Utilization of Post-Process Osmotic Solution Based on Tomato Juice Through Spray Drying
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Liquid Feed Preparation
2.3. pH of the Solutions
2.4. Viscosity
2.5. Total Soluble Solids
2.6. Spray Drying
2.7. Yield
2.8. Water Activity
2.9. The Color of the Solutions and Obtained Powders
2.10. The Moisture Content of Obtained Powders
2.11. Bulk Density
2.12. True Density
2.13. Porosity
2.14. Glass Transition Temperature
2.15. Total Energy Consumption and Spray Drying Energy Index
2.16. Statistical Analysis
3. Results and Discussion
3.1. Physical Properties of Solutions
3.2. Spray Drying Process Parameters
3.3. Properties of Obtained Powders
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shinde, B.; Ramaswamy, H.S. Evaluation of mass transfer kinetics and quality of microwave-osmotic dehydrated mango cubes under continuous flow medium spray (MWODS) conditions in sucrose syrup as moderated by dextrose and maltodextrin supplements. Dry. Technol. 2020, 38, 1036–1050. [Google Scholar] [CrossRef]
- Yadav, A.K.; Singh, S.V. Osmotic Dehydration of Fruits and Vegetables: A Review. J. Food Sci. Technol. 2014, 51, 1654–1673. [Google Scholar] [CrossRef]
- Salehi, F. Recent Advances in the Ultrasound-Assisted Osmotic Dehydration of Agricultural Products: A Review. Food Biosci. 2023, 51, 102307. [Google Scholar] [CrossRef]
- Sareban, M.; Abbasi Souraki, B. Anisotropic Diffusion during Osmotic Dehydration of Celery Stalks in Salt Solution. Food Bioprod. Process. 2016, 98, 161–172. [Google Scholar] [CrossRef]
- de Oliveira, L.F.; Corrêa, J.L.G.; Botrel, D.A.; Vilela, M.B.; Batista, L.R.; Freire, L. Reuse of Sorbitol Solution in Pulsed Vacuum Osmotic Dehydration of Yacon (Smallanthus sonchifolius). J. Food Process. Preserv. 2017, 41, e13306. [Google Scholar] [CrossRef]
- Bourdoux, S.; Li, D.; Rajkovic, A.; Devlieghere, F.; Uyttendaele, M. Performance of Drying Technologies to Ensure Microbial Safety of Dried Fruits and Vegetables. Compr. Rev. Food Sci. Food Saf. 2016, 15, 1056–1066. [Google Scholar] [CrossRef]
- Abrahão, F.R.; Corrêa, J.L.G. Osmotic Dehydration: More than Water Loss and Solid Gain. Crit. Rev. Food Sci. Nutr. 2023, 63, 2970–2989. [Google Scholar] [CrossRef]
- Fernández, P.R.; Lovera, N.; Ramallo, L.A. Sucrose Syrup Reuse during One- and Multi-stage Osmotic Dehydration of Pineapple. J. Food Process. Eng. 2020, 43, e13399. [Google Scholar] [CrossRef]
- Singh, P.; Ban, Y.G.; Kashyap, L.; Siraree, A.; Singh, J. Sugar and sugar substitutes: Recent developments and future prospects. In Sugar and Sugar Derivatives: Changing Consumer Preferences; Mohan, N., Singh, P., Eds.; Springer: Singapore, 2020; pp. 39–75. ISBN 9789811566622. [Google Scholar]
- Md Salim, N.S. Potential Utilization of Fruit and Vegetable Wastes for Food through Drying or Extraction Techniques. Nov. Tech. Nutr. Food Sci. 2017, 1, 15–26. [Google Scholar] [CrossRef]
- Bhandari, B.R.; Datta, N.; Howes, T. Problems Associated With Spray Drying Of Sugar-Rich Foods. Dry. Technol. 1997, 15, 671–684. [Google Scholar] [CrossRef]
- Tontul, I.; Topuz, A.; Ozkan, C.; Karacan, M. Effect of Vegetable Proteins on Physical Characteristics of Spray-Dried Tomato Powders. Food Sci. Technol. Int. 2016, 22, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.L.R.; Hidalgo-Chávez, D.W.; Pontes, S.M.; Gomes, F.S.; Cabral, L.M.C.; Tonon, R.V. Microencapsulation by Spray Drying of a Lycopene-Rich Tomato Concentrate: Characterization and Stability. LWT Food Sci. Technol. 2018, 91, 286–292. [Google Scholar] [CrossRef]
- Sidhu, G.K.; Singh, M.; Kaur, P. Effect of operational parameters on physicochemical quality and recovery of spray-dried tomato powder. J. Food Process. Preserv. 2019, 43. [Google Scholar] [CrossRef]
- Corrêa-Filho, L.C.; Lourenço, S.C.; Duarte, D.F.; Moldão-Martins, M.; Alves, V.D. Microencapsulation of Tomato (Solanum lycopersicum L.) Pomace Ethanolic Extract by Spray Drying: Optimization of Process Conditions. Appl. Sci. 2019, 9, 612. [Google Scholar] [CrossRef]
- Zimmer, A.; Masztalerz, K.; Lech, K. Effect of Osmotic Dehydration in Tomato Juice on Microstructure of Garlic and on Drying Using Different Methods. Agriculture 2024, 14, 1164. [Google Scholar] [CrossRef]
- Zimmer, A.; Masztalerz, K.; Lech, K. The Influence of the Pretreatment of Garlic (Allium sativum L.) and Tomato (Solanum lycopersicum L.) Osmotic Solution on Physical Properties of the Material. J. Food Process. Eng. 2023, 46, e14314. [Google Scholar] [CrossRef]
- Eun, J.-B.; Maruf, A.; Das, P.R.; Nam, S.-H. A Review of Encapsulation of Carotenoids Using Spray Drying and Freeze Drying. Crit. Rev. Food Sci. Nutr. 2020, 60, 3547–3572. [Google Scholar] [CrossRef]
- Shahidi, F.; Han, X. Encapsulation of Food Ingredients. Crit. Rev. Food Sci. Nutr. 1993, 33, 501–547. [Google Scholar] [CrossRef]
- Khwanpruk, K.; Akkaraphenphan, C.; Wattananukit, P.; Kaewket, W.; Chusai, S. Effect of Drying Air Condition and Feed Composition on the Properties of Orange Juice Spray Dried Powder. MATEC Web Conf. 2018, 192, 03013. [Google Scholar] [CrossRef]
- Abadio, F.D.B.; Domingues, A.M.; Borges, S.V.; Oliveira, V.M. Physical Properties of Powdered Pineapple (Ananas comosus) Juice—Effect of Malt Dextrin Concentration and Atomization Speed. J. Food Eng. 2004, 64, 285–287. [Google Scholar] [CrossRef]
- Perinelli, D.R.; Santanatoglia, A.; Caprioli, G.; Bonacucina, G.; Vittori, S.; Maggi, F.; Sagratini, G. Inulin Functionalized “Giuncata” Cheese as a Source of Prebiotic Fibers. Foods 2023, 12, 3499. [Google Scholar] [CrossRef]
- Liu, S.; Ellars, C.E.; Edwards, D.S. Ascorbic Acid: Useful as a Buffer Agent and Radiolytic Stabilizer for Metalloradiopharmaceuticals. Bioconjug. Chem. 2003, 14, 1052–1056. [Google Scholar] [CrossRef] [PubMed]
- Goula, A.M.; Adamopoulos, K.G.; Kazakis, N.A. Influence of Spray Drying Conditions on Tomato Powder Properties. Dry. Technol. 2004, 22, 1129–1151. [Google Scholar] [CrossRef]
- Caparino, O.A.; Tang, J.; Nindo, C.I.; Sablani, S.S.; Powers, J.R.; Fellman, J.K. Effect of Drying Methods on the Physical Properties and Microstructures of Mango (Philippine “Carabao” Var.) Powder. J. Food Eng. 2012, 111, 135–148. [Google Scholar] [CrossRef]
- Anisuzzaman, S.M.; Joseph, C.G.; Ismail, F.N. Influence of Carrier Agents Concentrations and Inlet Temperature on the Physical Quality of Tomato Powder Produced by Spray Drying. J. Sci. Technol. 2023, 31, 1379–1411. [Google Scholar] [CrossRef]
- Roccia, P.; Martínez, M.L.; Llabot, J.M.; Ribotta, P.D. Influence of Spray-Drying Operating Conditions on Sunflower Oil Powder Qualities. Powder Technol. 2014, 254, 307–313. [Google Scholar] [CrossRef]
- Araujo-Díaz, S.B.; Leyva-Porras, C.; Aguirre-Bañuelos, P.; Álvarez-Salas, C.; Saavedra-Leos, Z. Evaluation of the Physical Properties and Conservation of the Antioxidants Content, Employing Inulin and Maltodextrin in the Spray Drying of Blueberry Juice. Carbohydr. Polym. 2017, 167, 317–325. [Google Scholar] [CrossRef]
- Adhikari, B.; Howes, T.; Bhandari, B.R.; Troung, V. Effect of Addition of Maltodextrin on Drying Kinetics and Stickiness of Sugar and Acid-Rich Foods during Convective Drying: Experiments and Modelling. J. Food Eng. 2004, 62, 53–68. [Google Scholar] [CrossRef]
- Adhikari, B.; Howes, T.; Bhandari, B.R.; Truong, V. Characterization of the Surface Stickiness of Fructose–Maltodextrin Solutions During Drying. Dry. Technol. 2003, 21, 17–34. [Google Scholar] [CrossRef]
- Largo Ávila, E.; Cortés Rodríguez, M.; Ciro Velásquez, H.J. Influence of Maltodextrin and Spray Drying Process Conditions on Sugarcane Juice Powder Quality. Rev. Fac. Nac. Agron. Medellín 2015, 68, 7509–7520. [Google Scholar] [CrossRef]
- Aghbashlo, M.; Mobli, H.; Rafiee, S.; Madadlou, A. Energy and Exergy Analyses of the Spray Drying Process of Fish Oil Microencapsulation. Biosyst. Eng. 2012, 111, 229–241. [Google Scholar] [CrossRef]
- Quek, S.Y.; Chok, N.K.; Swedlund, P. The Physicochemical Properties of Spray-Dried Watermelon Powders. Chem. Eng. Process. Process Intensif. 2007, 46, 386–392. [Google Scholar] [CrossRef]
- Selvamuthukumaran, M.; Khanum, F. Optimization of Spray Drying Process for Developing Seabuckthorn Fruit Juice Powder Using Response Surface Methodology. J. Food Sci. Technol. 2014, 51, 3731–3739. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Duke, S.R.; Wang, Y. Microencapsulation of Lipid Materials by Spray Drying and Properties of Products. J. Food Process. Eng. 2017, 40, e12477. [Google Scholar] [CrossRef]
- Mishra, P.; Mishra, S.; Mahanta, C.L. Effect of Maltodextrin Concentration and Inlet Temperature during Spray Drying on Physicochemical and Antioxidant Properties of Amla (Emblica officinalis) Juice Powder. Food Bioprod. Process. 2014, 92, 252–258. [Google Scholar] [CrossRef]
- Chegini, G.R.; Ghobadian, B. Effect of Spray-Drying Conditions on Physical Properties of Orange Juice Powder. Dry. Technol. 2005, 23, 657–668. [Google Scholar] [CrossRef]
- Tkacz, K.; Wojdyło, A.; Michalska-Ciechanowska, A.; Turkiewicz, I.P.; Lech, K.; Nowicka, P. Influence Carrier Agents, Drying Methods, Storage Time on Physico-Chemical Properties and Bioactive Potential of Encapsulated Sea Buckthorn Juice Powders. Molecules 2020, 25, 3801. [Google Scholar] [CrossRef]
- Lacerda, E.C.Q.; Calado, V.M.d.A.; Monteiro, M.; Finotelli, P.V.; Torres, A.G.; Perrone, D. Starch, Inulin and Maltodextrin as Encapsulating Agents Affect the Quality and Stability of Jussara Pulp Microparticles. Carbohydr. Polym. 2016, 151, 500–510. [Google Scholar] [CrossRef]
- Goula, A.M.; Adamopoulos, K.G. Stability of Lycopene during Spray Drying of Tomato Pulp. LWT Food Sci. Technol. 2005, 38, 479–487. [Google Scholar] [CrossRef]
- Li, J.; Pettinato, M.; Casazza, A.A.; Perego, P. A Comprehensive Optimization of Ultrasound-Assisted Extraction for Lycopene Recovery from Tomato Waste and Encapsulation by Spray Drying. Processes 2022, 10, 308. [Google Scholar] [CrossRef]
- Bicudo, M.O.P.; Jó, J.; de Oliveira, G.A.; Chaimsohn, F.P.; Sierakowski, M.R.; de Freitas, R.A.; Ribani, R.H. Microencapsulation of Juçara (Euterpe edulis M.) Pulp by Spray Drying Using Different Carriers and Drying Temperatures. Dry. Technol. 2015, 33, 153–161. [Google Scholar] [CrossRef]
- Syamaladevi, R.M.; Insan, S.K.; Dhawan, S.; Andrews, P.; Sablani, S.S. Physicochemical Properties of Encapsulated Red Raspberry (Rubus idaeus) Powder: Influence of High-Pressure Homogenization. Dry. Technol. 2012, 30, 484–493. [Google Scholar] [CrossRef]
- Averardi, A.; Cola, C.; Zeltmann, S.E.; Gupta, N. Effect of Particle Size Distribution on the Packing of Powder Beds: A Critical Discussion Relevant to Additive Manufacturing. Mater. Today Commun. 2020, 24, 100964. [Google Scholar] [CrossRef]
- Zouari, A.; Mtibaa, I.; Triki, M.; Jridi, M.; Zidi, D.; Attia, H.; Ayadi, M.A. Effect of Spray-drying Parameters on the Solubility and the Bulk Density of Camel Milk Powder: A Response Surface Methodology Approach. Int. J. Dairy Technol. 2020, 73, 616–624. [Google Scholar] [CrossRef]
- Harnkarnsujarit, N.; Charoenrein, S.; Roos, Y.H. Microstructure Formation of Maltodextrin and Sugar Matrices in Freeze-Dried Systems. Carbohydr. Polym. 2012, 88, 734–742. [Google Scholar] [CrossRef]
- Farías-Cervantes, V.S.; Salinas-Moreno, Y.; Chávez-Rodríguez, A.; Luna-Solano, G.; Medrano-Roldan, H.; Andrade-González, I. Stickiness and Agglomeration of Blackberry and Raspberry Spray Dried Juices Using Agave Fructans and Maltodextrin as Carrier Agents. Czech J. Food Sci. 2020, 38, 229–236. [Google Scholar] [CrossRef]
- Jumah, R.Y.; Tashtoush, B.; Shaker, R.R.; Zraiy, A.F. Manufacturing parameters and quality characteristics of spray dried jameed. Dry. Technol. 2000, 18, 967–984. [Google Scholar] [CrossRef]
- Nguyen, D.Q.; Nguyen, T.H.; Mounir, S.; Allaf, K. Effect of Feed Concentration and Inlet Air Temperature on the Properties of Soymilk Powder Obtained by Spray Drying. Dry. Technol. 2018, 36, 817–829. [Google Scholar] [CrossRef]
- Baenas, N.; Bravo, S.; García-Alonso, F.J.; Gil, J.V.; Periago, M.J. Changes in Volatile Compounds, Flavour-Related Enzymes and Lycopene in a Refrigerated Tomato Juice during Processing and Storage. Eur. Food Res. Technol. 2021, 247, 975–984. [Google Scholar] [CrossRef]
- Lee, S.M.; Cho, A.R.; Yoo, S.; Kim, Y. Effects of Maltodextrins with Different Dextrose-equivalent Values. Flavour Fragr. J. 2018, 33, 153–159. [Google Scholar] [CrossRef]
- Yu, A.B.; Feng, C.L.; Zou, R.P.; Yang, R.Y. On the Relationship between Porosity and Interparticle Forces. Powder Technol. 2003, 130, 70–76. [Google Scholar] [CrossRef]
- Michalska-Ciechanowska, A.; Majerska, J.; Brzezowska, J.; Wojdyło, A.; Figiel, A. The Influence of Maltodextrin and Inulin on the Physico-Chemical Properties of Cranberry Juice Powders. ChemEngineering 2020, 4, 12. [Google Scholar] [CrossRef]
- De Sousa, A.S.; Borges, S.V.; Magalhães, N.F.; Ricardo, H.V.; Azevedo, A.D. Spray-Dried Tomato Powder: Reconstitution Properties and Colour. Braz. Arch. Biol. Technol. 2008, 51, 607–614. [Google Scholar] [CrossRef]
- Liu, F.; Cao, X.; Wang, H.; Liao, X. Changes of Tomato Powder Qualities during Storage. Powder Technol. 2010, 204, 159–166. [Google Scholar] [CrossRef]
- Li, H.; Liu, X.; Yang, L.; Chen, D.; Cui, H. The Effects of Adding Soybean Fiber on the Quality of Tomato Ketchup. Acta Hortic. 2013, 211–216. [Google Scholar] [CrossRef]
- Krebbers, B.; Matser, A.M.; Hoogerwerf, S.W.; Moezelaar, R.; Tomassen, M.M.M.; van den Berg, R.W. Combined High-Pressure and Thermal Treatments for Processing of Tomato Puree: Evaluation of Microbial Inactivation and Quality Parameters. Innov. Food Sci. Emerg. Technol. 2003, 4, 377–385. [Google Scholar] [CrossRef]
- Hayes, W.A.; Smith, P.G.; Morris, A.E.J. The Production and Quality of Tomato Concentrates. Crit. Rev. Food Sci. Nutr. 1998, 38, 537–564. [Google Scholar] [CrossRef]
Solutions | ||||||||
---|---|---|---|---|---|---|---|---|
Sample | Total Soluble Solids, % | Water Activity, - | pH, - | Viscosity, mPa·s | Color Parameters | |||
L* | a* | b* | ∆E | |||||
OS † | 16.86 ± 0.18 b,* | 0.9754 ± 0.0008 a | 3.81 ± 0.00 d | 1.91 ± 0.01 a | 23.19 ± 0.50 a | 13.05 ± 0.26 e | 9.15 ± 0.27 e | - |
OS-M40 | 18.64 ± 0.04 a | 0.9896 ± 0.0012 c | 3.72 ± 0.01 a | 2.39 ± 0.03 b,c | 23.65 ± 0.50 a | 5.44 ± 0.19 a | 5.20 ± 0.13 a | 8.59 ± 0.26 b |
OS-M50 | 20.46 ± 0.01 a | 0.9873 ± 0.0003 b,c | 3.74 ± 0.01 b,c | 3.09 ± 0.04 d | 25.43 ± 0.19 b | 7.91 ± 0.07 c | 6.40 ± 0.08 c | 6.25 ± 0.16 a |
OS-M60 | 19.69 ± 0.16 a | 0.9872 ± 0.0026 c | 3.77 ± 0.01 c | 2.99 ± 0.11 d | 26.39 ± 0.49 b | 6.52 ± 0.15 b | 6.71 ± 0.19 a,b | 8.05 ± 0.40 b |
OS-I40 | 20.47 ± 0.53 a | 0.9853 ± 0.0025 b,c | 3.72 ± 0.00 a | 2.20 ± 0.05 b | 28.05 ± 0.34 c | 8.86 ± 0.48 d | 7.91 ± 0.39 d | 6.55 ± 0.51 a |
OS-I50 | 20.59 ± 0.13 a | 0.9809 ± 0.0033 a,b | 3.73 ± 0.00 a,b | 2.51 ± 0.08 c | 27.71 ± 0.26 c | 7.07 ± 0.27 b | 6.25 ± 0.15 b, c | 8.04 ± 0.23 b |
OS-I60 | 22.30 ± 0.18 c | 0.9866 ± 0.0009 b,c | 3.63 ± 0.01 a,b | 3.34 ± 0.03 e | 37.52 ± 0.44 d | 13.29 ± 0.14 e | 13.69 ± 0.24 f | 15.05 ± 0.34 c |
Total Soluble Solids, % | Water Activity, - | pH, - | Viscosity, mPa·s | |||||
---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | |
M/I † | 60.68 | 0.0002 | 16 | 0.0073 | 25 | 0.0024 | 15.61 | 0.0075 |
CC | 12.48 | 0.0073 | 5 | 0.0014 | 24 | 0.0013 | 202.56 | 0.0001 |
M/I × CC | 23.33 | 0.0015 | 1 | 0.3483 | 15 | 0.0044 | 55.63 | 0.0001 |
L* | a* | b* | ∆E | |||||
F | p | F | p | F | p | F | p | |
M/I | 1052.52 | 0.0001 | 679.33 | 0.0001 | 1126.18 | 0.0001 | 200.79 | 0.0001 |
CC | 443.35 | 0.0001 | 210.34 | 0.0001 | 432.55 | 0.0001 | 312.12 | 0.0001 |
M/I × CC | 213.04 | 0.0001 | 338.79 | 0.0001 | 518.91 | 0.0001 | 271.95 | 0.0001 |
Sample | Outlet Temperature, °C | Feed Flow Rate, g·min−1 | Yield, % | Energy Consumption, kJ | Spray Drying Energy Index, kJ |
---|---|---|---|---|---|
M40-120 † | 84 ± 1.4 a,* | 3.62 ± 0.16 a | 15.43 ± 1.34 d,e | 1791 ± 81 a | 11672 ± 1535 a |
M40-140 | 95 ± 0.1 b | 3.66 ± 0.08 a | 13.51 ± 0.71 c–e | 2097 ± 44 b,c | 15552 ± 1155 a |
M40-160 | 109 ± 1.4 c | 3.58 ± 0.08 a | 23.17 ± 0.61 f–h | 2295 ± 51 d | 9912 ± 479 a |
M50-120 | 85 ± 2.1 a | 3.74 ± 0.02 a,b | 15.83 ± 0.28 d,e | 1731 ± 8 a | 10936 ± 246 a |
M50-140 | 95 ± 0.0 b | 3.82 ± 0.06 a,b | 25.58 ± 1.91 g,h | 2012 ± 33 b | 7891 ± 718 a |
M50-160 | 108 ± 1.4 c | 3.73 ± 0.01 a,b | 28.83 ± 2.73 h,i | 2201 ± 3 c,d | 7670 ± 738 a |
M60-120 | 83 ± 2.1 a | 3.70 ± 0.06 a,b | 18.91 ± 1.36 e,f | 1752 ± 27 a | 9297 ± 813 a |
M60-140 | 96 ± 0.7 b | 3.72 ± 0.02 a,b | 26.52 ± 0.36 f,g | 2064 ± 13 b,c | 9165 ± 85 a |
M60-160 | 109 ± 0.1 c | 3.75 ± 0.07 a,b | 32.13 ± 0.64 i | 2195 ± 41 c,d | 6831 ± 8 a |
I40-120 | 85 ± 1.4 a | 3.73 ± 0.07 a,b | 2.75 ± 0.48 a | 1736 ± 33 a | 64249 ± 12315 b |
I40-140 | 96 ± 1.4 b | 3.81 ± 0.01 a,b | 9.27 ± 1.21 b,c | 2017 ± 1 b | 21943 ± 2842 a |
I40-160 | 109 ± 1.4 c | 3.71 ± 0.07 a,b | 5.15 ± 1.55 a,b | 2218 ± 40 c,d | 45271 ± 14444 b |
I50-120 | 83 ± 1.4 a | 3.67 ± 0.08 a | 12.57 ± 0.43 c,d | 1767 ± 38 a | 14067 ± 782 a |
I50-140 | 96 ± 0.7 b | 3.68 ± 0.07 a,b | 11.54 ± 0.98 c,d | 2087 ± 37 b,c | 118140 ± 1223 a |
I50-160 | 108 ± 0.7 c | 4.00 ± 0.21 b | 8.98 ± 1.83 b,c | 2058 ± 109 b,c | 23526 ± 5998 a |
I60-120 | 85 ± 2.1 a | 3.76 ± 0.05 a,b | 14.12 ± 2.13 c–e | 1724 ± 24 a | 12338 ± 1689 a |
I60-140 | 96 ± 0.7 b | 3.73 ± 0.03 a,b | 13.05 ± 1.80 c–e | 2061 ± 15 b,c | 16951 ± 2312 a |
I60-160 | 107 ± 2.8 c | 3.70 ± 0.02 a,b | 14.12 ± 2.65 c–e | 2224 ± 13 c,d | 12044 ± 3103 a |
Outlet Temperature, °C | Feed Flow Rate, g·min−1 | Yield, % | Total Energy Consumption, kJ | Spray Drying Energy Index, kJ | ||||||
---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | |
M/I † | 0 | 0.9093 | 3.35 | 0.084 | 550 | 0.0001 | 3.66 | 0.0719 | 94.5897 | 0.0001 |
CC | 1 | 0.3969 | 3.49 | 0.05237 | 85.041 | 0.0001 | 4.02 | 0.0359 | 40.5008 | 0.0001 |
Tin | 854 | 0.0001 | 0.82 | 0.4581 | 40.674 | 0.0001 | 341.88 | 0.0001 | 4.0753 | 0.0347 |
M/I × CC | 0.5 | 0.6186 | 1.99 | 0.1652 | 0.906 | 0.4220 | 2.33 | 0.1263 | 23.278 | 0.0001 |
M/I × Tin | 0.9 | 0.4425 | 1.42 | 0.2672 | 52.404 | 0.0001 | 1.67 | 0.2169 | 6.0926 | 0.0095 |
CC × Tin | 0.2 | 0.9276 | 2.31 | 0.0974 | 2.946 | 0.0491 | 2.67 | 0.0654 | 6.0007 | 0.003 |
M/I × CC × Tin | 0.9 | 0.5102 | 3.04 | 0.0445 | 11.082 | 0.0001 | 3.12 | 0.0411 | 9.4102 | 0.0003 |
Powders | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sample | Mc, % | Water Activity, - | Color Parameters | Bulk Density, g·cm−3 | True Density, g·cm−3 | Porosity, % | Glass Transition Temperature, °C | |||
L* | a* | b* | ∆E | |||||||
M40-120 † | 3.81 ± 0.58 a–d,* | 0.218 ± 0.017 b–e | 83.91 ± 0.26 f,g | 9.58 ± 1.55 b–d | 13.70 ± 0.92 b–d | 26.17 ± 2.47 e–g | 0.558 ± 0.019 b–f | 1.590 ± 0.009 a | 64.9 ± 1.0 a,b | 38.1 ± 0.3 d |
M40-140 | 5.23 ± 1.65 d–f | 0.215 ± 0.010 b–e | 81.78 ± 0.01 d–f | 11.53 ± 0.01 d–f | 14.96 ± 0.10 b–f | 23.33 ± 0.20 d–f | 0.538 ± 0.001 b–f | 1.514 ± 0.029 a | 64.4 ± 0.6 a,b | 38.3 ± 0.6 e |
M40-160 | 3.21 ± 0.13 a–c | 0.222 ± 0.011 b–e | 78.295 ± 0.04 b,c | 12.39 ± 2.08 f,g | 17.49 ± 0.44 h | 19.84 ± 1.76 a–c | 0.591 ± 0.018 e,f | 1.549 ± 0.034 a | 61.8 ± 0.3 a,b | 38.4 ± 0.1 f |
M50-120 | 3.80 ± 0.39 a–d | 0.228 ± 0.007 c–e | 84.58 ± 0.72 g | 9.55 ± 0.71 b–d | 13.16 ± 0.51 a,b | 26.84 ± 0.81 g | 0.540 ± 0.003 b–f | 1.511 ± 0.056 a | 64.2 ± 1.1 a,b | 38.4 ± 0.3 e |
M50-140 | 2.87 ± 0.13 a–c | 0.214 ± 0.011 b–e | 83.95 ± 0.63 f,g | 9.36 ± 0.52 b,c | 13.08 ± 0.07 a,b | 26.36 ± 0.55 f,g | 0.562 ± 0.008 c–f | 1.686 ± 0.069 a | 66.6 ± 1.9 a,b | 38.6 ± 0.2 i |
M50-160 | 2.27 ± 0.03 a | 0.198 ± 0.009 a,b | 82.22 ± 0.10 d–g | 9.73 ± 0.58 b–e | 14.19 ± 0.48 b–f | 24.54 ± 0.44 d–g | 0.548 ± 0.001 b–f | 1.463 ± 0.071 a | 62.5 ± 1.7 a,b | 38.0 ± 0.3 j |
M60-120 | 3.56 ± 0.39 a–d | 0.214 ± 0.005 b–e | 87.80 ± 0.34 h | 7.32 ± 1.16 a | 11.30 ± 0.52 a | 30.91 ± 1.50 h | 0.594 ± 0.012 f | 1.486 ± 0.016 a | 60.0 ± 1.3 a,b | 37.2 ± 0.3 g |
M60-140 | 2.98 ± 0.13 a–c | 0.233 ± 0.004 e | 84.22 ± 0.08 g | 8.20 ± 0.17 a,b | 13.60 ± 1.75 b,c | 27.10 ± 1.44 g | 0.576 ± 0.007 d–f | 1.481 ± 0.029 a | 61.1 ± 1.3 a,b | 36.8 ± 0.3 h,i |
M60-160 | 2.28 ± 0.10 a | 0.177 ± 0.006 a | 82.83 ± 0.01 e–g | 9.62 ± 1.34 b–d | 13.60 ± 0.77 b,c | 25.18 ± 2.08 e–g | 0.597 ± 0.002 f | 1.431 ± 0.019 a | 58.3 ± 0.7 a | 36.1 ± 0.1 i |
I40-120 | 6.12 ± 0.21 e,f | 0.231 ± 0.021 c–e | 79.98 ± 0.13 c,d | 11.48 ± 0.90 d–f | 15.97 ± 0.28 f–h | 21.69 ± 1.49 c,d | 0.486 ± 0.016 a–e | 1.379 ± 0.390 a | 63.4 ± 9.2 a,b | 35.0 ± 0.2 c |
I40-140 | 4.48 ± 0.20 c–e | 0.230 ± 0.069 d–e | 79.82 ± 0.001 c,d | 11.71 ± 0.03 e,f | 15.79 ± 0.01 e–h | 21.44 ± 0.29 b–d | 0.480 ± 0.049 a–d | 1.594 ± 0.011 a | 69.9 ± 3.3 a,b | 35.6 ± 0.1 b |
I40-160 | 5.33 ± 0.03 d–f | 0.232 ± 0.011 e | 75.59 ± 0.01 b | 14.3 ± 0.11 g | 17.00 ± 0.09 g,h | 16.55 ± 0.40 a | 0.511 ± 0.010 a–f | 1.440 ± 0.081 a | 64.5 ± 2.7 a,b | 36.6 ± 0.3 a |
I50-120 | 3.95 ± 0.34 a–d | 0.208 ± 0.007 b–e | 83.11 ± 0.03 e–g | 9.27 ± 1.48 a–c | 13.85 ± 1.18 b–e | 25.57 ± 1.81 e,g | 0.466 ± 0.034 a–c | 1.517 ± 0.221 a | 68.8 ± 6.8 a,b | 38.3 ± 0.2 f |
I50-140 | 3.32 ± 0.10 a–c | 0.196 ± 0.006 a,b | 80.96 ± 0.13 c–e | 10.77 ± 0.09 c–f | 15.22 ± 0.06 c–g | 22.89 ± 0.44 c–e | 0.484 ± 0.025 a–d | 1.601 ± 0.026 a | 69.8 ± 0.6 a,b | 38.2 ± 0.3 e |
I50-160 | 4.23 ± 0.23 b–d | 0.232 ± 0.004 e | 76.64 ± 0.10 b | 12.77 ± 0.73 f,g | 14.47 ± 1.38 h | 18.22 ± 0.54 a,b | 0.495 ± 0.032 a–f | 1.520 ± 0.037 a | 67.4 ± 2.9 a,b | 38.6 ± 0.2 c |
I60-120 | 3.56 ± 0.35 a–d | 0.205 ± 0.010 b–d | 83.69 ± 0.21 e–g | 8.66 ± 0.59 a,b | 14.33 ± 2.61 b–f | 26.38 ± 1.40 f,g | 0.530 ± 0.029 b–f | 1.476 ± 0.024 a | 64.1 ± 2.6 a,b | 41.4 ± 0.2 h |
I60-140 | 3.31 ± 0.06 a–c | 0.208 ± 0.005 b–e | 82.00 ± 0.03 d–g | 10.19 ± 0.20 b–e | 14.69 ± 0.04 b–f | 24.10 ± 0.11 d–g | 0.455 ± 0.004 a,b | 1.507 ± 0.045 a | 69.8 ± 0.6 a,b | 40.3 ± 0.3 f |
I60-160 | 2.64 ± 0.17 a,b | 0.199 ± 0.010 a,b | 79.95 ± 0.09 c,d | 11.29 ± 1.16 c–f | 15.63 ± 0.17 d–h | 21.74 ± 1.65 c,d | 0.596 ± 0.063 f | 1.429 ± 0.023 a | 58.3 ± 3.7 a,b | 41.3 ± 0.4 g |
FD | 6.49 ± 0.12 f | 0.196 ± 0.001 a–c | 60.38 ± 0.20 a | 20.75 ± 0.33 h | 16.08 ± 0.32 f–h | - | 0.413 ± 0.045 a | 1.491 ± 0.069 a | 72.4 ± 1.7 b | - |
Moisture Content, % | Water Activity, - | Bulk Density, g·cm−3 | True Density, g·cm−3 | Porosity, % | ||||||
---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | |
M/I † | 24.839 | 1 × 10−4 | 0.81 | 0.3716 | 63.67 | 1 × 10−4 | 0.540 | 0.4718 | 31.53 | 1 × 10−4 |
CC | 41.486 | 1 × 10−4 | 3.07 | 0.5479 | 8.94 | 0.0020 | 1.564 | 0.2365 | 18.35 | 1 × 10−4 |
Tin | 9.105 | 0.0018 | 18.82 | 1 × 10−4 | 8.16 | 0.0030 | 2.172 | 0.1429 | 19.25 | 1 × 10−4 |
M/I × CC | 3.528 | 0.051 | 17.53 | 1 × 10−4 | 0.08 | 0.9220 | 0.490 | 0.6208 | 1.24 | 0.2978 |
M/I × Tin | 7.507 | 0.0043 | 3.7 | 0.0312 | 1.97 | 0.1679 | 0.384 | 0.6869 | 3.00 | 0.0583 |
CC × Tin | 1.177 | 0.3541 | 10.67 | 1 × 10−4 | 3.02 | 0.0456 | 0.386 | 0.8285 | 1.36 | 0.2586 |
M/I × CC × Tin | 5.324 | 0.0052 | 5.77 | 1 × 10−4 | 2.03 | 0.1336 | 0.878 | 0.4967 | 2.96 | 0.0279 |
L* | a* | b* | ∆E | Glass Transition Temperature, °C | ||||||
F | p | F | p | F | p | F | p | F | p | |
M/I | 145.4 | 1 × 10−4 | 62.09 | 1 × 10−4 | 81.40 | 1 × 10−4 | 134.20 | 1 × 10−4 | 4372.6 | 1 × 10−4 |
CC | 62.9 | 1 × 10−4 | 67.68 | 1 × 10−4 | 39.79 | 1 × 10−4 | 70.46 | 1 × 10−4 | 3739 | 1 × 10−4 |
Tin | 108.8 | 1 × 10−4 | 55.28 | 1 × 10−4 | 47.93 | 1 × 10−4 | 100.92 | 1 × 10−4 | 63.6 | 1 × 10−4 |
M/I × CC | 0.3 | 0.743 | 0.330 | 0.7221 | 4.56 | 0.015 | 0.25 | 0.7822 | 443.3 | 1 × 10−4 |
M/I × Tin | 2.2 | 0.116 | 4.130 | 0.0214 | 1.05 | 0.357 | 2.24 | 0.1158 | 1283.8 | 1 × 10−4 |
CC × Tin | 2.1 | 0.087 | 0.900 | 0.4693 | 1.93 | 0.119 | 1.60 | 0.1868 | 59.4 | 1 × 10−4 |
M/I × CC × Tin | 4.1 | 0.006 | 4.160 | 0.0052 | 6.96 | 1 × 10−4 | 4.13 | 0.0054 | 210.8 | 1 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zimmer, A.; Masztalerz, K.; Serowik, M.; Nejman, M.; Lech, K. Utilization of Post-Process Osmotic Solution Based on Tomato Juice Through Spray Drying. Agriculture 2024, 14, 1883. https://doi.org/10.3390/agriculture14111883
Zimmer A, Masztalerz K, Serowik M, Nejman M, Lech K. Utilization of Post-Process Osmotic Solution Based on Tomato Juice Through Spray Drying. Agriculture. 2024; 14(11):1883. https://doi.org/10.3390/agriculture14111883
Chicago/Turabian StyleZimmer, Aleksandra, Klaudia Masztalerz, Małgorzata Serowik, Mariusz Nejman, and Krzysztof Lech. 2024. "Utilization of Post-Process Osmotic Solution Based on Tomato Juice Through Spray Drying" Agriculture 14, no. 11: 1883. https://doi.org/10.3390/agriculture14111883
APA StyleZimmer, A., Masztalerz, K., Serowik, M., Nejman, M., & Lech, K. (2024). Utilization of Post-Process Osmotic Solution Based on Tomato Juice Through Spray Drying. Agriculture, 14(11), 1883. https://doi.org/10.3390/agriculture14111883