Optimizing Silage Strategies for Sustainable Livestock Feed: Preserving Retail Food Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Food Waste Processing
2.2. Preparation of Mini-Silos
2.3. Microbial Analyses: Lactobacilli, Yeasts, Molds, and Mycotoxins
2.4. Silage Aerobic Exposure
2.5. Chemical Analyses
2.6. FW Nutritional Quality
2.7. Statistical Analysis
3. Results and Discussion
3.1. FW Characteristics
3.2. Fermentation Characteristics
3.3. Microbial Analysis
3.4. Mycotoxins
3.5. Nutritional Quality of the FW Silage
3.6. Silage Aerobic Stability
3.7. Challenges and Practical Considerations for Converting FW to Silage for Livestock Feed
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CEC. Characterization and Management of Organic Waste in North America—Foundational Report; Commission for Environmental Cooperation: Montreal, QC, Canada, 2017; ISBN 9782897002343. [Google Scholar]
- Froetschel, M.A.; Ross, C.L.; Stewart, R.L.; Azain, M.J.; Michot, P.; Rekaya, R. Nutritional Value of Ensiled Grocery Food Waste for Cattle. J. Anim. Sci. 2014, 92, 5124–5133. [Google Scholar] [CrossRef] [PubMed]
- Bakshi, M.P.S.; Wadhwa, M.; Makkar, H.P.S. Waste to Worth: Vegetable Wastes as Animal Feed. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2016, 11, 12. [Google Scholar] [CrossRef]
- Ominski, K.; McAllister, T.; Stanford, K.; Mengistu, G.; Kebebe, E.G.; Omonijo, F.; Cordeiro, M.; Legesse, G.; Wittenberg, K. Utilization of By-Products and Food Waste in Livestock Production Systems: A Canadian Perspective. Anim. Front. 2021, 11, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Brancoli, P.; Bolton, K.; Eriksson, M. Environmental Impacts of Waste Management and Valorisation Pathways for Surplus Bread in Sweden. Waste Manag. 2020, 117, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Salami, S.A.; Luciano, G.; O’Grady, M.N.; Biondi, L.; Newbold, C.J.; Kerry, J.P.; Priolo, A. Sustainability of Feeding Plant By-Products: A Review of the Implications for Ruminant Meat Production. Anim. Feed Sci. Technol. 2019, 251, 37–55. [Google Scholar] [CrossRef]
- Rajeh, C.; Saoud, I.P.; Kharroubi, S.; Naalbandian, S.; Abiad, M.G. Food Loss and Food Waste Recovery as Animal Feed: A Systematic Review. J. Mater. Cycles Waste Manag. 2021, 23, 1–17. [Google Scholar] [CrossRef]
- Pinotti, L.; Manoni, M.; Fumagalli, F.; Rovere, N.; Luciano, A.; Ottoboni, M.; Ferrari, L.; Cheli, F.; Djuragic, O. Reduce, Reuse, Recycle for Food Waste: A Second Life for Fresh-Cut Leafy Salad Crops in Animal Diets. Animals 2020, 10, 1082. [Google Scholar] [CrossRef]
- Forwood, D.L.; Hooker, K.; Caro, E.; Huo, Y.; Holman, D.B.; Meale, S.J.; Chaves, A.V. Crop Sorghum Ensiled With Unsalable Vegetables Increases Silage Microbial Diversity. Front. Microbiol. 2019, 10, 2599. [Google Scholar] [CrossRef]
- Nair, J.; Turkington, T.K.; Blackshaw, R.; Geddes, C.M.; Lupwayi, N.Z.; Xu, S.; Yang, J.; Yang, H.E.; Wang, Y.; McAllister, T.A. Impact of Field Fungal Contamination of Barley on Ensiling Properties, Nutritional Quality and the Microbiome of Barley Silage. Grass Forage Sci. 2019, 74, 231–243. [Google Scholar] [CrossRef]
- Muck, R.E.; Kung, L.; Collins, M. Silage Production. Forages 2020, 2, 767–787. [Google Scholar] [CrossRef]
- Dou, Z.; Toth, J.D.; Pitta, D.W.; Bender, J.S.; Hennessy, M.L.; Vecchiarelli, B.; Indugu, N.; Chen, T.; Li, Y.; Sherman, R.; et al. Proof of Concept for Developing Novel Feeds for Cattle from Wasted Food and Crop Biomass to Enhance Agri-Food System Efficiency. Sci. Rep. 2022, 12, 13630. [Google Scholar] [CrossRef] [PubMed]
- Forwood, D.L.; Caro, E.; Holman, D.B.; Meale, S.J.; Chaves, A.V. Ensiling Sorghum with Unsalable Pumpkin Improves Feed Digestibility with Minimal Influence on the Rumen Microbial Population Using the Rumen Simulation Technique. Appl. Microbiol. Biotechnol. 2021, 105, 3289–3300. [Google Scholar] [CrossRef] [PubMed]
- Pitt, R.E. Forage Moisture Determination NRAES-59; Northeast Regional Agricultural Engineering Service (NRAES): Ithaca, NY, USA, 1993. [Google Scholar]
- Preston, N.G.; Nair, J.K.; Yu, P.; Christensen, D.A.; McKinnon, J.J.; McAllister, T.A. Ensiling Barley Cultivars Selected for Varied Levels of in Vitro Neutral Detergent Fiber Digestibility in Mini and Bunker Silos to Evaluate Effects on Fermentation. Can. J. Anim. Sci. 2017, 97, 314–327. [Google Scholar] [CrossRef]
- De Santis, B.; Debegnach, F.; Gregori, E.; Russo, S.; Marchegiani, F.; Moracci, G.; Brera, C. Development of a LC-MS/MS Method for the Multi-Mycotoxin Determination in Composite Cereal-Based Samples. Toxins 2017, 9, 169. [Google Scholar] [CrossRef] [PubMed]
- Gandra, J.R.; Oliveira, E.R.; Takiya, C.S.; Goes, R.H.T.B.; Paiva, P.G.; Oliveira, K.M.P.; Gandra, E.R.S.; Orbach, N.D.; Haraki, H.M.C. Chitosan Improves the Chemical Composition, Microbiological Quality, and Aerobic Stability of Sugarcane Silage. Anim. Feed Sci. Technol. 2016, 214, 44–52. [Google Scholar] [CrossRef]
- Teller, R.S.; Schmidt, R.J.; Whitlow, L.W.; Kung, L. Effect of Physical Damage to Ears of Corn before Harvest and Treatment with Various Additives on the Concentration of Mycotoxins, Silage Fermentation, and Aerobic Stability of Corn Silage. J. Dairy Sci. 2012, 95, 1428–1436. [Google Scholar] [CrossRef]
- Somogyi, M.; Nelson, N. A Photometric Adaptation of the Somogyi Method for the Determination of Glucose. J. Biol. Chem. 1944, 153, 375–380. [Google Scholar]
- Association of Official Analytical Chemists AOAC. Official Methods of Analysis, 18th ed.; AOAC: Washington, DC, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A.; Sniffen, C.J.; Devries, J.W.; Mailman, R.W. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Canadian Food Inspection Agency (CFIA). Canada’s Enhanced Feed Ban. 2015. Available online: https://inspection.canada.ca/animal-health/terrestrial-animals/diseases/reportable/prion-diseases/bovine-spongiform-encephalopathy/enhanced-feed (accessed on 13 January 2024).
- Kung, L.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage Review: Interpretation of Chemical, Microbial, and Organoleptic Components of Silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef]
- Nongcula, V.V.; Zhou, L.; Nhundu, K.; Jaja, I.F. Association between the Prevalence of Indigestible Foreign Objects in the Gastrointestinal Tract of Slaughtered Cattle and Body Condition Score. Animals 2017, 7, 80. [Google Scholar] [CrossRef]
- Ramachandraiah, K.; Ameer, K.; Jiang, G.; Hong, G.P. Micro- and Nanoplastic Contamination in Livestock Production: Entry Pathways, Potential Effects and Analytical Challenges. Sci. Total Environ. 2022, 844, 157234. [Google Scholar] [CrossRef]
- Nair, J.; Christensen, D.; Yu, P.; Beattie, A.D.; McAllister, T.; Damiran, D.; Preston, N.; Fuhr, L.; McKinnon, J.J. A Nutritional Evaluation of Common Barley Varieties Grown for Silage by Beef and Dairy Producers in Western Canada. Can. J. Anim. Sci. 2016, 96, 598–608. [Google Scholar] [CrossRef]
- Muck, R.E.; Nadeau, E.M.G.; McAllister, T.A.; Contreras-Govea, F.E.; Santos, M.C.; Kung, L. Silage Review: Recent Advances and Future Uses of Silage Additives. J. Dairy Sci. 2018, 101, 3980–4000. [Google Scholar] [CrossRef]
- Lin, J.; Li, G.; Sun, L.; Wang, S.; Meng, X.; Sun, L.; Yuan, L.; Xu, L. Varieties and Ensiling: Impact on Chemical Composition, Fermentation Quality and Bacterial Community of Alfalfa. Front. Microbiol. 2023, 13, 1091491. [Google Scholar] [CrossRef] [PubMed]
- Bueno, A.V.I.; Lazzari, G.; Jobim, C.C.; Daniel, J.L.P. Ensiling Total Mixed Ration for Ruminants: A Review. Agronomy 2020, 10, 879. [Google Scholar] [CrossRef]
- Ahmadi, F.; Lee, Y.H.; Lee, W.H.; Oh, Y.K.; Park, K.K.; Kwak, W.S. Preservation of Fruit and Vegetable Discards with Sodium Metabisulfite. J. Environ. Manag. 2018, 224, 113–121. [Google Scholar] [CrossRef]
- Dunière, L.; Sindou, J.; Chaucheyras-Durand, F.; Chevallier, I.; Thévenot-Sergentet, D. Silage Processing and Strategies to Prevent Persistence of Undesirable Microorganisms. Anim. Feed Sci. Technol. 2013, 182, 1–15. [Google Scholar] [CrossRef]
- McAllister, T.A.; Dunière, L.; Drouin, P.; Xu, S.; Wang, Y.; Munns, K.; Zaheer, R. Silage Review: Using Molecular Approaches to Define the Microbial Ecology of Silage. J. Dairy Sci. 2018, 101, 4060–4074. [Google Scholar] [CrossRef]
- Bentata, Y. Mycophenolates: The Latest Modern and Potent Immunosuppressive Drugs in Adult Kidney Transplantation: What We Should Know about Them? Artif. Organs 2020, 44, 561–576. [Google Scholar] [CrossRef]
- Gallo, A.; Giuberti, G.; Frisvad, J.C.; Bertuzzi, T.; Nielsen, K.F. Review on Mycotoxin Issues in Ruminants: Occurrence in Forages, Effects of Mycotoxin Ingestion on Health Status and Animal Performance and Practical Strategies to Counteract Their Negative Effects. Toxins 2015, 7, 3057–3111. [Google Scholar] [CrossRef]
- Manni, K.; Rämö, S.; Franco, M.; Rinne, M.; Huuskonen, A. Occurrence of Mycotoxins in Grass and Whole-Crop Cereal Silages—A Farm Survey. Agriculture 2022, 12, 398. [Google Scholar] [CrossRef]
- Ogunade, I.M.; Martinez-Tuppia, C.; Queiroz, O.C.M.; Jiang, Y.; Drouin, P.; Wu, F.; Vyas, D.; Adesogan, A.T. Silage Review: Mycotoxins in Silage: Occurrence, Effects, Prevention, and Mitigation. J. Dairy Sci. 2018, 101, 4034–4059. [Google Scholar] [CrossRef] [PubMed]
- Weiss, W.P.; Wyatt, D.J. Effect of Oil Content and Kernel Processing of Corn Silage on Digestibility and Milk Production by Dairy Cows. J. Dairy Sci. 2000, 83, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Heuzé, V.; Tran, G.; Bastianelli, D.; Archimede, H.; Sauvant, D. Feedipedia: An Open Access International Encyclopedia on Feed Resources for Farm Animals; Wageningen Academic Publishers: Wageningen, The Netherlands, 2013. [Google Scholar]
- Chea, B.; Hout, T.; Mob, S.; Theng, K.; Seng, M. Nutrient Value and Palatability for Cattle on Corn Stover Silage. Int. J. Environ. Rural. Dev. 2015, 6, 103–107. [Google Scholar]
- Kung, L.; Ranjit, N.K. The Effect of Lactobacillus Buchneri and Other Additives on the Fermentation and Aerobic Stability of Barley Silage 1. J. Dairy Sci. 2001, 84, 1149–1155. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, X.F.; Liu, J.B.; Gao, L.J.; Ishii, M.; Igarashi, Y.; Cui, Z.J. Effects of Water-Soluble Carbohydrate Content on Silage Fermentation of Wheat Straw. J. Biosci. Bioeng. 2006, 101, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Nair, J.; Xu, S.; Smiley, B.; Yang, H.E.; McAllister, T.A.; Wang, Y. Effects of Inoculation of Corn Silage with Lactobacillus Spp. or Saccharomyces Cerevisiae Alone or in Combination on Silage Fermentation Characteristics, Nutrient Digestibility, and Growth Performance of Growing Beef Cattle. J. Anim. Sci. 2019, 97, 4974–4986. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Davies, D.R. The Aerobic Stability of Silage: Key Findings and Recent Developments. Grass Forage Sci. 2013, 68, 1–19. [Google Scholar] [CrossRef]
- Hooker, K.; Forwood, D.L.; Caro, E.; Huo, Y.; Holman, D.B.; Chaves, A.V.; Meale, S.J. Microbial Characterization and Fermentative Characteristics of Crop Maize Ensiled with Unsalable Vegetables. Sci. Rep. 2019, 9, 13183. [Google Scholar] [CrossRef]
- Valdez-Arjona, L.P.; Ortega-Cerrilla, M.E.; Fraire-Cordero, S.; Arreola-Enríquez, J.; Crosby-Galván, M.M.; Cruz-Tamayo, A.A.; Ramírez-Mella, M. Physicochemical and Preference Evaluation of Silages from Cucurbita Argyrosperma Huber Residues and Its Effect on the Production and Composition of Milk from Dual-Purpose Cows in Campeche, Mexico: Pilot Study. Sustainability 2020, 12, 7757. [Google Scholar] [CrossRef]
- Forwood, D.L.; Holman, B.W.B.; Hopkins, D.L.; Smyth, H.E.; Hoffman, L.C.; Chaves, A.V.; Meale, S.J. Feeding Unsaleable Carrots to Lambs Increased Performance and Carcass Characteristics While Maintaining Meat Quality. Meat Sci. 2021, 173, 108402. [Google Scholar] [CrossRef] [PubMed]
- Abo-Donia, F.; El-Emam, G.; El-Shora, M.; Fayed, A.; Elsheikh, H.; El-Sawah, T. Utilization of Discarded Dates as a Source of Energy in Silage Fermentation and the Effect of Silage Produced on the Performance of Dairy Cows. J. Anim. Poult. Prod. 2019, 10, 109–114. [Google Scholar] [CrossRef]
- Ferrer, P.; García-Rebollar, P.; Calvet, S.; de Blas, C.; Piquer, O.; Rodríguez, C.A.; Cerisuelo, A. Effects of Orange Pulp Conservation Methods (Dehydrated or Ensiled Sun-Dried) on the Nutritional Value for Finishing Pigs and Implications on Potential Gaseous Emissions from Slurry. Animals 2021, 11, 387. [Google Scholar] [CrossRef] [PubMed]
- Dom, M.T.; Ayalew, W.K.; Glatz, P.C.; Kirkwood, R.N.; Hughes, P.E. Nutrient Utilization in Grower Pigs Fed Boiled, Ensiled or Milled Sweet Potato Roots Blended with a Wheat-Based Protein Concentrate. Anim. Feed Sci. Technol. 2017, 223, 82–89. [Google Scholar] [CrossRef]
- Kumar, A.; Roy, B.; Lakhani, G.P.; Jain, A. Evaluation of Dried Bread Waste as Feedstuff for Growing Crossbred Pigs. Vet. World 2014, 7, 698–701. [Google Scholar] [CrossRef]
- Pinto, R.B.; Oduro-Kwarteng, S.; Hamidu, J.A.; Essandoh, H.M.K. Sensitivity of Nutritional and Microbial Content of Food Wastes to Drying Technologies. Sci. Afr. 2022, 16, e01130. [Google Scholar] [CrossRef]
- Ávila, C.L.S.; Carvalho, B.F. Silage Fermentation—Updates Focusing on the Performance of Micro-Organisms. J. Appl. Microbiol. 2020, 128, 966–984. [Google Scholar] [CrossRef]
- Tokach, M.D.; Menegat, M.B.; Gourley, K.M.; Goodband, R.D. Review: Nutrient Requirements of the Modern High-Producing Lactating Sow, with an Emphasis on Amino Acid Requirements. Animal 2019, 13, 2967–2977. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Swine; Eleventh, R., Ed.; The National Academies Press (NAP): Washington, DC, USA, 2012. [Google Scholar]
- Erickson, P.S.; Kalscheur, K.F. Nutrition and Feeding of Dairy Cattle. In Animal Agriculture: Sustainability, Challenges and Innovations; Elsevier: Amsterdam, The Netherlands, 2019; pp. 157–180. ISBN 9780128170526. [Google Scholar]
Items | Treatments | SEM | p-Value | ||
---|---|---|---|---|---|
C | PD | SD | |||
FV * weight D0, % | 58.95 a | 58.32 a | 61.31 b | 0.21 | <0.0001 |
BBP * weight D0, % | 41.04 a | 41.67 a | 38.7 b | 0.32 | <0.0001 |
DM FV D0, % | 10.47 a | 11.59 a | 15.54 b | 1.15 | 0.047 |
Initial DM of FW * (D0), % | 36.97 a | 38.21 b | 36.88 a | 0.19 | 0.001 |
Final FW DM (D60), % | 35.54 a | 38.07 c | 36.82 b | 0.21 | <0.0001 |
Final weight loss (D60), % | 3.93 | 2.92 | 3.09 | 0.60 | 0.467 |
Initial pH | 5.26 ab | 5.35 b | 5.10 a | 0.05 | 0.032 |
Final pH | 3.85 a | 3.86 a | 4.03 b | 0.02 | 0.002 |
Volatile fatty acids, % of FW silage DM | |||||
Acetic acid | 2.16 a | 1.75 b | 2.22 a | 0.33 | 0.0001 |
Propionic acid | 0.115 a | 0.114 a | 0.100 b | 0.001 | 0.002 |
Butyric acid | 0.013 | 0.009 | 0.010 | 0.001 | 0.10 |
Organic acid concentration, % of silage DM | |||||
Lactic acid | 7.50 a | 8.40 b | 7.51 a | 0.10 | 0.001 |
Succinic acid | 0.083 | 0.095 | 0.866 | 0.001 | 0.003 |
NH3, % of crude protein | 4.96 a | 4.90 a | 4.15 b | 0.03 | <0.0001 |
Microbial analysis, log10 CFU g−1 DM | |||||
Lactobacillus spp., D0 | 7.2 a | 7.8 b | 7.7 b | 0.06 | <0.0001 |
Lactobacillus spp. D60 | 5.1 a | 5.3 b | 5.6 c | 0.06 | <0.0001 |
Molds and yeasts, D0 | 5.6 a | 7.2 c | 6.6 b | 0.02 | <0.0001 |
Molds and yeasts, D60 | nd | nd | nd | nd | nd |
Item | Treatment | SEM | p-Value | ||
---|---|---|---|---|---|
C | PD | SD | |||
Chemical composition, % DM | |||||
Crude protein | 15.4 | 15.2 | 15.7 | 0.49 | 0.82 |
ADIN | 0.49 | 0.47 | 0.61 | 0.23 | 0.91 |
ADF | 4.56 a | 4.79 a | 6.32 b | 0.14 | 0.01 |
NDF | 6.21 | 6.16 | 7.63 | 0.32 | 0.08 |
WSC | 1.20 a | 0.95 a | 1.53 b | 0.08 | <0.0001 |
Crude fat | 6.02 | 6.28 | 5.97 | 2.44 | 1.0 |
Ash | 4.56 a | 4.79 a | 6.32 b | 0.14 | 0.01 |
Macrominerals, % DM | |||||
Potassium | 0.92 a | 0.96 b | 1.12c | 0.02 | 0.02 |
Phosphorous | 0.250 a | 0.245 a | 0.270 b | 0.002 | 0.02 |
Calcium | 0.190 a | 0.195 a | 0.230 b | 0.002 | 0.01 |
Magnesium | 0.10 | 0.10 | 0.11 | 0.01 | 0.44 |
Sodium | 0.52 | 0.50 | 0.48 | 0.01 | 0.26 |
Sulfur | 0.14 | 0.18 | 0.16 | 0.02 | 0.45 |
Trace elements, mg/kg DM | |||||
Copper | 9.5 | 5.4 | 7.7 | 2.4 | 0.54 |
Manganese | 18.1 | 17.7 | 19.4 | 0.40 | 0.10 |
Zinc | 25.3 | 25.0 | 25.4 | 1.0 | 0.94 |
Iron | 97.5 ab | 82.2 a | 107.5 b | 3.5 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia Rodriguez, V.; Vandestroet, L.; Abeysekara, V.C.; Ominski, K.; Bumunang, E.W.; McAllister, T.; Terry, S.; Miranda-Romero, L.A.; Stanford, K. Optimizing Silage Strategies for Sustainable Livestock Feed: Preserving Retail Food Waste. Agriculture 2024, 14, 122. https://doi.org/10.3390/agriculture14010122
Garcia Rodriguez V, Vandestroet L, Abeysekara VC, Ominski K, Bumunang EW, McAllister T, Terry S, Miranda-Romero LA, Stanford K. Optimizing Silage Strategies for Sustainable Livestock Feed: Preserving Retail Food Waste. Agriculture. 2024; 14(1):122. https://doi.org/10.3390/agriculture14010122
Chicago/Turabian StyleGarcia Rodriguez, Vicky, Layton Vandestroet, Vinura C. Abeysekara, Kim Ominski, Emmanuel W. Bumunang, Tim McAllister, Stephanie Terry, Luis Alberto Miranda-Romero, and Kim Stanford. 2024. "Optimizing Silage Strategies for Sustainable Livestock Feed: Preserving Retail Food Waste" Agriculture 14, no. 1: 122. https://doi.org/10.3390/agriculture14010122
APA StyleGarcia Rodriguez, V., Vandestroet, L., Abeysekara, V. C., Ominski, K., Bumunang, E. W., McAllister, T., Terry, S., Miranda-Romero, L. A., & Stanford, K. (2024). Optimizing Silage Strategies for Sustainable Livestock Feed: Preserving Retail Food Waste. Agriculture, 14(1), 122. https://doi.org/10.3390/agriculture14010122