, F.; Jia, D.; Cui, J.; Zhang, Z.; Xu, C.; Yu, L.; Guan, C.; Wang, Y.; Zhang, M.; et al. Effects of Low Nitrogen on Seedling Growth, Photosynthetic Characteristics and Antioxidant System of Rice Varieties with Different Nitrogen Efficiencies. Sci. Rep. 2023, 13, 197801. [Google Scholar] [CrossRef] [PubMed]
- Vijayalakshmi, P.; Vishnukiran, T.; Ramana Kumari, B.; Srikanth, B.; Subhakar Rao, I.; Swamy, K.N.; Surekha, K.; Sailaja, N.; Subbarao, L.V.; Raghuveer Rao, P.; et al. Biochemical and Physiological Characterization for Nitrogen Use Efficiency in Aromatic Rice Genotypes. Field Crop. Res. 2015, 179, 132–143. [Google Scholar] [CrossRef]
- Xiang, Z.; Huisen, Z.; Yang, G.; Deying, L. Salinity Tolerance of Turf-Type Tall Fescue as Affected by Nitrogen Sources. Hortscience 2018, 11, 1695–1699. [Google Scholar] [CrossRef]
- Colom, M.R.; Vazzana, C. Photosynthesis and PSII functionality of drought-resistant and Drought-Sensitive Weeping Lovegrass Plants. Environ. Exp. Bot. 2003, 2, 135–144. [Google Scholar] [CrossRef]
- Lopes, M.S.; Reynolds, M.P. Stay-Green in spring wheat can be determined by Spectral Reflectance Measurements (Normalized Difference Vegetation Index) Independently from Phenology. J. Exp. Bot. 2012, 10, 3789–3798. [Google Scholar] [CrossRef]
- Upadhyay, R.G.; Singh, A. Effect of Nitrogen and Zinc on Nodulation, Growth and Yield of Cowpea (Vigna unguiculata). Legume Res. 2016, 1, 149–151. [Google Scholar] [CrossRef]
- Mu, X.; Chen, Q.; Wu, X.; Chen, F.; Yuan, L.; Mi, G. Gibberellins Synthesis is Involved in the Reduction of Cell Flux and Elemental Growth Rate in Maize Leaf Under Low Nitrogen Supply. Environ. Exp. Bot. 2018, 150, 198–208. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, W.; Yang, Q. Reducing Nitrate Content in Lettuce by Pre-Harvest Continuous Light Delivered by Red and Blue Light-Emitting Diodes. J. Plant Nutr. 2013, 3, 481–490. [Google Scholar]
Aperture (mm) | >3.4 | 2–3.4 | 1–2 | 0.5–1 | 0.25–0.5 | 0.15–0.25 | 0.05–0.15 | <0.05 |
Percentage (%) | — | — | 0.33 | 16.4 | 73.9 | 8.70 | 0.33 | 0.33 |
Soil pH | Electrical Conductivity (ms cm–1) | Organic Matter (g kg–1) | Total Nitrogen (g kg–1) | Available Phosphorus (mg kg–1) | Available Potassium (mg kg–1) |
---|---|---|---|---|---|
6.60 | 0.14 | 0.92 | 0.10 | 1.34 | 18.9 |
Treatment | Above-Ground Biomass (g) | Below-Ground Biomass (g) | Plant Height (cm) | Growth Rate (cm d–1) | NDVI | Turf Color | |
---|---|---|---|---|---|---|---|
Nitrogen | Water | ||||||
N0 | W1 | 0.15 ± 0.03 b | 0.10 ± 0.01 c | 5.24 ± 0.21 a | 0.32 ± 0.03 a | 0.65 ± 0.05 a | 6.40 ± 0.07 ab |
W2 | 0.13 ± 0.01 b | 0.09 ± 0.00 bc | 6.51 ± 0.12 c | 0.50 ± 0.02 c | 0.74 ± 0.03 b | 6.53 ± 0.04 b | |
W3 | 0.11 ± 0.02 ab | 0.07 ± 0.01 ab | 5.83 ± 0.21 b | 0.40 ± 0.03 b | 0.71 ± 0.03 ab | 6.47 ± 0.04 ab | |
W4 | 0.08 ± 0.02 a | 0.07 ± 0.01 a | 5.79 ± 0.15 b | 0.40 ± 0.02 b | 0.66 ± 0.01 a | 6.43 ± 0.04 ab | |
W5 | 0.07 ± 0.03 a | 0.06 ± 0.01 a | 5.31 ± 0.23 a | 0.33 ± 0.03 a | 0.70 ± 0.01 ab | 6.33 ± 0.09 a | |
N2 | W1 | 0.16 ± 0.02 b | 0.06 ± 0.01 b | 6.17 ± 0.15 ab | 0.45 ± 0.02 ab | 0.67 ± 0.06 ab | 6.67 ± 0.04 b |
W2 | 0.15 ± 0.02 b | 0.06 ± 0.01 b | 7.13 ± 0.40 c | 0.59 ± 0.06 c | 0.74 ± 0.042 b | 6.70 ± 0.07 b | |
W3 | 0.13 ± 0.02 b | 0.06 ± 0.00 ab | 6.41 ± 0.23 bc | 0.49 ± 0.03 bc | 0.65 ± 0.03 ab | 6.33 ± 0.09 a | |
W4 | 0.08 ± 0.02 a | 0.04 ± 0.01 a | 6.31 ± 0.11 ab | 0.47 ± 0.02 ab | 0.61 ± 0.06 a | 6.20 ± 0.07 a | |
W5 | 0.07 ± 0.02 a | 0.04 ± 0.00 a | 5.65 ± 0.40 a | 0.38 ± 0.06 a | 0.59 ± 0.01 a | 6.17 ± 0.04 a | |
N4 | W1 | 0.18 ± 0.03 c | 0.07 ± 0.01 b | 7.07 ± 0.07 bc | 0.58 ± 0.01 bc | 0.75 ± 0.01 b | 6.47 ± 0.09 c |
W2 | 0.14 ± 0.01 bc | 0.05 ± 0.00 ab | 7.40 ± 0.40 c | 0.63 ± 0.06 c | 0.73 ± 0.01 b | 6.63 ± 0.04 c | |
W3 | 0.10 ± 0.01 b | 0.05 ± 0.02 ab | 6.77 ± 0.10 ab | 0.54 ± 0.01 ab | 0.68 ± 0.00 ab | 6.27 ± 0.09 b | |
W4 | 0.06 ± 0.02 a | 0.04 ± 0.01 a | 6.44 ± 0.04 a | 0.49 ± 0.01 a | 0.65 ± 0.06 a | 6.17 ± 0.09 b | |
W5 | 0.06 ± 0.01 a | 0.04 ± 0.01 a | 6.32 ± 0.16 a | 0.47 ± 0.02 a | 0.64 ± 0.01 a | 5.90 ± 0.07 a | |
p-value | |||||||
Water | <0.001 | 0.006 | <0.001 | <0.001 | <0.001 | <0.001 | |
Nitrogen | 0.683 | 0.183 | <0.001 | <0.001 | 0.037 | <0.001 | |
Water × Nitrogen | 0.186 | 0.247 | 0.112 | 0.112 | 0.166 | <0.001 |
Treatment | WUE (%) | NUE (%) | |
---|---|---|---|
Nitrogen | Water | ||
N0 | W1 | 0.036 ± 0.006 a | —— |
W2 | 0.039 ± 0.002 ab | —— | |
W3 | 0.051 ± 0.002 bc | —— | |
W4 | 0.058 ± 0.004 c | —— | |
W5 | 0.063 ± 0.013 c | —— | |
N2 | W1 | 0.034 ± 0.001 a | 31.30 ± 0.41 a |
W2 | 0.037 ± 0.004 a | 35.31 ± 5.22 a | |
W3 | 0.050 ± 0.003 b | 36.62 ± 3.09 a | |
W4 | 0.049 ± 0.009 b | 75.13 ± 5.94 b | |
W5 | 0.054 ± 0.006 b | 50.61 ± 2.31 ab | |
N4 | W1 | 0.032 ± 0.003 a | 29.55 ± 1.97 a |
W2 | 0.033 ± 0.002 a | 32.78 ± 2.25 a | |
W3 | 0.042 ± 0.001 a | 35.21 ± 0.95 a | |
W4 | 0.045 ± 0.010 a | 55.59 ± 4.84 b | |
W5 | 0.045 ± 0.007 a | 25.87 ± 3.89 a | |
p-value | |||
Water | <0.001 | <0.001 | |
Nitrogen | 0.716 | 0.017 | |
Water × N | <0.001 | 0.187 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, W.; Zhang, W.; Han, L. Effects of Water–Nitrogen Interaction on Sandy Soil, Physiology, and Morphology of Tall Fescue (Festuca arundinacea Schreb) Turf. Agriculture 2024, 14, 1948. https://doi.org/10.3390/agriculture14111948
Guo W, Zhang W, Han L. Effects of Water–Nitrogen Interaction on Sandy Soil, Physiology, and Morphology of Tall Fescue (Festuca arundinacea Schreb) Turf. Agriculture. 2024; 14(11):1948. https://doi.org/10.3390/agriculture14111948
Chicago/Turabian StyleGuo, Wenfei, Wenchao Zhang, and Liebao Han. 2024. "Effects of Water–Nitrogen Interaction on Sandy Soil, Physiology, and Morphology of Tall Fescue (Festuca arundinacea Schreb) Turf" Agriculture 14, no. 11: 1948. https://doi.org/10.3390/agriculture14111948
APA StyleGuo, W., Zhang, W., & Han, L. (2024). Effects of Water–Nitrogen Interaction on Sandy Soil, Physiology, and Morphology of Tall Fescue (Festuca arundinacea Schreb) Turf. Agriculture, 14(11), 1948. https://doi.org/10.3390/agriculture14111948