Economic Results of Forage Species Choice in Crop–Livestock Integrated Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal and Forage Production
2.2. Economic Analyses
3. Results
Livestock and Crop Yields
Economic Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muniz, M.P.; Costa, K.A.D.P.; Severiano, E.D.C.; Bilego, U.O.; Almeida, D.P.; Neto, A.E.F.; Vilela, L.; Lana, M.A.; Leandro, W.M.; Dias, M.B.D.C. Soybean yield in integrated crop livestock system in comparison to soybean maize succession system. J. Agric. Sci. 2021, 159, 188–198. [Google Scholar]
- Amadori, C.; Dieckow, J.; Zanatta, J.A.; Moraes, A.; Zaman, M.; Bayer, C. Nitrous oxide and methane emissions from soil under integrated farming systems in southern Brazil. Sci. Total Environ. 2022, 828, 154–555. [Google Scholar] [CrossRef]
- Ruviaro, C.F.; da Costa, J.S.; Florindo, T.J.; Rodrigues, W.; de Medeiros, G.I.B.; Vasconcelos, P.S. Economic and environmental feasibility of beef production in different feed management systems in the Pampa biome, southern Brazil. Ecol. Indic. 2016, 60, 930–939. [Google Scholar] [CrossRef]
- Gléria, A.A.; Silva, R.M.; Santos, A.P.P.; Santos, K.J.G.; Paim, T.P. Produção de bovinos de corte em sistemas de Integração Lavoura e Pecuária. Arch Zootec 2017, 66, 141–150. [Google Scholar] [CrossRef]
- Ambus, J.V.; Reichert, J.M.; Gubiani, P.I.; de Faccio Carvalho, P.C. Changes in composition and functional soil properties in long-term no-till integrated crop-livestock system. Geoderma 2018, 330, 232–243. [Google Scholar] [CrossRef]
- Carvalho, P.C.D.F.; Peterson, C.A.; Nunes, P.A.D.A.; Martins, A.P.; de Souza Filho, W.; Bertolazi, V.T.; Anghinoni, I. Animal production and soil characteristics from integrated crop-livestock systems: Toward sustainable intensification. J. Anim. Sci. 2018, 96, 3513–3525. [Google Scholar] [CrossRef] [PubMed]
- Rego, C.A.R.D.M.; Muniz, L.C.; Reis, V.R.R.; Cantanheide, I.S.D.L.; Costa, B.P.; Marques, E.D.O.; Oliveira, P.S.R.D. economic analysis of the implementation of different systemsde of crop-livestock-forestry integration in the municipality of Pindaré-Mirim, Maranhão. Sodebras 2018, 13, 146. [Google Scholar]
- Alves, B.R.; Madari, B.E.; Boddey, R.M. Integrated crop-livestock-foresty sustems: Prospects for a sustainable agricultural intensification. Nutr. Cycl. Agroecosyst. 2017, 108, 1–4. [Google Scholar] [CrossRef]
- Asai, M.; Moraine, M.; de Wit, J.; Hoshide, A.K.; Martin, G. Critical factors for crop-livestock integration beyond the farm level: A crossanalysis of worldwide case studies. Land Use Policy 2018, 73, 84–194. [Google Scholar] [CrossRef]
- Schuster, M.Z.; Lustosa, S.B.C.; Pelissari, A.; Harrison, S.K.; Sulc, R.M.; Deiss, L.; Lang, C.R.; Carvalho, P.C.F.; Gazziero, D.L.P.; De Moraes, A. Optimizing forage allowance for productivity and weed management in integrated croplivestock systems. Agron. Sustentar. Dev. 2019, 39, 18. [Google Scholar] [CrossRef]
- Nepstad, L.S.; Gerber, J.S.; Hill, J.D.; Dias, L.C.P.; Costa, M.H.; West, P.C. Pathways for recent Cerrado soybean expansion: Extending the soy morato-rium and implementing integrated crop livestock systems with soybeans. Environ. Res. Lett. 2019, 14, 029–044. [Google Scholar] [CrossRef]
- Dias, M.B.C.; Costa, K.A.P.; Severiano, E.C.; Bilego, U.O.; Almeida, D.P.; Brand, S.C.; Vilela, L.; Furtini-Neto, A.E. Brachiaria and Panicum maximum in an integrated crop-livestock system and a second-crop maize system in succession with soybean. J. Agric. Sci. 2020, 1, 1–12. [Google Scholar] [CrossRef]
- Costa, N.; Andreotti, M.; Crusciol, C.A.C.; Pariz, C.M.; Bossolani, J.W.; De Castilhos, A.M.; Nascimento, C.A.C.D.; Lima, C.G.D.R.; Bonini, C.D.S.B.; Kuramae, E. Can Palisade and Guinea Grass Sowing Time in Intercropping Systems Affect Soybean Yield and Soil Chemical Properties? Front. Sustain. Food Syst. 2020, 4, 81. [Google Scholar] [CrossRef]
- Rigon, J.P.G.; Crusciol, C.A.C.; Calonego, J.C.; Pavinato, P.S.; Azevedo, A.C.; Rosolem, C.A. Intensive crop rotations and residue quality increase soil phosphorus lability under long-term no-till in tropical soils. Soil Tillage Res. 2022, 223, 105446. [Google Scholar] [CrossRef]
- Soler, R.; Peri, P.L.; Bahamonde, H.; Gargaglione, V.; Ormaechea, S.; Herrera, A.H.; Jardon, L.S.; Lorenzo, C.; Pastur, G.M. Assessing Knowledge Production for Agrosilvopastoral Systems in South America. Rangel. Ecol. Manag. 2018, 71, 637–645. [Google Scholar] [CrossRef]
- Martha Júnior, G.B.; Alves, E.; Contini, E. Dimensão econômica de sistemas de integração lavoura-pecuária. Pesqui. Agropecuária Bras. 2011, 46, 1117–1126. [Google Scholar] [CrossRef]
- Carvalho, A.M.; De Souza, L.L.P.; Guimarães Junior, R.; Alves, P.C.A.; Vivaldi, L.J. Plantas de cobertura com potencial de uso para sistemas de integração lavoura-pecuária na região do Cerrado. Pesq. Agropec. Bras. 2011, 46, 1200–1205. [Google Scholar] [CrossRef]
- Tegegn, A.; Kyalo, M.; Mutai, C.; Hanson, J.; Asefa, G.; Djikeng, A.; Ghimire, S. Genetic diversity and population structure of Brachiaria brizantha (A. Rich.) stapf accessions from Ethiopia. Afr. J. Range Forage Sci. 2019, 36, 129–133. [Google Scholar] [CrossRef]
- Dias, M.B.D.C.; Costa, K.A.D.P.; Severiano, E.D.C.; Bilego, U.O.; Vilela, L.; de Souza, W.F.; de Oliveira, I.P.; da Silva, A.C.G. Cattle performance with Brachiaria and Panicum maximum forages in an integrated crop-livestock system. Afr. J. Range Forage Sci. 2021, 39, 230–242. [Google Scholar] [CrossRef]
- Jank, L.; Barrios, S.C.; Do Valle, C.B.; Simeão, R.M.; Alves, G.F. The value of improved pastures to Brazilian beef production. Crop Pasture Sci. 2014, 65, 1132–1137. [Google Scholar] [CrossRef]
- Tesk, C.R.M.; Cavalli, J.; Pina, D.S.; Pereira, D.H.; Pedreira, C.G.S.; Jank, L.; Sollenberger, L.E.; Pedreira, B.C. Herbage responses of Tamani and Quênia guinea grasses to grazing intensity. Agron. J. 2020, 112, 2081–2091. [Google Scholar] [CrossRef]
- Lima, G.C.; Hungria, M.; Nogueira, M.A.; Filho, M.C.M.T.; Moreira, A.; Heinrichs, R.; Filho, C.V.S. Yield, yield components and nutrients uptake in zuri guinea grass inoculated with plant growth-promoting bacteria. Int. J. Innov. Educ. Res. 2020, 8, 103–124. [Google Scholar] [CrossRef]
- Köppen, W. Das Geographische System der Klimate; Gebrüder Borntraeger: Berlin, Germany, 1936; pp. 1–44. [Google Scholar]
- Dias Filho, M.B. Formação e manejo de pastagens. Comunicado Técnico 235, Embrapa Amazônia Oriental 2012. Available online: http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/937485 (accessed on 1 October 2022).
- Costa, J.A.A.; Queiroz, H.P. Régua de Manejo de Pastagens—Edição Revisada; Embrapa: Campo Grande, Brazil, 2017; 7p. [Google Scholar]
- Fidalski, J.; Tormena, C.A.; Alves, S.J. Intervalo hídrico ótimo de um latossolo vermelho distrófico, após o primeiro período de pastejo contínuo de Brachiaria ruziziensis, em sistema integração lavoura-pecuária. R. Bras. Ci. Solo 2013, 37, 775–783. [Google Scholar] [CrossRef]
- Silva, D.J.; Queiroz, A.C. Análise de Alimentos: Métodos Químicos e Biológicos, 3rd ed.; UFV 235: Viçosa, Brazil, 2002. [Google Scholar]
- Detmann, E.; Souza, M.A.D.; Valadares Filho, S.D.C.; Queiroz, A.C.D.; Berchielli, T.T.; Saliba, E.D.O.S.; Cabral, L.D.S.; Pina, D.D.S.; Ladeira, M.M.; Azevedo, J.A.G. Métodos para análise de alimentos. Visconde Do Rio Branco Suprema 2012, 17, 214. [Google Scholar]
- Ayres, H.; Ferreira, R.M.; Torres-Júnior, J.R.D.S.; Demétrio, C.G.B.; de Lima, C.G.; Baruselli, P. Validation of body condition score as a predictor of subcutaneous fat in Nelore (Bos indicus) cows. Livest. Sci. 2009, 123, 175–179. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An {R} Companion to Applied Regression, 3rd ed; Sage: Thousand Oaks, CA, USA, 2019; Available online: https://socialsciences.mcmaster.ca/jfox/Books/Companion/ (accessed on 1 July 2022).
- Length, R. _emmeans: Estimated Marginal Means, aka Least-Squares Means_. R package version 1.8.0. 2022. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 1 July 2022).
- R CORE TEAM. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing, Vienna, Austria. 2020. Available online: https://www.R-project.org/ (accessed on 1 July 2022).
- Silva, S.C.; Sbrissia, A.F.; Pereira, L.E.T. Ecophysiology of C4 forage grasses—Understanding plant growth for optimising their use and management. Agriculture 2015, 5, 598–625. [Google Scholar] [CrossRef]
- Almeida, R.E.M.; Gomes, C.M.; Lago, B.C.; Oliveiras, S.M.; Pierozan Junior, C.; Faravin, J.L. Corn yield, forage production and quality affected by methods of intercropping corn and Panicum maximum. Pesq. Agropec. Bras. 2017, 52, 170–176. [Google Scholar] [CrossRef]
- Momesso, L.; Crusciol, C.A.C.; Soratto, R.P.; Vyn, T.; Tanaka, K.S.; Costa, C.H.M.; Costa, J.F.N.; Cantarella, H. Impacts of nitrogen management on no–till maize production following forage cover crop. Agron. J. 2019, 111, 639–649. [Google Scholar] [CrossRef]
- Santos, A.A.P.D.; Vidigal Filho, A.L.; Vidigal, L.L.D.V.; De Souza, V.L.; De Figuereido, A.M.B.; Piacentini, M.T.S. Análise da rentabilidade do sistema semi-intensivo de engorda de bovinos semiconfinamento. Res. Soc. Dev. 2022, 11, e10011427128. [Google Scholar] [CrossRef]
- Hoag, D.L. Applied Risk Management in Agriculture; CRC Press: Boca Raton, FL, USA, 2010; pp. 419–424. ISBN 9781439809730. [Google Scholar]
- Girdžiūtėa, L. Risks in agriculture and opportunities of their integrated evaluation. Procedia Soc. Behav. Sci. 2012, 62, 783–790. [Google Scholar] [CrossRef]
- Poffenbarger, H.; Artz, G.; Dahlke, G.; Edwards, W.; Hanna, M.; Russell, J.; Sellers, H.; Liebman, M. An economic analysis of integrated crop-livestock systems in Lowa, U.S.A. Agric. Syst. 2017, 157, 51–69. [Google Scholar] [CrossRef]
- Soares, K.A.R.S.C. Avaliação Nutricional da Silagem de Capim-Zuri (Panicum maximum cv. BRS Zuri) Contendo Diferentes Aditivos. Sinop-MT: Dissertação (Mestrado)—2017; Universidade Federal de Mato Grosso, Instituto de Ciências Agrárias e Ambientais, Programa 50 de Pós-Graduação em Zootecnia: Cuiabá, Brazil, 2017. [Google Scholar]
- Braga, G.J.; Maciel, G.A.; Guimarães Junior, R.G.; Ramos, A.K.B.; Carvalho, M.A.; Fernades, F.D.; Fonseca, C.E.L.; JANK, L. Performance of young Nellore bulls on guinea grass pastures under rotational stocking in the Brazilian Cerrado. Trop. Grassl. Forrajes Trop. 2019, 7, 214–222. [Google Scholar] [CrossRef]
- Silva, E.B.; Carneiro, M.S.D.S.; Furtado, R.N.; Lopes, M.N.; Braga, M.D.M. Chemical composition of Panicum maximum ‘BRS Zuri’ subjected to levels of salinity and irrigation depths. Rev. Ciênc. Agron 2020, 51, 1–10. [Google Scholar] [CrossRef]
Pasture | MLW (kg) | SR (kg ha−1) | SR (AU ha−1) | LWG (kg dia−1) | LWGH (kg ha−1) |
---|---|---|---|---|---|
2018 | |||||
Ruziziensis | 358.4 a | 578.2 a | 1.28 ab | 0.701 a | 96.70 b |
BRS Zuri | 326.8 a | 943.6 a | 2.10 a | 0.975 a | 180.65 a |
BRS Tamani | 356.2 a | 444.3 b | 0.99 b | 0.793 a | 133.92 a |
2019 | |||||
Ruziziensis | 320.0 a | 694.0 a | 1.54 a | 0.532 a | 96.07 a |
BRS Zuri | 330.8 a | 881.8 a | 1.96 a | 0.422 a | 114.44 a |
BRS Tamani | 326.4 a | 522.8 a | 1.16 a | 0.544 a | 100.56 a |
Mean | |||||
Ruziziensis | 339.0 a | 636.1 ab | 1.41 ab | 0.616 a | 96.4 a |
BRS Zuri | 329.0 a | 912.7 a | 2.03 a | 0.699 a | 147.5 a |
BRS Tamani | 341.0 a | 483.6 b | 1.07 b | 0.668 a | 117.2 a |
SD | 16.52 | 200.50 | 0.45 | 0.203 | 32.85 |
Year | Pasture | Grain Yield (kg ha−1) | Stand (Plants m−2) | Plant Yield (g planta−1) |
---|---|---|---|---|
Ruziziensis | 3.795 a | 14.9 a | 12.8 a | |
2018 | BRS Zuri | 3.796 a | 12.9 b | 14.7 a |
BRS Tamani | 3.461 a | 12.2 b | 14.3 a | |
Ruziziensis | 3.904 a | 10.5 a | 17.0 a | |
2019 | BRS Zuri | 4.637 a | 10.4 a | 20.9 a |
BRS Tamani | 4.660 a | 9.8 a | 18.3 a | |
Mean | Ruziziensis | 3.849 a | 12.2 a | 14.9 a |
BRS Zuri | 4.216 a | 11.6 ab | 17.8 a | |
BRS Tamani | 4.060 a | 11.0 b | 16.3 a | |
p-Value | Forage | ns | 0.0013 ** | ns |
Year | ns | ns | ns | |
Forage × Year | ns | ns | ns |
Pasture | Carcass Cost (USD kg−1) | Total Cost (USD ha−1) | Net Income (USD ha−1) | Herd Value (USD ha−1) | Equity (USD ha1) | ROEm * (%) | ROEy (%) |
---|---|---|---|---|---|---|---|
2018 | |||||||
Ruziziensis | 50.21 | 150.74 b | −11.12 b | 1120.43 | 4007.38 | −0.07 b | −0.83 b |
BRS Zuri | 24.71 | 312.61 a | 163.83 a | 944.33 | 3818.20 | 1.07 a | 13.66 a |
BRS Tamani | 40.56 | 275.81 ab | 94.75 a | 1295.48 | 4201.65 | 0.56 a | 6.98 a |
2019 | |||||||
Ruziziensis | 12.51 | 119.89 | 79.84 | 853.74 | 3532.78 | 0.56 | 6.99 |
BRS Zuri | 16.42 | 141.29 | 78.65 | 1033.26 | 3734.88 | 0.53 | 6.50 |
BRS Tamani | 34.28 | 225.14 | 110.22 | 649.87 | 3403.78 | 0.81 | 10.16 |
Mean | |||||||
Ruziziensis | 31.06 | 135.07 | 35.09 | 984.95 | 3766.27 | 0.25 | 3.08 |
BRS Zuri | 20.50 | 225.57 | 120.56 | 989.51 | 3775.87 | 0.80 | 10.08 |
BRS Tamani | 37.37 | 250.07 | 102.60 | 967.50 | 3796.31 | 0.69 | 8.57 |
SD | 14.18 | 76.67 | 56.29 | 211.74 | 241.87 | 0.38 | 4.81 |
Forage | TC (USD ha−1) | GI (USD ha−1) | NI (USD ha−1) | Equity (USD) | ROEm (%) | ROEy (%) |
---|---|---|---|---|---|---|
Ruziziensis | 2189.53 | 2802.90 | 612.65 | 4871.58 | 0.52 | 6.47 |
BRS Zuri | 2199.04 | 3238.90 | 1039.87 | 4881.08 | 0.89 | 11.19 |
BRS Tamani | 2283.62 | 3188.83 | 905.22 | 4965.66 | 0.76 | 9.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leal, V.N.; Santos, D.d.C.; Paim, T.d.P.; Santos, L.P.d.; Alves, E.M.; Claudio, F.L.; Calgaro Junior, G.; Fernandes, P.B.; Salviano, P.A.P. Economic Results of Forage Species Choice in Crop–Livestock Integrated Systems. Agriculture 2023, 13, 637. https://doi.org/10.3390/agriculture13030637
Leal VN, Santos DdC, Paim TdP, Santos LPd, Alves EM, Claudio FL, Calgaro Junior G, Fernandes PB, Salviano PAP. Economic Results of Forage Species Choice in Crop–Livestock Integrated Systems. Agriculture. 2023; 13(3):637. https://doi.org/10.3390/agriculture13030637
Chicago/Turabian StyleLeal, Vanessa Nunes, Darliane de Castro Santos, Tiago do Prado Paim, Luizmar Peixoto dos Santos, Estenio Moreira Alves, Flavio Lopes Claudio, Guido Calgaro Junior, Patrick Bezerra Fernandes, and Paulo Alexandre Perdomo Salviano. 2023. "Economic Results of Forage Species Choice in Crop–Livestock Integrated Systems" Agriculture 13, no. 3: 637. https://doi.org/10.3390/agriculture13030637
APA StyleLeal, V. N., Santos, D. d. C., Paim, T. d. P., Santos, L. P. d., Alves, E. M., Claudio, F. L., Calgaro Junior, G., Fernandes, P. B., & Salviano, P. A. P. (2023). Economic Results of Forage Species Choice in Crop–Livestock Integrated Systems. Agriculture, 13(3), 637. https://doi.org/10.3390/agriculture13030637