Study of the Group Vibrational Detachment Characteristics of Litchi (Litchi chinensis Sonn) Clusters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Vibrational Detachment Tests
2.3. Determination of the Detachment Time
2.4. The Fruit-to-Shaker Distance and the Cluster Index
2.5. Inside Fruit and Outside Fruit
2.6. The Horizontal Throw Distance of Litchi Fruit
3. Results and Discussion
3.1. The Influence of the Vibrational Parameters on the Detachment and Impact Characteristics
3.1.1. The Fruit Detachment Percentage
3.1.2. The Fruit Detachment Time
3.1.3. The Fruit-to-Fruit Impact
3.2. The Influence of the Shaking Position and Fruit Mass on the Detachment and Impact Characteristics
3.2.1. The Relationship between the Shaking Position and Detachment Time
3.2.2. The Fruit-to-Shaker Impact
3.3. The Horizontal Throw Distance of the Fruit
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Su, Z.; Yang, S.; Chen, J. Analysis of the production situation for litchi in main planting areas of China in 2020. J. South. Agric. 2020, 51, 1598–1605. (In Chinese) [Google Scholar]
- Wang, W.; Lu, H.; Yang, Z.; Li, J.; Lv, E.; Wang, W. Investigation and analysis on mechanization status of litchi and longan orchards. J. Agric. Mech. Res. 2012, 34, 237–241. (In Chinese) [Google Scholar] [CrossRef]
- Wang, W.; Lu, H.; Mo, C.; Yang, Z.; Hohimer, C.J.; Qiu, G. Experiments on the Mechanical Harvesting of Litchi and its Effects on Litchi Storage. Trans. ASABE 2017, 60, 1529–1535. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, W.; Fu, H.; Yang, Z.; Lu, H. Detachment patterns and impact characteristics of litchi fruit during vibrational harvesting. Sci. Hortic. 2022, 295, 110836. [Google Scholar] [CrossRef]
- Kumar, V.; Purbey, S.K.; Anal, A.D. Losses in litchi at various stages of supply chain and changes in fruit quality parameters. Crop Prot. 2016, 79, 97–104. [Google Scholar] [CrossRef]
- Bryant, P. Optimizing the Post Harvest Management of Lychee (Litchi chinensis Sonn.)—A Study of Mechanical Injury and Desiccation. Ph.D. Thesis, The University of Sydney, Seney, Australia, 2004. [Google Scholar]
- Wang, W.; Lu, H.; Zhang, S.; Yang, Z. Damage caused by multiple impacts of litchi fruits during vibration harvesting. Comput. Electron. Agric. 2019, 162, 732–738. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, S.; Fu, H.; Lu, H.; Yang, Z. Evaluation of litchi impact damage degree and damage susceptibility. Comput. Electron. Agric. 2020, 173, 105409. [Google Scholar] [CrossRef]
- Erdoǧan, D.; Güner, M.; Dursun, E.; Gezer, I. Mechanical Harvesting of Apricots. Biosyst. Eng. 2003, 85, 19–28. [Google Scholar] [CrossRef]
- Polat, R.; Gezer, I.; Guner, M.; Dursun, E.; Erdogan, D.; Bilim, H.C. Mechanical harvesting of pistachio nuts. J. Food Eng. 2007, 79, 1131–1135. [Google Scholar] [CrossRef]
- Santos, F.L.; De Queiroz, D.M.; Pinto, F.D.A.D.C.; De Resende, R.C. Efeito da frequência e amplitude de vibração sobre a derriça de frutos de café. Rev. Bras. Eng. Agrícola Ambient. 2010, 14, 426–431. [Google Scholar] [CrossRef]
- Xu, F.; Liu, S.; Liu, Y.; Wang, S. Effect of mechanical vibration on postharvest quality and volatile compounds of blueberry fruit. Food Chem. 2021, 349, 129216. [Google Scholar] [CrossRef]
- Lu, F.; Xu, F.; Li, Z.; Liu, Y.; Wang, J.; Zhang, L. Effect of vibration on storage quality and ethylene biosynthesis-related enzyme genes expression in harvested apple fruit. Sci. Hortic. 2019, 249, 1–6. [Google Scholar] [CrossRef]
- Leili, A.; Taymaz, H.; Arash, T.; Reza, E.; Louise, F.; Sergio, C. Mechanical harvesting of selected temperate and tropical fruit and nut trees. Hortic. Rev. 2021, 49, 171–242. [Google Scholar] [CrossRef]
- Castro-Garcia, S.; Blanco-Roldán, G.L.; Gil-Ribes, J.A. Frequency response of Pinus pinea L. for selective cone harvesting by vibration. Trees 2011, 25, 801–808. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, T.; Inagaki, T.; Chen, Y.; Hu, G.; Wang, Z.; Chen, Q.; Gao, Z.; Zhou, J.; Wang, M.; et al. Parameter Optimization of Vibrating and Comb-Brushing Harvesting of Lycium barbarum L. Based on FEM and RSM. Horticulturae 2021, 7, 286. [Google Scholar] [CrossRef]
- Roka, F.M.; Ehsani, R.J.; Futch, S.H.; Hyman, B.R. Citrus Mechanical Harvesting Systems-Continuous Canopy Shakers; Food and Economic Resources Department, UF/IFAS Extension: Gainesville, FL, USA, 2014. [Google Scholar]
- Zhou, J.; He, L.; Zhang, Q.; Du, X.; Chen, D.; Karkee, M. Evaluation of the influence of shaking frequency and duration in mechanical harvesting of sweet cherry. Appl. Eng. Agric. 2013, 29, 607–612. [Google Scholar] [CrossRef]
- Lenker, D.H.; Hedden, S.L. Optimum shaking action for citrus fruit harvesting. Trans. ASABE 1968, 11, 347–349. [Google Scholar] [CrossRef]
- Ortiz, C.; Torregrosa, A. Determining Adequate Vibration Frequency, Amplitude, and Time for Mechanical Harvesting of Fresh Mandarins. Trans. ASABE 2013, 56, 15–22. [Google Scholar] [CrossRef]
- Alzoheiry, A.; Ghonimy, M.; El Rahman, E.A.; Abdelwahab, O.; Hassan, A. Improving olive mechanical harvesting using appropriate natural frequency. J. Agric. Eng. 2020, 51, 148–154. [Google Scholar] [CrossRef]
- Blanco, G.L.; Gil, J.A.; Kouraba, K.; Castro, S. Effects of trunk shaker duration and repetitions on removal efficiency for the harvesting of oil olives. Appl. Eng. Agric. 2009, 25, 329–334. [Google Scholar] [CrossRef]
- Roka, F.M.; House, L.H.; Mosley, K.R. Analyzing Production Records of Commercial Sweet Orange Blocks to Measure Effects of Mechanical Harvesting on Long-Term Production and Tree Health; Food and Economic Resources Department, UF/IFAS Extension: Gainesville, FL, USA, 2014. [Google Scholar]
- Sola-Guirado, R.R.; Jimenez-Jimenez, F.; Blanco-Roldan, G.L.; Castro-Garcia, S.; Castillo-Ruiz, F.J.; Gil-Ribes, J.A. Vibration parameters assessment to develop a continuous lateral canopy shaker for mechanical harvesting of traditional olive trees. Span. J. Agric. Res. 2016, 14, e0204. [Google Scholar] [CrossRef]
- Ortiz, C.; Torregrosa, A.; Castro-García, S. Comparison of a Lightweight Experimental Shaker and an Orchard Tractor Mounted Trunk Shaker for Fresh Market Citrus Harvesting. Agriculture 2021, 11, 1092. [Google Scholar] [CrossRef]
- Cardona, C.I.; Tinoco, H.A.; Perdomo-Hurtado, L.; López-Guzmán, J.; Pereira, D.A. Vibrations Analysis of the Fruit-Pedicel System of Coffea arabica var. Castillo Using Time–Frequency and Wavelets Techniques. Appl. Sci. 2021, 11, 9346. [Google Scholar] [CrossRef]
- Zhou, J.; He, L.; Zhang, Q.; Karkee, M. Effect of excitation position of a handheld shaker on fruit removal efficiency and damage in mechanical harvesting of sweet cherry. Biosyst. Eng. 2014, 125, 36–44. [Google Scholar] [CrossRef]
- He, L.; Fu, H.; Karkee, M.; Zhang, Q. Effect of fruit location on apple detachment with mechanical shaking. Biosyst. Eng. 2017, 157, 63–71. [Google Scholar] [CrossRef]
- Castro-Garcia, S.; Sola-Guirado, R.R.; Gil-Ribes, J.A. Vibration analysis of the fruit detachment process in late-season ‘Valencia’ orange with canopy shaker technology. Biosyst. Eng. 2018, 170, 130–137. [Google Scholar] [CrossRef]
- Zhou, J.; He, L.; Whiting, M.; Amatya, S.; Larbi, P.A.; Karkee, M.; Zhang, Q. Field evaluation of a mechanical-assist cherry harvesting system. Eng. Agric. Environ. Food 2016, 9, 324–331. [Google Scholar] [CrossRef]
- Zhou, J.; He, L.; Karkee, M.; Zhang, Q. Analysis of shaking-induced cherry fruit motion and damage. Biosyst. Eng. 2016, 144, 105–114. [Google Scholar] [CrossRef]
- Zhou, Y.; Ye, Z.; Wu, Z. Calculation and Analysis of Air Resistance in Ball Games. Phys. Eng. 2002, 12, 55–59. (In Chinese) [Google Scholar]
Frequency (Hz) | Amplitude (mm) | Cluster Nos. | Total Number of Fruit | Detachment Percentage (%) |
---|---|---|---|---|
7 | 40 | 1–9 | 60 | 28 |
60 | 10–18 | 75 | 80 | |
80 | 19–27 | 90 | 84 | |
9.5 | 40 | 27–36 | 90 | 39 |
60 | 37–45 | 90 | 100 | |
80 | 46–54 | 90 | 100 | |
12 | 40 | 55–63 | 90 | 64 |
60 | 64–72 | 90 | 100 | |
80 | 73–81 | 90 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Wang, W.; Huang, C.; Wang, Y.; Fu, H.; Li, J. Study of the Group Vibrational Detachment Characteristics of Litchi (Litchi chinensis Sonn) Clusters. Agriculture 2023, 13, 1065. https://doi.org/10.3390/agriculture13051065
Chen X, Wang W, Huang C, Wang Y, Fu H, Li J. Study of the Group Vibrational Detachment Characteristics of Litchi (Litchi chinensis Sonn) Clusters. Agriculture. 2023; 13(5):1065. https://doi.org/10.3390/agriculture13051065
Chicago/Turabian StyleChen, Xing, Weizu Wang, Chaowei Huang, Yanfei Wang, Han Fu, and Jun Li. 2023. "Study of the Group Vibrational Detachment Characteristics of Litchi (Litchi chinensis Sonn) Clusters" Agriculture 13, no. 5: 1065. https://doi.org/10.3390/agriculture13051065