Proposal of a Model of Irrigation Operations Management for Exploring the Factors That Can Affect the Adoption of Precision Agriculture in the Context of Agriculture 4.0
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Review
2.1.1. Precision Agriculture, Precision Irrigation, and Factors Affecting the Adoption
2.1.2. Agriculture 4.0 and Factors That Can Affect the Adoption
“Agriculture 4.0 is a management strategy, evolution of precision agriculture, realized through the automated collection, integration and analysis of temporal, spatial and individual data, collected by IoT sensing technologies and farm resources, making in this way possible the generation of knowledge, to support the design of applications for the farmer decision making process in irrigation operations management”.[69] (p. 21)
2.1.3. Operations Management in Agriculture and in Irrigation
2.1.4. Farmer Behaviour, Theory of Planned Behaviour, and Farmer Mental Model
Theories Used to Explain the Adoption of Innovations
Theory of Planned Behaviour
Farmer Beliefs and Farmer Mental Model
2.2. Method
2.2.1. Interviews with Experts
2.2.2. Case Studies
2.2.3. Modeling Techniques and IDEF0
3. Results
3.1. Results of Expert Interviews: Factors and Categories That Can Affect the Adoption
3.2. Results of Case Studies: Factors That Can Affect the Adoption
3.2.1. Within-Case Analysis: “Farm Bahia”
3.2.2. Within-Case Analysis: Farm of the MATOPIBA Pilot
3.2.3. Cross-Case Pattern Search
3.3. Results of the Expert Interviews and Case Studies: Theoretical Propositions
3.4. Model of Irrigation OM
4. Discussion
4.1. Factors That Can Affect the Explored Adoption
4.2. Model of Irrigation OM
4.3. Results of Case Studies: Relationships between Some Factors in the Model
5. Limitations and Research Agenda
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andujar, D. Back to the Future: What is Trending on Precision Agriculture? Agronomy 2023, 13, 2069. [Google Scholar] [CrossRef]
- Rose, D.C.; Chilvers, J. Agriculture 4.0: Broadening Responsible Innovation in an Era of Smart Farming. Front. Sustain. Food Syst. 2018, 2, 87. [Google Scholar] [CrossRef]
- Bernhardt, H.; Bozkurt, M.; Brunsch, R.; Colangelo, E.; Herrmann, A.; Horstmann, J.; Kraft, M.; Marquering, J.; Steckel, T.; Tapken, H.; et al. Challenges for Agriculture through Industry 4.0. Agronomy 2021, 11, 1935. [Google Scholar] [CrossRef]
- Scuderi, A.; La Via, G.; Timpanaro, G.; Sturiale, L. The Digital Applications of “Agriculture 4.0”: Strategic Opportunity for the Development of the Italian Citrus Chain. Agriculture 2022, 12, 400. [Google Scholar] [CrossRef]
- Bolfe, É.L.; de Jorge, L.A.C.; Sanches, I.D.; Júnior, A.L.; da Costa, C.C.; de Victoria, D.C.; Inamasu, R.Y.; Grego, C.R.; Ferreira, V.R.; Ramirez, A.R. Precision and Digital Agriculture: Adoption of Technologies and Perception of Brazilian Farmers. Agriculture 2020, 10, 653. [Google Scholar] [CrossRef]
- Weltzien, C. Digital Agriculture-or Why Agriculture 4.0 Still Offers Only Modest Returns. Landtechnik 2016, 71, 66–68. [Google Scholar] [CrossRef]
- Barnes, A.; Soto, I.; Eory, V.; Beck, B.; Balafoutis, A.; Sánchez, B.; Vangeyte, J.; Fountas, S.; van der Wal, T.; Gómez-Barbero, M. Exploring the Adoption of Precision Agricultural Technologies: A Cross Regional Study of EU Farmers. Land Use Policy 2019, 80, 163–174. [Google Scholar] [CrossRef]
- Rodrigues, G.C. Precision Agriculture: Strategies and Technology Adoption. Agriculture 2022, 12, 1474. [Google Scholar] [CrossRef]
- Lowenberg-Deboer, J.; Erickson, B. Setting the Record Straight on Precision Agriculture Adoption. Agron. J. 2019, 111, 1552–1569. [Google Scholar] [CrossRef]
- Cisternas, I.; Velásquez, I.; Caro, A.; Rodríguez, A. Systematic Literature Review of Implementations of Precision Agriculture. Comput. Electron. Agric. 2020, 176, 105626. [Google Scholar] [CrossRef]
- Wang, T.; Jin, H.; Sieverding, H.; Kumar, S.; Miap, Y.; Rao, X.; Obembe, O.; Nafchi, A.; Redfearn, D.; Cheye, S. Understanding Farmer Perceptions of Precision Agriculture Profitability in the U.S. Midwest. In Proceedings of the Agricultural & Applied Economics Association Annual Meeting, Anaheim, CA, USA, 31 July 2022; pp. 2–37. [Google Scholar]
- Pathak, H.S.; Brown, P.; Best, T. A Systematic Literature Review of the Factors Affecting the Precision Agriculture Adoption Process. Precis. Agric. 2019, 20, 1292–1316. [Google Scholar] [CrossRef]
- Karunathilake, E.M.B.M.; Le, A.T.; Heo, S.; Chung, Y.S.; Mansoor, S. The Path to Smart Farming: Innovations and Opportunities in Precision Agriculture. Agriculture 2023, 13, 1593. [Google Scholar] [CrossRef]
- Vrchota, J.; Pech, M.; Švepešová, I. Precision Agriculture Technologies for Crop and Livestock Production in the Czech Republic. Agriculture 2022, 12, 1080. [Google Scholar] [CrossRef]
- Robertson, M.J.; Llewellyn, R.S.; Mandel, R.; Lawes, R.; Bramley, R.G.V.; Swift, L.; Metz, N.; O’Callaghan, C. Adoption of Variable Rate Fertiliser Application in the Australian Grains Industry: Status, Issues and Prospects. Precis. Agric. 2012, 13, 181–199. [Google Scholar] [CrossRef]
- Galioto, F.; Raggi, M.; Viaggi, D. Assessing the Potential Economic Viability of Precision Irrigation: A Theoretical Analysis and Pilot Empirical Evaluation. Water 2017, 9, 990. [Google Scholar] [CrossRef]
- Pierpaoli, E.; Carli, G.; Pignatti, E.; Canavari, M. Drivers of Precision Agriculture Technologies Adoption: A Literature Review. Procedia Technol. 2013, 8, 61–69. [Google Scholar] [CrossRef]
- Ayerdi Gotor, A.; Marraccini, E.; Leclercq, C.; Scheurer, O. Precision Farming Uses Typology in Arable Crop-Oriented Farms in Northern France. Precis. Agric. 2020, 21, 131–146. [Google Scholar] [CrossRef]
- Barnes, A.; De Soto, I.; Eory, V.; Beck, B.; Balafoutis, A.; Sánchez, B.; Vangeyte, J.; Fountas, S.; van der Wal, T.; Gómez-Barbero, M. Influencing Factors and Incentives on the Intention to Adopt Precision Agricultural Technologies within Arable Farming Systems. Environ. Sci. Policy 2018, 93, 66–74. [Google Scholar] [CrossRef]
- D’Antoni, J.M.; Mishra, A.K.; Joo, H. Farmers’ Perception of Precision Technology: The Case of Autosteer Adoption by Cotton Farmers. Comput. Electron. Agric. 2012, 87, 121–128. [Google Scholar] [CrossRef]
- Ajzen, I. The Theory of Planned Behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Reichardt, M.; Jurgens, C.; Kloble, U.; Huter, J.; Moser, K. Dissemination of Precision Farming in Germany: And Training Activities. Precis. Agric. 2009, 10, 525–545. [Google Scholar] [CrossRef]
- Sutherland, L. “Effectively Organic”: Environmental Gains on Conventional Farms through the Market? Land Use Policy 2011, 28, 815–824. [Google Scholar] [CrossRef]
- Xu, Y.; Lyu, J.; Xue, Y.; Liu, H. Intentions of Farmers to Renew Productive Agricultural Service Contracts Using the Theory of Planned Behavior: An Empirical Study in Northeastern China. Agriculture 2022, 12, 1471. [Google Scholar] [CrossRef]
- Lee, C.S.; Chen, Y.C.; Tsui, P.L.; Chiang, M.C. Using the Theory of Planned Behavior to Examine the Sustainable Extension of Rural Food Preparation Techniques. Agriculture 2023, 13, 1012. [Google Scholar] [CrossRef]
- Chopra, S.; Lovejoy, W.; Yano, C. Five Decades of Operations Management and the Prospects Ahead. Manag. Sci. 2004, 50, 8–14. [Google Scholar] [CrossRef]
- Bochtis, D.; Sørensen, C.G.C.; Busato, P. Advances in Agricultural Machinery Management: A Review. Biosyst. Eng. 2014, 126, 69–81. [Google Scholar] [CrossRef]
- Bochtis, D.; Sorensen, C.A.G.; Kateris, D. Operations Management in Agriculture, 1st ed.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Prager, K.; Curfs, M. Using Mental Models to Understand Soil Management. Soil Use Manag. 2016, 32, 36–44. [Google Scholar] [CrossRef]
- Gasson, R. Goals and Values of Farmers. J. Agric. Econ. 1973, 24, 521–542. [Google Scholar] [CrossRef]
- Zambon, I.; Cecchini, M.; Egidi, G.; Saporito, M.G.; Colantoni, A. Revolution 4.0: Industry vs. Agriculture in a Future Development for SMEs. Processes 2019, 7, 36. [Google Scholar] [CrossRef]
- Braun, A.T.; Colangelo, E.; Steckel, T. Farming in the Era of Industrie 4.0. Procedia CIRP 2018, 72, 979–984. [Google Scholar] [CrossRef]
- Mukherjee, S.; Baral, M.M.; Chittipaka, V.; Srivastava, S.C.; Pal, S.K. Discussing the Impact of Industry 4.0 in Agriculture Supply Chain. In Lecture Notes in Mechanical Engineering; Springer: Singapore, 2021; pp. 301–307. [Google Scholar]
- Lee, C.L.; Strong, R.; Briers, G.; Murphrey, T.; Rajan, N.; Rampold, S. A Correlational Study of Two U.S. State Extension Professionals’ Behavioral Intentions to Improve Sustainable Food Chains through Precision Farming Practices. Foods 2023, 12, 2208. [Google Scholar] [CrossRef] [PubMed]
- Bertoglio, R.; Corbo, C.; Renga, F.M.; Matteucci, M. The Digital Agricultural Revolution: A Bibliometric Analysis Literature Review. IEEE Access 2021, 9, 134762–134782. [Google Scholar] [CrossRef]
- Klerkx, L.; Rose, D. Dealing with the Game-Changing Technologies of Agriculture 4.0: How Do We Manage Diversity and Responsibility in Food System Transition Pathways? Glob. Food Sec. 2020, 24, 100347. [Google Scholar] [CrossRef]
- Barrett, H.; Rose, D.C. Perceptions of the Fourth Agricultural Revolution: What’s In, What’s Out, and What Consequences are Anticipated? Sociol. Rural. 2020, 62, 162–189. [Google Scholar] [CrossRef]
- Rose, D.C.; Wheeler, R.; Winter, M.; Lobley, M.; Chivers, C.A. Agriculture 4.0: Making It Work for People, Production, and the Planet. Land Use Policy 2021, 100, 104933. [Google Scholar] [CrossRef]
- Creswell, J.W.; Creswell, J.D. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches, 4th ed.; Sage Publications: Thousand Oaks, CA, USA, 2014; ISBN 9781452226095. [Google Scholar]
- Yin, R.K. Case Study Research: Design and Methods, 4th ed.; SAGE Publications: Thousand Oaks, CA, USA, 2009. [Google Scholar]
- Kusiak, A.; Nick Larson, T.; Wang, J. (Ray) Reengineering of Design and Manufacturing Processes. Comput. Ind. Eng. 1994, 26, 521–536. [Google Scholar] [CrossRef]
- Voss, C.; Tsikriktsis, N.; Frohlich, M. Case Research in Operations Management. Int. J. Oper. Prod. Manag. 2002, 22, 195–219. [Google Scholar] [CrossRef]
- Flick, U. An Introduction to Qualitative Research, 4th ed.; SAGE Publications Limited: London, UK, 2009. [Google Scholar]
- Kim, C.-H.; Weston, R.H.; Hodgson, A.; Lee, K.H. The Complementary Use of IDEF and UML Modelling Approaches. Comput. Ind. 2003, 50, 35–56. [Google Scholar] [CrossRef]
- Abt, V.; Vigier, F.; Schneider, M. Enterprise Business Modelling Languages Applied to Farm Enterprise: A Case Study for IDEF0, GRAI Grid, and AMS Languages. In Advances in Modeling Agricultural Systems; Papajorgji, P.J., Ardalos, P.M., Eds.; Springer: Boston, MA, USA; New York, NY, USA, 2009; Volume 25, pp. 167–191. [Google Scholar]
- Venkateswaran, J.; Son, Y.J. Hybrid System Dynamic-Discrete Event Simulation-Based Architecture for Hierarchical Production Planning. Int. J. Prod. Res. 2005, 43, 4397–4429. [Google Scholar] [CrossRef]
- Kamienski, C.; Soininen, J.P.; Taumberger, M.; Dantas, R.; Toscano, A.; Cinotti, T.S.; Maia, R.F.; Neto, A.T. Smart Water Management Platform: IoT-Based Precision Irrigation for Agriculture. Sensors 2019, 19, 276. [Google Scholar] [CrossRef]
- Silva, C.F.; de Moraes, M.A.F.; Molin, P. Adoption and Use of Precision Agriculture Technologies in the Sugarcane Industry of São Paulo State, Brazil. Precis. Agric. 2011, 12, 67–81. [Google Scholar] [CrossRef]
- International Society for Precision Agriculture-ISPA Precision Ag Definition. Available online: https://www.ispag.org/about/definition (accessed on 8 May 2020).
- Groher, T.; Heitkämper, K.; Walter, A.; Liebisch, F.; Umstätter, C. Status Quo of Adoption of Precision Agriculture Enabling Technologies in Swiss Plant Production. Precis. Agric. 2020, 21, 1327–1350. [Google Scholar] [CrossRef]
- Mulla, D.J. Twenty Five Years of Remote Sensing in Precision Agriculture: Key Advances and Remaining Knowledge Gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- Evans, R.G.; LaRue, J.; Stone, K.C.; King, B.A. Adoption of Site-Specific Variable Rate Sprinkler Irrigation Systems. Irrig. Sci. 2013, 31, 871–887. [Google Scholar] [CrossRef]
- Haghverdi, A.; Leib, B.; Washington-Allen, R.; Wright, W.C.; Ghodsi, S.; Grant, T.; Zheng, M.; Vanchiasong, P. Studying Crop Yield Response to Supplemental Irrigation and the Spatial Heterogeneity of Soil Physical Attributes in a Humid Region. Agriculture 2019, 9, 43. [Google Scholar] [CrossRef]
- Souza, S.A.; Rodrigues, L.N. Increased Profitability and Energy Savings Potential with the Use of Precision Irrigation. Agric. Water Manag. 2022, 270, 107730. [Google Scholar] [CrossRef]
- Koech, R.; Langat, P. Improving Irrigation Water Use Efficiency: A Review of Advances, Challenges and Opportunities in the Australian Context. Water 2018, 10, 1771. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56. FAO Rome 1998, 300, D05109. [Google Scholar]
- Pereira, L.S.; Allen, R.G.; Smith, M.; Raes, D. Crop Evapotranspiration Estimation with FAO56: Past and Future. Agric. Water Manag. 2015, 147, 4–20. [Google Scholar] [CrossRef]
- Brouwer, C.; Heibloem, M. Irrigation Water Management: Irrigation Water Needs; Training Manuals on Irrigation; FAO: Rome, Italy, 1986. [Google Scholar]
- Brouwer, C.; Prins, K.; Heibloem, M. Irrigation Water Management: Irrigation Scheduling; Training Manuals on Irrigation; FAO: Rome, Italy, 1989. [Google Scholar]
- Ofori, E.; Griffin, T.; Yeager, E. Duration Analyses of Precision Agriculture Technology Adoption: What’s Influencing Farmers’ Time-to-Adoption Decisions? Agric. Financ. Rev. 2020, 80, 647–664. [Google Scholar] [CrossRef]
- Cutini, M.; Bisaglia, C.; Brambilla, M.; Bragaglio, A.; Pallottino, F.; Assirelli, A.; Romano, E.; Montaghi, A.; Leo, E.; Pezzola, M.; et al. A Co-Simulation Virtual Reality Machinery Simulator for Advanced Precision Agriculture Applications. Agriculture 2023, 13, 1603. [Google Scholar] [CrossRef]
- Batte, T.; Arnholt, M.W. Precision Farming Adoption and Use in Ohio: Case Studies of Six Leading-Edge Adopters. Comput. Electron. Agric. 2003, 38, 125–139. [Google Scholar] [CrossRef]
- Jarvis, D.H.; Wachowiak, M.P.; Walters, D.F.; Kovacs, J.M. Adoption of Web-Based Spatial Tools by Agricultural Producers: Conversations with Seven Northeastern Ontario Farmers Using the Geo Visage Decision Support System. Agriculture 2017, 7, 69. [Google Scholar] [CrossRef]
- Hundal, G.S.; Laux, C.M.; Buckmaster, D.; Sutton, M.J.; Langemeier, M. Exploring Barriers to the Adoption of Internet of Things-Based Precision Agriculture Practices. Agriculture 2023, 13, 163. [Google Scholar] [CrossRef]
- Rupnik, R.; Vavpotič, D.; Jaklič, J.; Kuhar, A.; Plavši´c, M.P.; Žvanut, B.; Rodrigues, G.C. A Reference Standard Process Model for Agriculture to Facilitate Efficient Implementation and Adoption of Precision Agriculture. Agriculture 2021, 11, 1257. [Google Scholar] [CrossRef]
- Moreno, G.; Sunding, D.L. Joint Estimation of Technology Adoption and Land Allocation with Implications for the Design of Conservation Policy. Am. J. Agric. Econ. 2005, 87, 1009–1019. [Google Scholar] [CrossRef]
- da Silveira, F.; Lermen, F.H.; Amaral, F.G. An Overview of Agriculture 4.0 Development: Systematic Review of Descriptions, Technologies, Barriers, Advantages, and Disadvantages. Comput. Electron. Agric. 2021, 189, 106405. [Google Scholar] [CrossRef]
- Symeonaki, E.; Arvanitis, K.; Piromalis, D. A Context-Aware Middleware Cloud Approach for Integrating Precision Farming Facilities into the IoT toward Agriculture 4.0. Appl. Sci. 2020, 10, 813. [Google Scholar] [CrossRef]
- Monteleone, S.; De Moraes, E.A.; de Tondato Faria, B.; Aquino Junior, P.T.; Maia, R.F.; Neto, A.T.; Toscano, A. Exploring the Adoption of Precision Agriculture for Irrigation in the Context of Agriculture 4.0: The Key Role of Internet of Things. Sensors 2020, 20, 7091. [Google Scholar] [CrossRef]
- Erdoğan, M. Assessing Farmers’ Perception to Agriculture 4.0 Technologies: A New Interval-Valued Spherical Fuzzy Sets Based Approach. Int. J. Intell. Syst. 2022, 37, 1751–1801. [Google Scholar] [CrossRef]
- Latino, M.E.; Menegoli, M.; Lazoi, M.; Corallo, A. Voluntary Traceability in Food Supply Chain: A Framework Leading Its Implementation in Agriculture 4.0. Technol. Forecast. Soc. Chang. 2022, 178, 121564. [Google Scholar] [CrossRef]
- Filip, M.; Zoubek, T.; Bumbalek, R.; Cerny, P.; Batista, C.E.; Olsan, P.; Bartos, P.; Kriz, P.; Xiao, M.; Dolan, A.; et al. Advanced Computational Methods for Agriculture Machinery Movement Optimization with Applications in Sugarcane Production. Agriculture 2020, 10, 434. [Google Scholar] [CrossRef]
- Maffezzoli, F.; Ardolino, M.; Bacchetti, A.; Perona, M.; Renga, F. Agriculture 4.0: A Systematic Literature Review on the Paradigm, Technologies and Benefits. Futures 2022, 142, 102998. [Google Scholar] [CrossRef]
- Bayraktar, E.; Tatoglu, E.; Jothishankar, M.C.; Teresa, T. Evolution of Operations Management: Past, Present and Future. Manag. Res. News 2007, 30, 843–871. [Google Scholar] [CrossRef]
- Gunasekaran, A.; Ngai, E.W.T. The Future of Operations Management: An Outlook and Analysis. Int. J. Prod. Econ. 2012, 135, 687–701. [Google Scholar] [CrossRef]
- Recio, B.; Rubio, F.; Criado, J.A. A Decision Support System for Farm Planning Using AgriSupport II. Decis. Support Syst. 2003, 36, 189–203. [Google Scholar] [CrossRef]
- Van Elderen, E. Scheduling Farm Operations. Eur. J. Oper. Res. 1980, 4, 19–23. [Google Scholar] [CrossRef]
- Wijngaard, P.J.M. A Heuristic for Scheduling Problems, Especially for Scheduling Farm Operations. Eur. J. Oper. Res. 1988, 37, 127–135. [Google Scholar] [CrossRef]
- Lowe, T.J.; Preckel, P.V. Decision Technologies for Agribusiness Problems: A Brief Review of Selected Literature and a Call for Research. Manuf. Serv. Oper. Manag. 2004, 6, 201–208. [Google Scholar] [CrossRef]
- Hu, Q.; Zillig, L.M.P.; Lynne, G.D.; Tomkins, A.J.; Waltman, W.J.; Hayes, M.J.; Hubbard, K.G.; Artikov, I.; Hoffmann, S.J.; Wilhite, D.A. Understanding Farmer’s Forecast Use from Their Beliefs, Values, Social Norms, and Perceived Obstacles. J. Appl. Meteorol. Climatol. 2006, 45, 1190–1201. [Google Scholar] [CrossRef]
- Glen, J.J. Mathematical Models in Farm Planning: A Survey. Oper. Res. 1987, 35, 641–666. [Google Scholar] [CrossRef]
- Osaki, M.; Batalha, M.O. Optimization Model of Agricultural Production System in Grain Farms under Risk, in Sorriso, Brazil. Agric. Syst. 2014, 127, 178–188. [Google Scholar] [CrossRef]
- Edwards, G.; Sørensen, C.G.; Bochtis, D.D.; Munkholm, L.J. Optimised Schedules for Sequential Agricultural Operations Using a Tabu Search Method. Comput. Electron. Agric. 2015, 117, 102–113. [Google Scholar] [CrossRef]
- Cid-Garcia, N.M.; Bravo-Lozano, A.G.; Rios-Solis, Y.A. A Crop Planning and Real-Time Irrigation Method Based on Site-Specific Management Zones and Linear Programming. Comput. Electron. Agric. 2014, 107, 20–28. [Google Scholar] [CrossRef]
- Martin, D.; Kranz, W.; Smith, T.; Irmak, S.; Burr, C.; Yoder, R. Center Pivot Irrigation Handbook; University of Nebraska-Lincoln: Lincoln, NE, USA, 2017. [Google Scholar]
- Edwards-Jones, G. Modelling Farmer Decision-Making: Concepts, Progress and Challenges. Anim. Sci. 2006, 82, 783–790. [Google Scholar] [CrossRef]
- Austin, E.J.; Willock, J.; Deary, I.J.; Gibson, G.J.; Dent, J.B.; Edwards-Jones, G.; Morgan, O.; Grieve, R.; Sutherland, A. Empirical Models of Farmer Behaviour Using Psychological, Social and Economic Variables. Part II: Nonlinear and Expert Modelling. Agric. Syst. 1998, 58, 225–241. [Google Scholar] [CrossRef]
- Weersink, A.; Fulton, M. Limits to Profit Maximization as a Guide to Behavior Change. Appl. Econ. Perspect. Policy 2020, 42, 67–79. [Google Scholar] [CrossRef]
- Pannell, D.J.A.; Marshall, G.R.B.; Barr, N.C.; Curtis, A.D.; Vanclay, F.E.; Wilkinson, R.C. Understanding and Promoting Adoption of Conservation Practices by Rural Landholders. Aust. J. Exp. Agric. 2006, 46, 1407–1424. [Google Scholar] [CrossRef]
- de Oca Munguia, O.M.; Llewellyn, R. The Adopters versus the Technology: Which Matters More When Predicting or Explaining Adoption? Appl. Econ. Perspect. Policy 2020, 42, 80–91. [Google Scholar] [CrossRef]
- Davis, F. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef]
- Burton, R.J.F. Reconceptualising the “behavioural Approach” in Agricultural Studies: A Socio-Psychological Perspective. J. Rural. Stud. 2004, 20, 359–371. [Google Scholar] [CrossRef]
- Bianchi, C.G.; de Figueiredo, J.C.B. Characteristics of Brazilian Scientific Research on Diffusion of Innovations in Business Administration. J. Adm. Innov. Rev. Adm. E Inovação-RAI 2017, 14, 311–320. [Google Scholar] [CrossRef]
- Reichardt, M.; Jurgens, C. Adoption and Future Perspective of Precision Farming in Germany: Results of Several Surveys among Different Agricultural Target Groups. Precis. Agric. 2009, 10, 73–94. [Google Scholar] [CrossRef]
- Lamb, D.W.; Frazier, P.; Adams, P. Improving Pathways to Adoption: Putting the Right P’ s in Precision Agriculture. Comput. Electron. Agric. 2008, 61, 4–9. [Google Scholar] [CrossRef]
- Armitage, C.J.; Conner, M. Efficacy of the Theory of Planned Behaviour: A Meta-Analytic Review. Br. J. Soc. Psychol. 2001, 40, 471–499. [Google Scholar] [CrossRef]
- Sok, J.; Borges, J.R.; Schmidt, P.; Ajzen, I. Farmer Behaviour as Reasoned Action: A Critical Review of Research with the Theory of Planned Behaviour. J. Agric. Econ. 2020, 72, 388–412. [Google Scholar] [CrossRef]
- Lanza Castillo, G.M.; Engler, A.; Wollni, M. Planned Behavior and Social Capital: Understanding Farmers’ Behavior toward Pressurized Irrigation Technologies. Agric. Water Manag. 2021, 243, 106524. [Google Scholar] [CrossRef]
- Ajzen, I. Frequently Asked Questions. Available online: https://people.umass.edu/aizen/faq.html (accessed on 6 January 2021).
- Johnson, R.B.; Onwuegbuzie, A.J.; Johnson, R.B.; Onwuegbuzie, A.J. Toward a Definition of Mixed Methods Research. Educ. Res. 2007, 33, 14–26. [Google Scholar] [CrossRef]
- Eisenhardt, K.M. Building Theories from Case Study Research. Acad. Manag. Rev. 1989, 14, 532–550. [Google Scholar] [CrossRef]
- Flynn, B.B.; Sakakibara, S.; Schroeder, R.G.; Bates, K.A.; Flynn, E.J. Empirical Research Methods in Operations Management. J. Oper. Manag. 1990, 9, 250–284. [Google Scholar] [CrossRef]
- Bogner, A.; Littig, B.; Menz, W. Interviewing Experts, 1st ed.; Palgrave MacMillan: London, UK, 2009; ISBN 9788578110796. [Google Scholar]
- Meuser, M.; Nagel, U. The Expert Interview and Changes in Knowledge Production. In Interviewing Experts; Palgrave Macmillan: London, UK, 2009; pp. 17–42. [Google Scholar]
- Jumman, A. Using System Dynamics to Explore the Poor Uptake of Irrigation Scheduling Technologies in a Commercial Sugarcane Community in South Africa. Ph.D. Thesis, University of KwaZulu-Natal, Pietermaritzburg, South Africa, 2016. [Google Scholar]
- Guest, G.; Bunce, A.; Johnson, L. How Many Interviews Are Enough?: An Experiment with Data Saturation and Variability. Field Methods 2006, 18, 59–82. [Google Scholar] [CrossRef]
- Paulhus, D.L. Measurement and Control of Response Bias. In Measures of Personality and Social Psychological Attitudes; Robinson, J.P., Shaver, P.R., Wrightsman, L.S., Eds.; Academic Press, Inc.: New York, NY, USA, 1991; Volume 1, pp. 17–59. [Google Scholar]
- Mason, M. Sample Size and Saturation in PhD Studies Using Qualitative Interviews. Forum Qual. Sozialforschung 2010, 11. [Google Scholar] [CrossRef]
- Miles, M.B.; Huberman, A.M. Qualitative Data Analysis: An Expanded Sourcebook, 2nd ed.; SAGE Publications: Thousand Oaks, CA, USA, 1994. [Google Scholar]
- Mackulak, G.T. High Level Planning and Control: An IDEF0 Analysis for Airframe Manufacture. J. Manuf. Syst. 1984, 3, 121–133. [Google Scholar] [CrossRef]
- Ciurana, J.; Garcia-Romeu, M.L.; Ferrer, I.; Casadesús, M. A Model for Integrating Process Planning and Production Planning and Control in Machining Processes. Robot. Comput. Integr. Manuf. 2008, 24, 532–544. [Google Scholar] [CrossRef]
- Hassan Zadeh, A.; Afshari, H.; Ramazani Khorshid-Doust, R. Integration of Process Planning and Production Planning and Control in Cellular Manufacturing. Prod. Plan. Control 2014, 25, 840–857. [Google Scholar] [CrossRef]
- Patton, M.Q. Qualitative Research & Evaluation Methods, 3rd ed.; Sage Publications: Thousand Oaks, CA, USA, 2002. [Google Scholar]
- Kannan, V.R.; Tan, K.C. Just in Time, Total Quality Management, and Supply Chain Management: Understanding Their Linkages and Impact on Business Performance. Omega 2005, 33, 153–162. [Google Scholar] [CrossRef]
- Reimer, A.P.; Thompson, A.W.; Prokopy, L.S. The Multi-Dimensional Nature of Environmental Attitudes among Farmers in Indiana: Implications for Conservation Adoption. Agric. Hum. Values 2012, 29, 29–40. [Google Scholar] [CrossRef]
- Evans, R.G. Center Pivot Irrigation. Available online: https://www.ars.usda.gov/ (accessed on 23 December 2021).
- García-Vila, M.; Fereres, E. Combining the Simulation Crop Model AquaCrop with an Economic Model for the Optimization of Irrigation Management at Farm Level. Eur. J. Agron. 2012, 36, 21–31. [Google Scholar] [CrossRef]
- Jabro, J.D.; Stevens, W.B.; Iversen, W.M.; Allen, B.L.; Sainju, U.M. Irrigation Scheduling Based on Wireless Sensors Output and Soil-Water Characteristic Curve in Two Soils. Sensors 2020, 20, 1336. [Google Scholar] [CrossRef]
- Savva, A.P.; Frenken, K. Crop Water Requirements and Irrigation Scheduling; Irrigation Manual; Springer: New York, NY, USA, 2002. [Google Scholar]
- Dhungel, R.; Allen, R.G.; Trezza, R.; Robison, C.W. Comparison of Latent Heat Flux Using Aerodynamic Methods and Using the Penman–Monteith Method with Satellite-Based Surface Energy Balance. Remote Sens. 2014, 6, 8844–8877. [Google Scholar] [CrossRef]
- Buchleiter, B.G.W.; Heermann, D.F. Using Computers to Manage Irrigation Systems. J. Water Resour. Plan. Manag. 1986, 112, 354–365. [Google Scholar] [CrossRef]
- Keswani, B.; Mohapatra, A.G.; Keswani, P.; Khanna, A.; Gupta, D.; Rodrigues, J.J.P.C. Improving Weather Dependent Zone Specific Irrigation Control Scheme in IoT and Big Data Enabled Self Driven Precision Agriculture Mechanism. Enterp. Inf. Syst. 2020, 14, 1494–1515. [Google Scholar] [CrossRef]
- Ojha, T.; Misra, S.; Raghuwanshi, N.S. Wireless Sensor Networks for Agriculture: The State-of-the-Art in Practice and Future Challenges. Comput. Electron. Agric. 2015, 118, 66–84. [Google Scholar] [CrossRef]
- Pinedo, M.L. Chapter 1-Introduction. In Scheduling: Theory, Algorithms and Systems; Springer Nature: New York, NY, USA, 2012; pp. 1–676. [Google Scholar]
- Liu, Z.; Xu, Q. An Automatic Irrigation Control System for Soilless Culture of Lettuce. Water 2018, 10, 1692. [Google Scholar] [CrossRef]
- Córcoles, J.; Tarjuelo, J.; Moreno, M.; Ortega, J.; Juan, J. DE Evaluation of Irrigation Systems by Using Benchmarking Techniques. In Proceedings of the XVIIth World Congress of the International Commission of Agricultural and Biosystems Engineering (CIGR), Québec City, QC, Canada, 13 June 2010; Canadian Society for Bioengineering: Ottawa, ON, Canada, 2010. [Google Scholar]
- Dora, M.; Lambrecht, E.; Gellynck, X.; Van Goubergen, D. Lean Manufacturing to Lean Agriculture: It’s about Time. In Proceedings of the 2015 Industrial and Systems Engineering Research Conference, Nashville, TN, USA, 30 May 2015; Cetinkaya, S., Ryan, J.K., Eds.; Institute of Industrial and Systems Engineers (IISE): Peachtree Corners, GA, USA, 2015; pp. 633–642. [Google Scholar]
- Moreno, M.; Medina, D.; Ortega, J.F.; Tarjuelo, J.M. Optimal Design of Center Pivot Systems with Water Supplied from Wells. Agric. Water Manag. 2012, 107, 112–121. [Google Scholar] [CrossRef]
- Thompson, N.M.; Bir, C.; Widmar, D.A.; Mintert, J.R. Farmer Perceptions of Precision Agriculture Technology Benefits. J. Agric. Appl. Econ. 2019, 51, 142–163. [Google Scholar] [CrossRef]
- Walton, J.C.; Roberts, R.K.; Lambert, D.M.; Larson, J.A.; English, B.C.; Larkin, S.L.; Martin, S.W.; Marra, M.C.; Paxton, K.W.; Reeves, J.M. Grid Soil Sampling Adoption and Abandonment in Cotton Production. Precis. Agric. 2010, 11, 135–147. [Google Scholar] [CrossRef]
- Lankford, W.M.; Parsa, F. Outsourcing: A Primer. Manag. Decis. 1999, 37, 310–316. [Google Scholar] [CrossRef]
- Lau, K.H.; Zhang, J. Drivers and Obstacles of Outsourcing Practices in China. Int. J. Phys. Distrib. Logist. Manag. 2006, 36, 776–792. [Google Scholar] [CrossRef]
- Ministry of Education National Curriculum Guidelines for the Undergraduate Course in Agronomic Engineering or Agronomy, Resolution No. 1 of 2 February 2006. Available online: http://portal.mec.gov.br (accessed on 25 April 2023).
- Perera, T.; Liyanage, K. Methodology for Rapid Identification and Collection of Input Data in the Simulation of Manufacturing Systems. Simul. Pract. Theory 2000, 7, 645–656. [Google Scholar] [CrossRef]
- Paustian, M.; Theuvsen, L. Adoption of Precision Agriculture Technologies by German Crop Farmers. Precis. Agric. 2017, 18, 701–716. [Google Scholar] [CrossRef]
- Alam, M.R.; Nakasathien, S.; Molla, M.S.H.; Islam, M.A.; Maniruzzaman, M.; Ali, M.A.; Sarobol, E.; Vichukit, V.; Hassan, M.M.; Dessoky, E.S.; et al. Kernel Water Relations and Kernel Filling Traits in Maize (Zea mays L.) Are Influenced by Water-Deficit Condition in a Tropical Environment. Front. Plant Sci. 2021, 12, 717178. [Google Scholar] [CrossRef] [PubMed]
- Willock, J.; Deary, I.J.; Mcgregor, M.M.; Sutherland, A.; Edwards-Jones, G.; Morgan, O.; Dent, B.; Grieve, R.; Gibson, G.; Austin, E. Farmers’ Attitudes, Objectives, Behaviors, and Personality Traits: The Edinburgh Study of Decision Making on Farms. J. Vocat. Behav. 1999, 54, 5–36. [Google Scholar] [CrossRef]
- Zhai, Z.; Martínez, J.F.; Beltran, V.; Martínez, N.L. Decision Support Systems for Agriculture 4.0: Survey and Challenges. Comput. Electron. Agric. 2020, 170, 105256. [Google Scholar] [CrossRef]
- Fisher, D.K.; Norvell, J.; Sonka, S.; Nelson, M.J. Understanding Technology Adoption through System Dynamics Modeling: Implications for Agribusiness Management. Int. Food Agribus. Manag. Rev. 2000, 3, 281–296. [Google Scholar] [CrossRef]
- Olhager, J.; Rudberg, M.; Wikner, J. Long-Term Capacity Management: Linking the Perspectives from Manufacturing Strategy and Sales and Operations Planning. Int. J. Prod. Econ. 2001, 69, 215–225. [Google Scholar] [CrossRef]
- Thomé, A.M.T.; Scavarda, L.F.; Fernandez, N.S.; Scavarda, A.J. Sales and Operations Planning: A Research Synthesis. Int. J. Prod. Econ. 2012, 138, 1–13. [Google Scholar] [CrossRef]
Theoretically Inspired Perspective: TPB, Production Planning and Control | Deconstruction of the Knowledge | Reconstruction of the Knowledge | |
---|---|---|---|
TPB Constructs | Literature | Interviews—Excerpts with Similar Topics | Categories Operations Management models inspired by the industry, Resources Factors Operations planning and control models, resources (hardware—agricultural equipment, sensors) |
Perceived Behavioral Control (impediments and obstacles, available resources and opportunities) | In agriculture OM is responsible for designing, planning, scheduling, and executing operations involving humans and machines [28]. Production Planning and Control (PPC) is one of the core functions of OM [75]. Agriculture 4.0 allows to improve planning and control in agricultural production [32]. Agriculture 4.0 allows to follow plant and yield development progress through information collected by sensors [33]. | “There are classic industry planning tools the farmer could use, such as PERT, CPM, and ABC costing system”, expert 1. “The adoption of Agriculture 4.0 allows the farmer to optimize the use of resources, the use of water. The adoption of sensors improves irrigation and equipment planning so that irrigation is more effective”, expert 5. |
TPB Constructs | Factors | Categories |
---|---|---|
Attitude | Crop water requirement, water use, energy use, cost of water use, cost of energy use, variable rate water use, production yield, profit, revenue, production cost. | Quantitative performance measures |
Management benefits, improvements in irrigation planning, improvements in irrigation control. | Qualitative performance measures | |
Access to agronomic data, access to operational data. | Access to data | |
Perceived Behavioral Control | Technical training, managerial training, mental model, irrigation management, data-based management, farm management as a business. | Changes for the farmer |
Farm management, Operations Management, workforce qualification. | Changes for the farm | |
Operations planning and control models, collaborative management models. | Operations Management models inspired by the industry | |
Resources (inputs, hardware, people), inputs (water sources, water, energy), hardware (agricultural machinery, agricultural equipment, weather stations, soil probes, drones, satellites, sensors, Irrigation Management System, people (farmers, farm managers, workers, consultants). | Resources | |
Antecedent Factors | Age, educational level, income, experience in agriculture, familiarity with technologies, family of farmers, conservatism, managerial training, absorptive capacity, risk propensity, innovation capacity. | Farmer characteristics |
Farm size—family farm/industrial farm, farm location, crop type, cooperativism, production volume, product profitability. | Farm characteristics | |
Technology type, equipment type, price, complexity. | Technology characteristics |
Categories | Factors | Farm Bahia | MATOPIBA Pilot |
---|---|---|---|
Farmer characteristics | Educational level | Degree | Degree |
Age | 30–35 years | 30–35 years | |
Farm characteristics | Farm size | 9800 hectares | 915 hectares |
Crop types | Soybean and corn | Soybean, corn, sorghum, and cotton | |
Performance measures | Quantitative Qualitative | Used Not adopted | Used Not adopted |
Access to data | Access to agronomic data | Weather station, IMS | Weather station, IMS |
Access to operational data | Contract for access to water, contract for energy supply, IMS | Contract for access to water, contract for energy supply, IMS | |
Changes for the farmer | Technical training | Skilled farm manager | Skilled farm manager |
Managerial training | Access to the market | Access to the market | |
Mental model | Minimization of the cost | Minimization of the cost | |
Cost of water use | Not yet charged | Not yet charged | |
Data-based management | Also experience | Also experience | |
Farm management as a business | Used | Used | |
Changes for the farm | Farm management | Industrial farm | Industrial farm |
Operations Management | Undervalued area, untrained farm manager | Undervalued area, untrained farm manager | |
Qualification of workforce | Low educational level | Low educational level | |
OM models inspired by the industry | Models of planning and control of operations | Undervalued area, untrained farm manager | Undervalued area, untrained farm manager |
Resources | Water source | River | River |
Energy | Electric pumps and motors | Electric pumps and motors | |
Agricultural machinery | 17 center pivots | 7 center pivots, reservoir | |
Weather station | Located at the farm | Located at the farm | |
Communication system | Internet—4G | Internet—4G | |
Soil probe | Not adopted | Research project | |
Satellite | Not adopted | Not adopted | |
Irrigation system management | Used | Used | |
Workforce | 25 agricultural workers | 16 agricultural workers | |
Consultants | Support for planning, control and contract management | Support for contract management |
Components | Factors | Decision Making Level | Future Research |
---|---|---|---|
Model of irrigation OM | Factors related to the decomposition of the “Irrigation planning” and the adoption of sensing technologies | Micro | Future research 1. Study of the relationships between the factors related to the decomposition of the “Irrigation planning” and the adoption of sensing technologies, using simulation techniques. |
Unit of analysis | Farm size—industrial farm, educational level, training, access to data, resources (people—consultants) | Micro | Future research 2. Study of the training model and organizational model of industrial farms for the explored adoption with focus on OM. |
Farm size—family farm | Micro | Future research 3. Study of the relationship between the adoption and the factor “farm size—family farm” in the irrigation OM model. | |
Factors related to other agricultural operations | Micro, medium, macro | Future research 4. Study of the explored adoption with focus on extending the irrigation OM model to other agricultural operations. | |
Constructs of TPB | Factors related to the Subjective Norm construct | Medium | Future research 5. Exploring the relevant factors for the explored adoption, in relation to the farm ecosystem. |
Behavior | Factors related to decision making in irrigation OM | Micro, medium | Future research 6. Study of the explored adoption with focus on decision making in OM of irrigation. |
Factors related to the diffusion of PA in the context of Agriculture 4.0 | Macro | Future research 7. Study of the factors affecting the diffusion of PA in the context of Agriculture 4.0 with focus on farmer behavior and irrigation OM. | |
Determining factors of adoption | Factors related to collaborative management models inspired by the industry | Macro | Future research 8. Study of the application of the irrigation OM model to the management of watersheds and irrigated perimeters, using collaborative management models. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monteleone, S.; Alves de Moraes, E.; Protil, R.M.; Faria, B.T.d.; Maia, R.F. Proposal of a Model of Irrigation Operations Management for Exploring the Factors That Can Affect the Adoption of Precision Agriculture in the Context of Agriculture 4.0. Agriculture 2024, 14, 134. https://doi.org/10.3390/agriculture14010134
Monteleone S, Alves de Moraes E, Protil RM, Faria BTd, Maia RF. Proposal of a Model of Irrigation Operations Management for Exploring the Factors That Can Affect the Adoption of Precision Agriculture in the Context of Agriculture 4.0. Agriculture. 2024; 14(1):134. https://doi.org/10.3390/agriculture14010134
Chicago/Turabian StyleMonteleone, Sergio, Edmilson Alves de Moraes, Roberto Max Protil, Brenno Tondato de Faria, and Rodrigo Filev Maia. 2024. "Proposal of a Model of Irrigation Operations Management for Exploring the Factors That Can Affect the Adoption of Precision Agriculture in the Context of Agriculture 4.0" Agriculture 14, no. 1: 134. https://doi.org/10.3390/agriculture14010134