Growth Inhibitory Activities and Feeding Deterrence of Solanaceae-Based Derivatives on Fall Armyworm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Extracts and Fractions
2.3. Bioassays
2.3.1. Effects of Crude Ethanolic Extracts of A. arborescens and D. stramonium on Biological Parameters of S. frugiperda
2.3.2. Effects of Dichloromethane Fractions on Biological Parameters of S. frugiperda
2.3.3. Effects of Dichloromethane Fractions on Food Consumption of S. frugiperda
2.4. Data Analyses
3. Results
3.1. Effects of Crude Ethanolic Extracts of A. arborescens and D. stramonium on Biological Parameters of S. frugiperda
3.2. Effects of Dichloromethane Fractions on Biological Parameters of S. frugiperda
3.3. Effects of Dichloromethane Fractions on Food Consumption of S. frugiperda
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Montezano, D.G.; Specht, A.; Sosa-Gómez, D.R.; Roque-Specht, V.F.; Sousa-Silva, J.C.; Paula-Moraes, S.V.; Peterson, J.A.; Hunt, T.E. Host Plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr. Entomol. 2018, 26, 286–300. [Google Scholar] [CrossRef]
- Jing, D.P.; Guo, J.F.; Jiang, Y.Y.; Zhao, J.Z.; Sethi, A.; He, K.L.; Wang, Z.Y. Initial Detections and Spread of Invasive Spodoptera frugiperda in China and Comparisons with Other Noctuid Larvae in Cornfields Using Molecular Techniques. Insect Sci. 2020, 27, 780–790. [Google Scholar] [CrossRef] [PubMed]
- Otim, M.H.; Tay, W.T.; Walsh, T.K.; Kanyesigye, D.; Adumo, S.; Abongosi, J.; Ochen, S.; Sserumaga, J.; Alibu, S.; Abalo, G.; et al. Detection of Sister-Species in Invasive Populations of the Fall Armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) from Uganda. PLoS ONE 2018, 13, e0194571. [Google Scholar] [CrossRef] [PubMed]
- Goergen, G.; Kumar, P.L.; Sankung, S.B.; Togola, A.; Tamò, M. First Report of Outbreaks of the Fall Armyworm Spodoptera frugiperda (J. E. Smith) (Lepidoptera, Noctuidae), a Wew Alien Invasive Pest in West and Central Africa. PLoS ONE 2016, 11, e0165632. [Google Scholar] [CrossRef]
- Chormule, A.; Shejawal, N.; Sharanabasappa; Kalleshwaraswamy, C.; Asokan, R.; Mahadeva Swamy, H. First Report of the Fall Armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera, Noctuidae) on Sugarcane and Other Crops from Maharashtra, India. J. Entomol. Zool. Stud. 2019, 7, 114–117. [Google Scholar]
- Sharanabasappa; Kalleshwamy, C.M.; Asokan, R.; Swamy, H.M.M.; Maruthi, M.S.; Pavithra, H.B.; Hegde, K.; Navi, S.; Prabhu, S.T.; Geoergen, G. First Report of the Fall Armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), an Alien Invasive Pest on Maize in India. Pest Manag. Hortic. Ecosyst. 2018, 24, 23–29. [Google Scholar]
- Sisay, B.; Tefera, T.; Wakgari, M.; Ayalew, G.; Mendesil, E. The Efficacy of Selected Synthetic Insecticides and Botanicals against Fall Armyworm, Spodoptera frugiperda, in Maize. Insects 2019, 10, 45. [Google Scholar] [CrossRef]
- Waquil, J.M.; Dourado, P.M.; de Carvalho, R.A.; Oliveira, W.S.; Berger, G.U.; Head, G.P.; Martinelli, S. Manejo de Lepidópteros-Praga Na Cultura Do Milho Com o Evento Bt Piramidado Cry1A.105 e Cry2Ab2. Pesqui. Agropecuária Bras. 2013, 48, 1529–1537. [Google Scholar] [CrossRef]
- Horikoshi, R.J.; Bernardi, D.; Bernardi, O.; Malaquias, J.B.; Okuma, D.M.; Miraldo, L.L.; Amaral, F.S.d.A.e.; Omoto, C. Effective Dominance of Resistance of Spodoptera frugiperda to Bt Maize and Cotton Varieties: Implications for Resistance Management. Sci. Rep. 2016, 6, 34864. [Google Scholar] [CrossRef]
- Farias, J.R.; Andow, D.A.; Horikoshi, R.J.; Sorgatto, R.J.; Fresia, P.; dos Santos, A.C.; Omoto, C. Field-Evolved Resistance to Cry1F Maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Prot. 2014, 64, 150–158. [Google Scholar] [CrossRef]
- Omoto, C.; Bernardi, O.; Salmeron, E.; Sorgatto, R.J.; Dourado, P.M.; Crivellari, A.; Carvalho, R.A.; Willse, A.; Martinelli, S.; Head, G.P. Field-Evolved Resistance to Cry1Ab Maize by Spodoptera frugiperda in Brazil. Pest Manag. Sci. 2016, 72, 1727–1736. [Google Scholar] [CrossRef]
- Lira, E.C.; Bolzan, A.; Nascimento, A.R.B.; Amaral, F.S.A.; Kanno, R.H.; Kaiser, I.S.; Omoto, C. Resistance of Spodoptera frugiperda (Lepidoptera: Noctuidae) to Spinetoram: Inheritance and Cross-Resistance to Spinosad. Pest Manag. Sci. 2020, 76, 2674–2680. [Google Scholar] [CrossRef]
- Okuma, D.M.; Bernardi, D.; Horikoshi, R.J.; Bernardi, O.; Silva, A.P.; Omoto, C. Inheritance and Fitness Costs of Spodoptera frugiperda (Lepidoptera: Noctuidae) Resistance to Spinosad in Brazil. Pest Manag. Sci. 2018, 74, 1441–1448. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, H.-H.; Gao, J.; Zhang, Y.-J.; Li, X.; Zhou, J.-J.; Liang, P.; Gao, X.-W.; Gu, S.-H. Plant Volatile Compound Methyl Benzoate Is Highly Effective against Spodoptera frugiperda and Safe to Non-Target Organisms as an Eco-Friendly Botanical-Insecticide. Ecotoxicol. Environ. Saf. 2022, 245, 114101. [Google Scholar] [CrossRef]
- Paredes-Sánchez, F.A.; Rivera, G.; Bocanegra-García, V.; Martínez-Padrón, H.Y.; Berrones-Morales, M.; Niño-García, N.; Herrera-Mayorga, V. Advances in Control Strategies against Spodoptera frugiperda. A Review. Molecules 2021, 26, 5587. [Google Scholar] [CrossRef]
- Lima, A.P.S.; Santana, E.D.R.; Santos, A.C.C.; Silva, J.E.; Ribeiro, G.T.; Pinheiro, A.M.; Santos, Í.T.B.F.; Blank, A.F.; Araújo, A.P.A.; Bacci, L. Insecticide Activity of Botanical Compounds against Spodoptera frugiperda and Selectivity to the Predatory Bug Podisus nigrispinus. Crop Prot. 2020, 136, 105230. [Google Scholar] [CrossRef]
- Ngegba, P.M.; Cui, G.; Khalid, M.Z.; Li, Y.; Zhong, G. Prospects of Botanical Compounds and Pesticides as Sustainable Management Strategies against Spodoptera frugiperda. J. Econ. Entomol. 2022, 115, 1834–1845. [Google Scholar] [CrossRef]
- Gonzalez-Coloma, A.; Reina, M.; Diaz, C.E.; Fraga, B.M.; Santana-Meridas, O. Natural Product-Based Biopesticides for Insect Control. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Campos, E.V.R.; Proença, P.L.F.; Oliveira, J.L.; Bakshi, M.; Abhilash, P.C.; Fraceto, L.F. Use of Botanical Insecticides for Sustainable Agriculture: Future Perspectives. Ecol. Indic. 2019, 105, 483–495. [Google Scholar] [CrossRef]
- Isman, M.B. Botanical Insecticides: For Richer, for Poorer. Pest Manag. Sci. 2008, 64, 8–11. [Google Scholar] [CrossRef]
- Isman, M.B. Botanical Insecticides in the Twenty-First Century—Fulfilling Their Promise? Annu. Rev. Entomol. 2020, 65, 233–251. [Google Scholar] [CrossRef]
- Miresmailli, S.; Isman, M.B. Botanical Insecticides Inspired by Plant–Herbivore Chemical Interactions. Trends Plant Sci. 2014, 19, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Qin, D.; Chen, J.; Zhang, Z. Plants in the Genus Tephrosia: Valuable Resources for Botanical Insecticides. Insects 2020, 11, 721–739. [Google Scholar] [CrossRef] [PubMed]
- Krinski, D.; Foerster, L.A.; Deschamps, C. Ovicidal Effect of the Essential Oils from 18 Brazilian Piper Species: Controlling Anticarsia gemmatalis (Lepidoptera, Erebidae) at the Initial Stage of Development. Acta Sci. Agron. 2018, 40, e35273. [Google Scholar] [CrossRef]
- Stupp, P.; Rakes, M.; Oliveira, D.C.; Martins, L.N.; Geisler, F.C.S.; Ribeiro, L.P.; Nava, D.E.; Bernardi, D. Acetogenin-Based Formulated Bioinsecticides on Anastrepha fraterculus: Toxicity and Potential Use in Insecticidal Toxic Baits. Neotrop. Entomol. 2020, 49, 292–301. [Google Scholar] [CrossRef] [PubMed]
- de Souza, C.M.; Baldin, E.L.L.; do Prado Ribeiro, L.; dos Santos, T.L.B.; Silva, I.F.d.; Morando, R.; Vendramim, J.D. Antifeedant and Growth Inhibitory Effects of Annonaceae Derivatives on Helicoverpa armigera (Hübner). Crop Prot. 2019, 121, 45–50. [Google Scholar] [CrossRef]
- Siquieroli, A.C.S.; Andaló, V.; Duarte, J.G.; de Sousa, R.M.F.; Felisbino, J.K.R.P.; da Silva, G.C. Botanical Insecticide Formulation with Neem Oil and D-Limonene for Coffee Borer Control. Pesqui. Agropecuária Bras. 2021, 56, e02000. [Google Scholar] [CrossRef]
- Luiz, A.L.; Perlatti, B.; Marques, F.A.; Rodrigues-Filho, E.; Costa, E.N.; Ribeiro, Z.A.; Eduardo, W.I.; Boiça-Júnior, A.L.; Imatomi, M.; Gorecki, T.; et al. Efficacy of Botanical Extracts from Brazilian Savannah against Diabrotica speciosa and Associated Bacteria. Ecol. Res. 2017, 32, 435–444. [Google Scholar] [CrossRef]
- Eich, E. Solanaceae and Convolvulaceae: Secondary Metabolites: Biosynthesis, Chemotaxonomy, Biological and Economic Significance (a Handbook); Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Fiesel, P.D.; Parks, H.M.; Last, R.L.; Barry, C.S. Fruity, Sticky, Stinky, Spicy, Bitter, Addictive, and Deadly: Evolutionary Signatures of Metabolic Complexity in the Solanaceae. Nat. Prod. Rep. 2022, 39, 1438–1464. [Google Scholar] [CrossRef]
- Matias, L.J.; Rocha, J.; Royo, V.A.; Menezes, E.; de Melo Júnior, A.; de Oliveira, D. Phytochemistry in Medicinal Species of Solanum L. (Solanaceae). Pharmacogn. Res. 2019, 11, 47. [Google Scholar] [CrossRef]
- Li, Z.; Vickrey, T.L.; McNally, M.G.; Sato, S.J.; Clemente, T.E.; Mower, J.P. Assessing Anthocyanin Biosynthesis in Solanaceae as a Model Pathway for Secondary Metabolism. Genes 2019, 10, 559. [Google Scholar] [CrossRef]
- Chowański, S.; Adamski, Z.; Marciniak, P.; Rosiński, G.; Büyükgüzel, E.; Büyükgüzel, K.; Falabella, P.; Scrano, L.; Ventrella, E.; Lelario, F.; et al. A Review of Bioinsecticidal Activity of Solanaceae Alkaloids. Toxins 2016, 8, 60. [Google Scholar] [CrossRef]
- Marciniak, P.; Kolińska, A.; Spochacz, M.; Chowański, S.; Adamski, Z.; Scrano, L.; Falabella, P.; Bufo, S.A.; Rosiński, G. Differentiated Effects of Secondary Metabolites from Solanaceae and Brassicaceae Plant Families on the Heartbeat of Tenebrio molitor Pupae. Toxins 2019, 11, 287. [Google Scholar] [CrossRef] [Green Version]
- Lima, A.F.; do Prado Ribeiro, L.; Gonçalves, G.L.P.; Maimone, N.M.; Gissi, D.S.; de Lira, S.P.; Vendramim, J.D. Searching for Bioactive Compounds from Solanaceae: Lethal and Sublethal Toxicity to Spodoptera frugiperda and Untargeted Metabolomics Approaches. J. Pest Sci. 2022, 95, 1317–1329. [Google Scholar] [CrossRef]
- Lisko, J.G.; Stanfill, S.B.; Duncan, B.W.; Watson, C.H. Application of GC-MS/MS for the Analysis of Tobacco Alkaloids in Cigarette Filler and Various Tobacco Species. Anal. Chem. 2013, 85, 3380–3384. [Google Scholar] [CrossRef]
- Pilaquinga, F.; Morejón, B.; Ganchala, D.; Morey, J.; Piña, N.; Debut, A.; Neira, M. Green Synthesis of Silver Nanoparticles Using Solanum mammosum L. (Solanaceae) Fruit Extract and Their Larvicidal Activity against Aedes aegypti L. (Diptera: Culicidae). PLoS ONE 2019, 14, e0224109. [Google Scholar] [CrossRef]
- Amoabeng, B.W.; Stevenson, P.C.; Pandey, S.; Mochiah, M.B.; Gurr, M.G. Insecticidal Activity of a Native Australian Tobacco, Nicotiana megalosiphon Van Heurck & Muell. Arg. (Solanales: Solanaceae) against Key Insect Pests of Brassicas. Crop Prot. 2018, 106, 6–12. [Google Scholar] [CrossRef]
- Luiz, G.; Gonçalves, P.; De Lira, S.P.; Gissi, D.S.; Vendramim, J.D. Bioactivity of Extracts from Solanaceae against Zabrotes subfasciatus. Acta Biológica Colomb. 2020, 26, 62–71. [Google Scholar]
- Spochacz, M.; Chowański, S.; Szymczak-Cendlak, M.; Marciniak, P.; Lelario, F.; Salvia, R.; Nardiello, M.; Scieuzo, C.; Scrano, L.; Bufo, S.A.; et al. Solanum Nigrum Extract and Solasonine Affected Hemolymph Metabolites and Ultrastructure of the Fat Body and the Midgut in Galleria mellonella. Toxins 2021, 13, 617–631. [Google Scholar] [CrossRef]
- Stehmann, J.R.; Mentz, L.A.; Agra, M.F.; Vignoli-Silca, M.; Giacomin, L. Lista de Espécies da Flora do Brasil. Available online: http://floradobrasil.jbrj.gov.br/ (accessed on 20 December 2021).
- Steinbrueck, C.; Mora-Ugalde, N.; Morales, C.; Loiaza, R.; García-Piñeres, A.J.; Araya, J.J. Bioassay-Guided Isolation of Anti-Inflammatory O-Sulfated Withanolides from Acnistus arborescens (Solanaceae). Phytochem. Lett. 2019, 29, 190–194. [Google Scholar] [CrossRef]
- Minguzzi, S.; Barata, L.E.S.; Shin, Y.G.; Jonas, P.F.; Chai, H.B.; Park, E.J.; Pezzuto, J.M.; Cordell, G.A. Cytotoxic Withanolides from Acnistus arborescens. Phytochemistry 2002, 59, 635–641. [Google Scholar] [CrossRef]
- Cordero, C.P.; Morantes, S.J.; Páez, A.; Rincón, J.; Aristizábal, F.A. Cytotoxicity of Withanolides Isolated from Acnistus arborescens. Fitoterapia 2009, 80, 364–368. [Google Scholar] [CrossRef] [PubMed]
- Berkov, S.; Zayed, R.; Doncheva, T. Alkaloid Patterns in Some Varieties of Datura stramonium. Fitoterapia 2006, 77, 179–182. [Google Scholar] [CrossRef] [PubMed]
- Jawalkar, N.; Zambare, S.; Zanke, S. Insecticidal Property of Datura stramonium L. Seed Extracts against Sitophilus oryzae L. (Coleoptera: Curculionidae) in Stored Wheat Grains. J. Entomol. Zool. Stud. 2016, 4, 92–96. [Google Scholar]
- Abbasipour, H.; Mahmoudvand, M.; Rastegar, F.; Hosseinpour, M.H. Bioactivities of Jimsonweed Extract, Datura stramonium L. (Solanaceae), against Tribolium castaneum (Coleoptera: Tenebrionidae). Turkish J. Agric. For. 2011, 35, 623–629. [Google Scholar] [CrossRef]
- Karimzadeh, J.; Rabiei, A. Larvicidal and Oviposition Deterrent Effects of the Jimsonweed (Datura stramonium L.) Extracts on the Diamondback Moth, Plutella xylostella (L.). J. Agric. Sci. Technol. 2020, 22, 1279–1293. [Google Scholar]
- Greene, G.L.; Leppla, N.C.; Dickerson, W.A. Velvetbean Caterpillar: A Rearing Procedure and Artificial Medium. J. Econ. Entomol. 1976, 69, 487–488. [Google Scholar] [CrossRef]
- Ansante, T.F.; Ribeiro, L.P.; Bicalho, K.U.; Fernandes, J.B.; das Graças Fernandes da Silva, M.F.; Vieira, P.C.; Vendramim, J.D. Secondary Metabolites from Neotropical Annonaceae: Screening, Bioguided Fractionation, and Toxicity to Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Ind. Crops Prod. 2015, 74, 969–976. [Google Scholar] [CrossRef]
- AGROFIT Sistema de Agrotóxicos Fitossanitários—Ministério da Agricultura, Pecúaria e Abastecimento. Available online: http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons (accessed on 30 March 2021).
- Nelder, J.A.; Wedderburn, W.M. Generalized Linear Models. In Handbook of Statistical Analyses Using Stata, Fourth Edition; Chapman and Hall/CRC: Boca Raton, FL, USA, 2000; Volume 135, pp. 370–384. [Google Scholar]
- Box, G.E.P.; Cox, D.R. An Analysis of Transformations. J. R. Stat. Soc. Ser. B 1964, 26, 211–243. [Google Scholar] [CrossRef]
- Bauer, D.F. Constructing Confidence Sets Using Rank Statistics. J. Am. Stat. Assoc. 1972, 67, 687–690. [Google Scholar] [CrossRef]
- Moral, R.A.; Hinde, J.; Demétrio, C.G.B. Half-Normal Plots and Overdispersed Models in R: The Hnp Package. J. Stat. Softw. 2017, 81, 1–23. [Google Scholar] [CrossRef]
- R CoreTeam R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022.
- Rodríguez, H.C.; Vendramim, J.D. Toxicidad de Extractos Acuosos de Meliaceae En Spodoptera frugiperda (Lepidoptera: Noctuidae). Manejo Integr. Plagas 1996, 42, 14–22. [Google Scholar]
- Ribeiro, L.P.; Ansante, T.F.; Vendramim, J.D. Efeito Do Extrato Etanólico de Sementes de Annona mucosa No Desenvolvimento e Comportamento Alimentar de Spodoptera frugiperda. Bragantia 2016, 75, 322–330. [Google Scholar] [CrossRef]
- Colom, O.Á.; Neske, A.; Popich, S.; Bardón, A. Toxic Effects of Annonaceous Acetogenins from Annona Cherimolia (Magnoliales: Annonaceae) on Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Pest Sci. 2007, 80, 63–67. [Google Scholar] [CrossRef]
- Blessing, L.D.T.; Colom, O.Á.; Popich, S.; Neske, A.; Bardón, A. Antifeedant and Toxic Effects of Acetogenins from Annona montana on Spodoptera frugiperda. J. Pest Sci. 2010, 83, 307–310. [Google Scholar] [CrossRef]
- Giongo, A.M.M.; Vendramim, J.D.; De Freitas, S.D.L.; Da Silva, M.F.D.G. Growth and Nutritional Physiology of Spodoptera frugiperda (Lepidoptera: Noctuidae) Fed on Meliaceae Fractions. Rev. Colomb. Entomol. 2015, 41, 33–40. [Google Scholar]
- Alves, D.S.; Carvalho, G.A.; Oliveira, D.F.; Corrêa, A.D. Screening of Brazilian Plant Extracts as Candidates for the Control of Spodoptera frugiperda. Rev. Colomb. Entomol. 2018, 44, 32. [Google Scholar] [CrossRef]
- Torres, A.L.; Barros, R.; Oliveira, J.V. de Efeito de Extratos Aquosos de Plantas No Desenvolvimento de Plutella xylostella (L.) (Lepidoptera: Plutellidae). Neotrop. Entomol. 2001, 30, 151–156. [Google Scholar] [CrossRef]
- Oppert, B.; Morgan, T.D.; Hartzer, K.; Kramer, K.J. Compensatory Proteolytic Responses to Dietary Proteinase Inhibitors in the Red Flour Beetle, Tribolium castaneum (Coleoptera: Tenebrionidae). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2005, 140, 53–58. [Google Scholar] [CrossRef]
- Mordue (Luntz), A.J.; Blackwell, A. Azadirachtin: An Update. J. Insect Physiol. 1993, 39, 903–924. [Google Scholar] [CrossRef]
- Baldin, E.L.L.; Vendramim, J.D.; Lourenção, A.L. Resistência de Plantas a Insetos—Fundamentos e Aplicações. In Resistência de Plantas a Insetos—Fundamentos e Aplicações; Baldin, E.L.L., Vendramim, J.D., Lourenção, A.L., Eds.; Fundação de Estudos Agrários Luiz de Queiroz: Piracicaba, Brazil, 2019; p. 493. [Google Scholar]
- Gaur, R.; Kumar, K. Insect Growth-Regulating Effects of Withania somnifera in a Polyphagous Pest, Spodoptera litura. Phytoparasitica 2010, 38, 237–241. [Google Scholar] [CrossRef]
- Kumar, P.M.; Murugan, K.; Kovendan, K.; Panneerselvam, C.; Kumar, K.P.; Amerasan, D.; Subramaniam, J.; Kalimuthu, K.; Nataraj, T. Mosquitocidal Activity of Solanum Xanthocarpum Fruit Extract and Copepod Mesocyclops thermocyclopoides for the Control of Dengue Vector Aedes aegypti. Parasitol. Res. 2012, 111, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Adamski, Z.; Adamski, Z.; Marciniak, P.; Ziemnicki, K.; Büyükgüzel, E.; Erdem, M.; Büyükgüzel, K.; Ventrella, E.; Falabella, P.; Cristallo, M.; et al. Potato Leaf Extract and Its Component, α-Solanine, Exert Similar Impacts on Development and Oxidative Stress in Galleria mellonella L. Arch. Insect Biochem. Physiol. 2014, 87, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zhou, C.; Long, G.; Yang, X.; Wei, Z.; Liao, Y.-J.; Yang, H.; Hu, C. Fitness of Fall Armyworm, Spodoptera frugiperda to Three Solanaceous Vegetables. J. Integr. Agric. 2021, 20, 755–763. [Google Scholar] [CrossRef]
- Kumral, N.A.; Çobanoğlu, S.; Yalcin, C. Acaricidal, Repellent and Oviposition Deterrent Activities of Datura Stramonium L. against Adult Tetranychus urticae (Koch). J. Pest Sci. 2010, 83, 173–180. [Google Scholar] [CrossRef]
Treatment | Larvae | Pupae | Adults | ||||
---|---|---|---|---|---|---|---|
Mortality (%) 1 | Duration (days) 2 | Mortality (%) 1 | Duration (days) 2 | Weight (mg) 3 | Deformity (%) 1 | Deformity (%) 1 | |
Acnistus arborescens | 62.5 ± 5.45 a | 33.9 ± 0.54 a | 36.7 ± 8.94 a | 13.9 ± 0.34 a | 173.9 ± 6.57 b | 13.3 ± 6.31 | 15.8 ± 8.59 |
Datura stramonium | 77.5 ± 4.70 a | 32.5 ± 0.75 a | 44.4 ± 12.10 a | 12.8 ± 0.26 b | 123.9 ± 9.89 c | 16.7 ± 9.04 | 20.0 ± 13.33 |
Negative control (acet.:met., 1:1) | 6.3 ± 2.72 b | 17.9 ± 0.28 b | 2.7 ± 1.87 b | 12.3 ± 0.13 b | 210.8 ± 2.66 a | 0.00 ± 0.00 * | 5.5 ± 2.68 |
Negative control (water) | 6.3 ± 2.72 b | 18.1 ± 0.25 b | 4.0 ± 2.28 b | 12.1 ± 0.11 b | 211.3 ± 2.50 a | 0.00 ± 0.00 * | 5.5 ± 2.72 |
Positive control (Azamax® 1.2 EC) | 100.0 ± 0.00 * | - | - | - | - | - | - |
F3, 316 = 52.48; p < 0.0001 | F3, 33 = 434.56;p < 0.0001 | F3, 194 = 12.56;p < 0.0001 | F3, 31 = 16.71; p < 0.0001 | F3, 34 = 53.79;p < 0.0001 | F1, 46 = 0.09;p = 0.759 | F3, 170 = 1.29; p = 0.279 |
Treatment | Larvae | Pupae | Adults | ||||
---|---|---|---|---|---|---|---|
Mortality (%) 1 | Duration (days) 2 | Mortality (%) 1 | Duration (days) 2 | Weight (mg) 2 | Deformity (%) 1 | Deformity (%) 1 | |
Acnistus arborescens | 100.0 ± 0.00 * | - | - | - | - | - | - |
Datura stramonium | 83.2 ± 3.44 a | 42.1 ± 1.73 a | 10.5 ± 7.23 | 13.3 ± 0.62 a | 161.6 ± 13.13 b | 40.0 ± 11.24 a | 27.3 ± 14.08 a |
Negative control (acet.:met., 1:1) | 8.3 ± 2.53 b | 21.0 ± 0.16 b | 9.1 ± 2.75 | 11.8 ± 0.15 b | 255.6 ± 3.46 a | 8.3 ± 2.64 b | 1.8 ± 1.29 b |
F1, 237 = 151.59; p < 0.0001 | W = 2160; p < 0.0001 | F1, 127 = 0.038; p = 0.846 | W = 758.5; p = 0.005 | W = 31.0; p < 0.0001 | F1, 127 = 11.33;p = 0.001 | F3, 118 = 8.58; p = 0.004 |
Treatment | Concentration (mg kg−1) | Consumption (mg) 1 |
---|---|---|
Acnistus arborescens | 8739 (=LC90) | 2.4 ± 1.02 e |
3694 (=LC50) | 3.5 ± 0.97 de | |
1966 (=LC25) | 6.2 ± 1.48 cd | |
Datura stramonium | 10,670 (=LC90) | 41.7 ± 19.90 b |
4088 (=LC50) | 15.8 ± 5.02 bc | |
2025 (=LC25) | 16.0 ± 2.03 b | |
Negative control (acet.:met., 1:1) | 51.7 ± 9.03 a | |
Negative control (water) | 32.6 ± 3.48 a | |
Positive control (Azamax® 1.2 EC) | 17.5 ± 7.93 bc | |
X2 = 95.117; df = 8; p < 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, A.F.; Ribeiro, L.P.; Lira, S.P.; Carvalho, G.A.; Vendramim, J.D. Growth Inhibitory Activities and Feeding Deterrence of Solanaceae-Based Derivatives on Fall Armyworm. Agriculture 2023, 13, 420. https://doi.org/10.3390/agriculture13020420
Lima AF, Ribeiro LP, Lira SP, Carvalho GA, Vendramim JD. Growth Inhibitory Activities and Feeding Deterrence of Solanaceae-Based Derivatives on Fall Armyworm. Agriculture. 2023; 13(2):420. https://doi.org/10.3390/agriculture13020420
Chicago/Turabian StyleLima, Andreísa F., Leandro P. Ribeiro, Simone P. Lira, Geraldo A. Carvalho, and José D. Vendramim. 2023. "Growth Inhibitory Activities and Feeding Deterrence of Solanaceae-Based Derivatives on Fall Armyworm" Agriculture 13, no. 2: 420. https://doi.org/10.3390/agriculture13020420