The Use of Chosen Physicochemical Indicators for Estimation of Pork Meat Quality
Abstract
1. Introduction
2. Material and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Cummins, A.M.; Olynk Widmar, N.J.; Croney, C.C.; Fulton, J.R. Understanding consumer pork attribute preferences. Theor. Econ. Lett. 2016, 6, 166–177. [Google Scholar] [CrossRef]
- Liu, C.X.; Xiao, Y.P.; Hu, D.W.; Liu, J.X.; Chen, W.; Ren, D.X. The safety evaluation of chilled pork from online platform in China. Food Control 2019, 96, 244–250. [Google Scholar] [CrossRef]
- OECD/FAO. OECD-FAO Agricultural Outlook 2022–2031; OECD Publishing: Paris, France, 2022. [Google Scholar]
- Wrona, M.; Lours, J.; Salafranca, J.; Joly, C.; Nerín, C. Innovative Surface-Enhanced Raman Spectroscopy Method as a Fast Tool to Assess the Oxidation of Lipids in Ground Pork. Appl. Sci. 2023, 13, 5533. [Google Scholar] [CrossRef]
- Terlouw, C.; Picard, B.; Deis, V.; Berri, C.; Hocquette, J.F.; Lebret, B.; Lefèvre, F.; Hamill, R.; Gagaoua, M. Understanding the Determination of Meat Quality Using Biochemical Characteristics of the Muscle: Stress at Slaughter and Other Missing Keys. Foods 2021, 10, 84. [Google Scholar] [CrossRef] [PubMed]
- Grunert, K.G.; Bredahl, L.; Bruns, K. Consumer perception of meat quality and implications for product development in the meat sector—A review. Meat Sci. 2004, 66, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Nychas, G.J.E.; Skandamis, P.N.; Tassou, C.C.; Koutsoumanis, K.P. Meat spoilage during distribution. Meat Sci. 2008, 78, 77–89. [Google Scholar] [CrossRef]
- Choe, J.H.; Choi, Y.M.; Lee, S.H.; Jeong, D.W.; Kim, B.C. Availability of Blood Glucose as the Indicator for Pork Quality. In Proceedings of the 55th International Congress of Meat Science and Technology (ICoMST), Copenhagen, Denmark, 16–21 August 2009; P. 1.34. pp. 148–151. [Google Scholar]
- Cannata, S.; Engle, T.E.; Moeller, S.J.; Zerby, H.N.; Radunz, A.E.; Green, M.D.; Bass, P.D.; Belk, K.E. Effect of visual marbling on sensory properties and quality traits of pork loin. Meat Sci. 2010, 85, 428–434. [Google Scholar] [CrossRef]
- Kim, J.M.; Kim, K.S.; Ko, K.B.; Ryu, Y.C. Estimation of pork quality in live pigs using biopsied muscle fibre number composition. Meat Sci. 2018, 137, 130–133. [Google Scholar] [CrossRef]
- Lebret, B.; Čandek—Potokar, M. Review: Pork quality attributes from farm to fork. Part I. Carcass and fresh meat. Animal 2022, 16, 100402. [Google Scholar] [CrossRef]
- Baker, M.T.; Lu, P.; Parrella, J.A.; Leggette, H.R. Consumer Acceptance toward Functional Foods: A Scoping Review. Int. J. Environ. Res. Public Health 2022, 19, 1217. [Google Scholar] [CrossRef]
- Mason, A.; Abdullah, B.; Muradov, M.; Korostynska, O.; Al-Shamma’a, A.; Bjarnadottir, S.G.; Lunde, K.; Alvseike, O. Theoretical Basis and Application for Measuring Pork Loin Drip Loss Using Microwave Spectroscopy. Sensors 2016, 16, 182. [Google Scholar] [CrossRef]
- Honikel, K.O.; Fischer, H. A rapid method for the detection of PSE and DFD porcine muscles. J. Food Sci. 1977, 42, 1633–1636. [Google Scholar] [CrossRef]
- Swatland, H.J. Postmortem changes in electrical capacitance and resistivity of pork. J. Anim. Sci. 1980, 51, 1108–1112. [Google Scholar] [CrossRef]
- Swatland, H.J. On-line evaluation of meat quality: State of the art. In Proceedings of the 49th International Congress of Meat Science and Technology, São Paulo, Brazil, 31 August–5 September 2003; pp. 102–111. [Google Scholar]
- Joo, S.T. Pork Quality: Identification, Measurement and Explanation of Factors Associated with Color and Water—Holding Capacity of Porcine Muscle. Ph.D. Thesis, Korea University, Seoul, Republic of Korea, 1995. [Google Scholar]
- Monin, G. Recent methods for predicting quality of whole meat. In Proceedings of the 44th International Congress of Meat Science and Technology, Barcelona, Spain, 30 August–4 September 1998; L5. pp. 56–65. [Google Scholar]
- Przybylski, W. Wykorzystanie potencjału glikolitycznego mięśnia Longissimus dorsi w badaniach nad uwarunkowaniem wybranych cech jakości mięsa wieprzowego. In Rozprawa Habilitacyjna; SGGW: Warszawa, Poland, 2002. [Google Scholar]
- Koćwin-Podsiadła, M.; Krzęcio, E.; Pospiech, E.; Łyczyński, A.; Antosik, K.; Grześ, B.; Zybert, A.; Sieczkowska, H. Selection of pork meat quality traits. Estimation of culinary and technological quality on the basis of measurements after slaughter. Fleischwirtschaft 2005, 2, 21–23. [Google Scholar]
- Krzęcio, E. Zmienność, Uwarunkowania i Diagnostyka Wycieku Naturalnego z Mięsa Wieprzowego; Wydawnictwo Akademii Podlaskiej: Siedlce, Poland, 2009. [Google Scholar]
- Antosik, K. Uwarunkowania Genetyczne Zawartości Tłuszczu Śródmięśniowego Oraz Jego Przydatność w Diagnozowaniu Jakości Mięsa Wieprzowego; Wydawnictwo Uniwersytetu Przyrodniczo-Humanistycznego: Siedlce, Poland, 2014. [Google Scholar]
- Aliani, M.; Farmer, L.J.; Kennedy, J.T.; Moss, B.W.; Gordon, A. Post-slaughter changes in ATP metabolites, reducing and phosphorylated sugars in chicken meat. Meat Sci. 2013, 94, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Matarneh, S.K.; Gerrard, D.; Tan, J. Contributions of energy pathways to ATP production and pH variations in postmortem muscles. Meat Sci. 2022, 189, 108828. [Google Scholar] [CrossRef]
- Zell, M.; Lyng, J.G.; Cronin, D.A.; Morgan, D.J. Ohmic heating of meats: Electrical conductivities of whole meats and processed meat ingredients. Meat Sci. 2009, 83, 563–570. [Google Scholar] [CrossRef]
- Gaitan-Jurado, A.J.; Ortiz-Somovilla, V.; Espana-Espana, F.; Perez-Aparicio, J.; De Pedro-Sanz, E.J. Quantitative analysis of pork dry-cured sausages to quality control by NIR spectroscopy. Meat Sci. 2008, 78, 391–399. [Google Scholar] [CrossRef]
- Collell, C.; Gou, P.; Picouet, P.; Arnau, J.; Comaposada, J. Feasibility of near-infrared spectroscopy to predict aw and moisture and NaCl contents of fermented pork sausages. Meat Sci. 2010, 85, 325–330. [Google Scholar] [CrossRef]
- Barbin, D.F.; Masry, G.; Sun, D.; Allen, P. Non-destructive determination of chemical composition in intact and minced pork using near-infrared hyperspectral imaging. Food Chem. 2013, 138, 1162–1171. [Google Scholar] [CrossRef]
- Prieto, N.; Pawluczyk, O.; Dugan, M.E.R.; Aalhu, J.R. A Review of the Principles and Applications of Near-Infrared Spectroscopy to Characterize Meat, Fat, and Meat Products. Appl. Spectrosc. 2017, 71, 1403–1426. [Google Scholar] [CrossRef]
- Fortin, A.; Tong, A.K.W.; Robertson, W.M.; Zawadski, S.M.; Landry, S.J.; Robinson, D.J. A novel approach to grading pork carcasses: Computer vision and ultrasound. Meat Sci. 2003, 63, 451–462. [Google Scholar] [CrossRef]
- O’Sullivan, M.G.; Byrne, D.V.; Martens, H.; Gidskehaug, L.H.; Andersen, H.J.; Martens, M. Evaluation of pork colour: Prediction of visual sensory quality of meat from instrumental and computer vision methods of colour analysis. Meat Sci. 2003, 65, 909–918. [Google Scholar] [CrossRef] [PubMed]
- Dasiewicz, K.; Mierzwińska, I. The use of a computer digital analysis for evaluating the quality of pork trimmings. Acta Sci. Pol. 2006, 5, 85–91. [Google Scholar]
- Sun, X.; Young, J.; Liu, J.H.; Newman, D. Prediction of pork loin quality using online computer vision system and artificial intelligence model. Meat Sci. 2018, 140, 72–77. [Google Scholar] [CrossRef]
- Santos, C.C.; Zhao, J.; Dong, X.; Lonergan, S.M.; Huff-Lonergan, E.; Outhouse, A.; Carlson, K.B.; Prusa, K.J.; Fedler, C.A.; Yu, C.; et al. Predicting aged pork quality using a portable Raman device. Meat Sci. 2018, 145, 79–85. [Google Scholar] [CrossRef]
- Koćwin-Podsiadła, M.; Krzęcio, E.; Antosik, K.; Zybert, A.; Włodowiec, P. Ocena przydatności aparatów Ultra-FOM 100, Ultra-FOM 300 i CGM do szacowania mięsności tusz wieprzowych na podstawie uzyskanej mięsności wg metodyki SKURTCH. Trzoda Chlewna 2000, 38, 56–62. [Google Scholar]
- Grau, R.; Hamm, R. Eine einfache Methode zur Bestimmung der Wasserbindung in Fleisch. Fleischwirtschaft 1952, 4, 295–297. [Google Scholar]
- Pohja, N.S.; Ninivaara, F.P. Die Bestimmung der Wasserbindung des Fleisches mittels der Konsandrückmethods. Fleischwirtschaft 1957, 9, 193–195. [Google Scholar]
- Prange, H.; Jugert, L.; Schamer, E. Untersuchungen zur Muskel fleischqualität beim Schwein. Arch. Exp. Vet. Med. Leipzig 1997, 31, 235–248. [Google Scholar]
- Naveau, J.; Pommeret, P.; Lechaux, P. Proposition d’une methode de mesure du rendement technologique: La “methode Napole”. Techni-Porc 1985, 8, 7–13. [Google Scholar]
- Koćwin-Podsiadła, M.; Antosik, K.; Krzęcio, E.; Zybert, A.; Sieczkowska, H.; Grześ, B.; Łyczyński, A.; Pospiech, E. Effect of carcass muscling on culinary and technological pork properties in fatteners of three genetic groups. Anim. Sci. Pap. Rep. 2004, 22, 451–458. [Google Scholar]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 2000. [Google Scholar]
- Dalrymple, R.H.; Hamm, R.A. Method for extracting of glycogen and metabolites from a single muscle sample. J. Anim. Sci. 1973, 8, 439–444. [Google Scholar]
- Bergmeyer, H.U. Methods of Enzyme Tic Analysis; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Monin, G.; Sellier, P. Pork flow technological quality with a normal rate of muscle pH fall in the immediate post mortem period: The case of the Hampshire breed. Meat Sci. 1985, 13, 49–63. [Google Scholar] [CrossRef]
- Barbosa, L.; Lopes, P.S.; Regazzi, A.J.; Guimarães, S.E.F.; Torres, R.A. Estudo da associação entre caracteristicas de desempenho e de carcaça de suinos por meio de correlação canônica. Rev. Bras. Zootec. 2005, 34, 2218–2224. [Google Scholar] [CrossRef][Green Version]
- Ventura, H.T.; Lopes, P.S.; Peloso, J.V.; Guimarães, S.E.F.; Carneiro, A.P.S.; Carneiro, P.L.S. A canonical correlation analysis of the association between carcass and ham traits in pigs used to produce dry–cured ham. Genet. Mol. Biol. 2011, 34, 451–455. [Google Scholar] [CrossRef]
- Huff-Lonergan, E.; Lonergan, S.M. Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Sci. 2005, 71, 194–204. [Google Scholar] [CrossRef]
- Jo, K.; Lee, S.; Jeong, H.G.; Lee, D.H.; Yoon, S.; Chung, Y.; Jung, S. Utilization of Electrical Conductivity to Improve Prediction Accuracy of Cooking Loss of Pork Loin. Food Sci. Anim. Resour. 2023, 43, 113–123. [Google Scholar] [CrossRef]
- Larzul, C.; Le Roy, P.; Monin, G.; Sellier, P. Variabilité génétique du potentiel glycolytique du muscle chez le porc. INRA Prod. Anim. 1998, 11, 183–197. [Google Scholar] [CrossRef]
- Larzul, C.; Le Roy, P.; Sellier, P.; Jacquet, B.; Gogue, J.; Talamant, A.; Vernin, P.; Monin, G. Le potentiel glycolytique du muscle mesuré sur le porc vivant: Un nouvea critére de sélection pour la qualité de la viande? J. Rech. Porc. France 1998, 30, 81–85. [Google Scholar]
- Davoli, R.; Vegni, J.; Cesarani, A.; Dimauro, C.; Zappaterra, M.; Zambonelli, P. Identification of differentially expressed genes in early-postmortem Semimembranosus muscle of Italian Large White heavy pigs divergent for glycolytic potential. Meat Sci. 2022, 187, 108754. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, Z.; Chao, Z.; Li, B.; Li, R.; Jiang, A.; Kim, K.H.; Liu, H. Transcriptome analysis reveals the genetic basis of skeletal muscle glycolytic potential based on a pig model. Gene 2021, 766, 145157. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, K.M.; Scheffler, T.L.; Gerrard, D.E. Chapter 5—The conversion of muscle to meat. In Lawrie’s Meat Science, 9th ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Toldrá, F., Ed.; Woodhead Publishing: Sawston, UK, 2023; pp. 159–194. ISBN 9780323854085. [Google Scholar]
- Fernandez, X.; Gueblez, R. Relationship between lactate and glycogen contents and pH values in post mortem longissimus muscle of the pig. In Proceedings of the 38th International Congress of Meat Science and Technology, Clermont-Ferrend, France, 23–28 August 1992; pp. 355–358. [Google Scholar]
- Lundström, K.; Andersson, A.; Hansson, I. Effect of RN gene on technological and sensory meat quality in crossbred pigs with Hampshire as terminal sire. Meat Sci. 1996, 42, 145–153. [Google Scholar] [CrossRef]
- Zybert, A.; Sieczkowska, H.; Antosik, K.; Krzęcio-Nieczyporuk, E.; Adamczyk, G.; Koćwin -Podsiadła, M. Relationship between glycolytic potential and meat quality of Duroc pigs with consideration of carcass chilling system. Ann. Animal Sci. 2013, 13, 645–654. [Google Scholar] [CrossRef][Green Version]
- Milan, D.; Jeon, J.T.; Looft, C.; Amarger, V.; Robic, A.; Thelander, M.; Rogel-Gaillard, C.; Paul, S.; Iannuccelli, N.; Rask, L.; et al. A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science 2000, 288, 1248–1251. [Google Scholar] [CrossRef]
- Scheffler, T.L.; Scheffler, J.M.; Kasten, S.C.; Sosnicki, A.A.; Gerrard, D.E. High glycolytic potential does not predict low ultimate pH in pork. Meat Sci. 2013, 95, 85–91. [Google Scholar] [CrossRef]
- Tarczyński, K.; Sieczkowska, H.; Zybert, A.; Krzęcio-Nieczyporuk, E.; Antosik, K. pH measured 24 hours post mortem should not be regarded as ultimate pH in pork meat quality evaluation. S. Afr. J. Anim. Sci. 2018, 48, 1009–1016. [Google Scholar] [CrossRef]
- Lana, A.; Zolla, L. Proteolysis in meat tenderization from the point of view of each single protein: A proteomic perspective. J. Proteomics 2016, 147, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Le Roy, P.; Przybylski, W.; Burlot, T.; Bazin, C.; Lagant, H.; Monin, G. Etude des relations entre le potentiel glycolytique du muscle et les caractéres de production dans les lignees Laconie et Penshire. J. Rech. Porc. France 1994, 26, 311–314. [Google Scholar]
- Bai, X.; Hou, J.; Wang, L.; Wang, M.; Wang, X.; Wu, C.; Yu, L.; Yang, J.; Leng, Y. Electrical impedance analysis of pork tissues during storage. Food Meas. 2018, 12, 164–172. [Google Scholar] [CrossRef]
- Koćwin–Podsiadła, M.; Krzęcio, E.; Przybylski, W. Pork quality and the methods of its evaluation. Pol. J. Food Nutr. Sci. 2006, 56, 241–248. [Google Scholar]
Parameter | Value |
---|---|
Number of animals (n) | 495 |
gilts | 235 |
castrates | 260 |
Hot carcass weight (kg) | 84.98 ± 7.45 |
Carcass meatiness by FOM (%) | 56.22 ± 4.04 |
Abbreviation | Explanation |
---|---|
ATP | adenosine triphosphate |
CR | canonical correlation |
DL | drip loss |
EC | electrical conductivity |
GP | glycolytic potential |
IMF | intramuscular fat content |
IMP | inosine-5′-monophosphate |
L* | lightness of meat color |
MT | meat tenderness |
R1 | IMP/ATP ratio |
RC2 | composed determination coefficients |
WHC | water holding capacity |
TY | technological yield |
(y) | (x) | ||||||||
---|---|---|---|---|---|---|---|---|---|
pH1 | pH24 | R1 | L* | EC2 (mS cm−1) | GP (μmol g−1) | Glycogen (μmol g−1) | Lactate (μmol g−1) | ||
pH1 | rxy bxy | - | −0.03 | −0.46 ** −0.09 | −0.12 ** −0.01 | −0.30 ** −0.05 | 0.08 | 0.31 ** 0.04 | −0.48 ** −0.01 |
pH24 | rxy bxy | −0.03 | - | −0.01 | −0.22 ** −0.02 | −0.09 | −0.26 ** −0.01 | −0.28 ** −0.02 | 0.08 |
R1 | rxy bxy | −0.46 ** −0.15 | −0.01 | - | 0.19 ** 0.01 | 0.34 ** 0.02 | 0.04 | −0.24 ** −0.01 | 0.61 ** 0.03 |
L* | rxy bxy | −0.12 ** −1.98 | −0.22 ** −6.12 | 0.19 ** 9.67 | - | 0.00 | 0.27 ** 0.03 | 0.16 ** 0.04 | 0.23 ** 0.06 |
EC2 (mS cm−1) | rxy bxy | −0.30 ** −1.78 | −0.09 | 0.34 ** 6.19 | 0.00 | - | −0.05 | −0.13 ** −0.01 | 0.18 ** 0.02 |
GP (μmol g−1) | rxy bxy | 0.08 | −0.26 ** −9.18 | 0.04 | 0.27 ** 2.25 | −0.05 | - | 0.88 ** 1.71 | 0.19 ** 0.39 |
glycogen (μmol g−1) | rxy bxy | 0.31 ** 2.85 | −0.28 ** −3.97 | −0.24 ** −3.81 | 0.16 ** 0.68 | −0.13 ** −1.67 | 0.88 ** 0.45 | - | −0.29 ** −0.31 |
lactate (μmol g−1) | rxy bxy | −0.48 ** −3.29 | 0.08 | 0.61 ** 2.56 | 0.23 ** 0.91 | 0.18 ** 2.05 | 0.19 ** 0.09 | −0.29 ** −0.27 | - |
protein content (%) | rxy bxy | −0.15 ** −0.47 | −0.01 | 0.16 ** 1.74 | 0.08 | −0.05 | 0.13 * 0.05 | 0.04 | 0.18 ** 0.09 |
IMF (%) | rxy bxy | −0.02 | 0.11 * 0.61 | −0.03 | 0.07 | −0.12 * −0.22 | 0.00 | 0.01 | −0.02 |
WHC (cm2) | rxy bxy | −0.01 | −0.02 | 0.15 ** 3.47 | 0.21 ** 0.47 | 0.13 ** 0.18 | 0.14 ** 2.62 | 0.05 | 0.18 ** 1.58 |
TY (%) | rxy bxy | −0.08 | 0.30 ** 12.75 | −0.11 * −8.69 | −0.14 ** −0.21 | −0.13 ** −0.56 | −0.14 ** −0.76 | −0.14 ** −0.38 | −0.00 |
DL (%) | rxy bxy | −0.14 ** −1.96 | −0.35 ** −8.02 | 0.11 * 4.65 | 0.26 ** 0.32 | 0.21 ** 0.51 | 0.22 ** 2.30 | 0.13 ** 0.67 | 0.19 ** 0.92 |
MT (N cm−2) | rxy bxy | −0.33 ** −16.26 | −0.15 | 0.52 ** 28.24 | 0.17 * 0.53 | 0.43 ** 2.99 | 0.16 * 0.38 | −0.06 | 0.41 ** 0.32 |
Correlated Sets | Independent (Determining) Variables’ Sets | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
GP (X1) | Glycogen (X2) | Lactate (X3) | GP, Glycogen (X4) | GP, Lactate (X5) | GP, Glycogen Lactate (X6) | pH1, R1 (X7) | pH1, pH24, (X8) | pH1, pH24, L* (X9) | EC2, pH24 (X10) | ||
Dependent variables sets: | |||||||||||
(Y1)
| CR RC2 | 0.49 ** 0.24 | 0.51 ** 0.26 | 0.67 ** 0.45 | 0.77 ** 0.59 | 0.77 ** 0.59 | 0.76 ** 0.58 | - | - | 0.72 ** 0.51 | |
(Y2) set (Y1) and:
| CR RC2 | 0.57 ** 0.32 | 0.59 ** 0.35 | 0.68 ** 0.46 | 0.79 ** 0.62 | 0.79 ** 0.62 | 0.79 ** 0.62 | - | - | - | |
(Y3)
| CR RC2 | 0.26 NS | 0.10 NS | 0.41 ** 0.17 | 0.44 ** 0.19 | 0.44 ** 0.19 | 0.44 ** 0.19 | 0.46 ** 0.21 | 0.53 ** 0.28 | 0.54 ** 0.29 | 0.58 ** 0.34 |
(Y4)
| CR RC2 | 0.38 * 0.14 | 0.19 NS | 0.46 ** 0.21 | 0.52 ** 0.27 | 0.52 * 0.27 | 0.52 ** 0.27 | 0.48 ** 0.23 | 0.59 ** 0.35 | 0.60 ** 0.36 | 0.61 ** 0.37 |
(Y5)
| CR RC2 | 0.14 NS | 0.05 NS | 0.16 NS | 0.19 NS | 0.19 NS | 0.25 NS | 0.29 * 0.08 | 0.51 ** 0.26 | 0.51 ** 0.26 | 0.52 ** 0.27 |
(Y6)
| CR RC2 | 0.41 ** 0.17 | 0.25 NS | 0.30 * 0.09 | 0.46 ** 0.21 | 0.46 ** 0.21 | 0.47 ** 0.22 | 0.31 ** 0.10 | 0.55 ** 0.30 | - | 0.57 ** 0.32 |
(Y7)
| CR RC2 | 0.14 * 0.02 | 0.31 ** 0.10 | 0.64 ** 0.41 | 0.58 ** 0.34 | 0.59 ** 0.35 | 0.59 ** 0.35 | - | - | - | 0.67 ** 0.45 |
(Y8)
| CR RC2 | 0.34 ** 0.11 | 0.52 ** 0.27 | 0.58 ** 0.34 | 0.50 ** 0.25 | 0.49 ** 0.24 | 0.50 ** 0.25 | - | - | - | - |
(Y9)
| CR RC2 | 0.39 ** 0.15 | 0.53 ** 0.28 | 0.64 ** 0.41 | 0.50 ** 0.25 | 0.50 ** 0.25 | 0.50 ** 0.25 | - | - | - | - |
(Y10)
| CR RC2 | 0.33 ** 0.11 | 0.48 ** 0.23 | 0.39 ** 0.15 | 0.35 ** 0.12 | 0.35 ** 0.12 | 0.35 ** 0.12 | 0.67 ** 0.45 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antosik, K.; Krzęcio-Nieczyporuk, E.; Sieczkowska, H.; Zybert, A.; Tarczyński, K. The Use of Chosen Physicochemical Indicators for Estimation of Pork Meat Quality. Agriculture 2023, 13, 1670. https://doi.org/10.3390/agriculture13091670
Antosik K, Krzęcio-Nieczyporuk E, Sieczkowska H, Zybert A, Tarczyński K. The Use of Chosen Physicochemical Indicators for Estimation of Pork Meat Quality. Agriculture. 2023; 13(9):1670. https://doi.org/10.3390/agriculture13091670
Chicago/Turabian StyleAntosik, Katarzyna, Elżbieta Krzęcio-Nieczyporuk, Halina Sieczkowska, Andrzej Zybert, and Krystian Tarczyński. 2023. "The Use of Chosen Physicochemical Indicators for Estimation of Pork Meat Quality" Agriculture 13, no. 9: 1670. https://doi.org/10.3390/agriculture13091670
APA StyleAntosik, K., Krzęcio-Nieczyporuk, E., Sieczkowska, H., Zybert, A., & Tarczyński, K. (2023). The Use of Chosen Physicochemical Indicators for Estimation of Pork Meat Quality. Agriculture, 13(9), 1670. https://doi.org/10.3390/agriculture13091670