Wine and Health: From the Perspective of Alvise Cornaro to the Latest Scientific Opinions
Abstract
1. Alvise Cornaro and the Treatise on La Vita Sobria
2. The Wine Mission
3. Wine and Health
3.1. Red or White Wines?
Compounds | Red Wine (mg/L) | Reference | White Wine (mg/L) | Reference |
---|---|---|---|---|
Flavonoids | ||||
Anthocyanins | 21.3–736 | [50] | - | [50] |
73.27–337.21 | [51] | |||
Flavonols | 100 | [42] | - | [52] |
86.81–178.50 | [51] | |||
Flavanols | 800 | [42] | 15–25 | [50,53] |
81.70–169.33 | [51] | |||
(+)-Catechin | 13.8–390 | [50] | 38.0 ± 31.9 | [40] |
Catechin | 3.02–72.89 | [41] | 4.25–9.92 | [41] |
Flavanones (Naringenin) | 25 | [50] | 7.7 | [50] |
Hydrolyzable tannins (from oak) | 0–250 | [52] | 0–100 | [52] |
Proanthocyanidins and condensed tannins | 750–1000 | [52] | 20–25 | [52] |
Total (Flavonoids) | 1365–1500 | [52] | 40–45 | [52] |
Non-flavonoids | ||||
Benzoic acids | 60 | [52] | 10.0–15 | [52] |
Hydroxycinnamates | 60–165 | [52] | 130–154 | [52] |
Hydroxycinnamic acids | 100 | [50] | 30 | [50] |
Gallic acid | up to 70 | [42] | 13.1 ± 7.0 | [40] |
Stilbenes | 0.40–35.5 | [54] | 0.04–0.56 | [54] |
Resveratrol | 0–9.84 | [54] | 0.018–0.073 | [54] |
Tyrosol | 20–60 | [55] | 45 | [55] |
Hydroxytyrosol | 3.89 | [42] | 2.69 | [56] |
Total (Non-flavonoids) | 232–377 | [52] | 164.5–245.5 | [52] |
Total phenols | 1732–1742 | [52] | 209.5–285.5 | [52] |
2567 | [57] | 626 ± 160 | [40] |
3.2. Wine with Reduced Alcohol Content
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gullino, G.; Corner, A. Dizionario Biografico Degli Italiani; Treccani: Roma, Italy, 1983; Volume 29, pp. 142–146. [Google Scholar]
- Paccagnella, I. Tre Sonetti fra Morato e Magagnò; Cleup: Padova, Italy, 2011. [Google Scholar]
- Cornaro, A. Scritti sulla vita sobria. In Elogio e lettere; Corbo, e F., Ed.; Prima edizione critica a cura di Marisa Milani: Venezia, Italy, 1983. [Google Scholar]
- Benzoni, G. Verso la santa agricoltura. In Alvise Cornaro, Ruzante, il Polesine; Edizione Associazione Minelliana: Rovigo, Italy, 2004. [Google Scholar]
- Cornaro, L.; Cooke, G.; Herbert, G. How to Live for a Hundred Years and Avoid Disease…; Herbert, G., Translator; Alden Press: Oxford, UK, 1935. [Google Scholar]
- Jackson, R.S. Wine Science: Principles and Applications; Elsevier Academic Press: Amsterdam, The Netherlands, 2008; ISBN 978-0-12-373646-8. [Google Scholar]
- Norrie, P.A. The History of Wine as a Medicine. In Wine; CRC Press: Boca Raton, FL, USA, 2002; pp. 37–71. [Google Scholar]
- Montanari, L. Quando il vino era tutto. In Giornale di Agricoltura e Gastronomia (GAG); Centro di Cultura e Civiltà Contadina Biblioteca Internazionale “La Vigna”: Vicenza, Italy, 2022; Volume 3, pp. 6–13. ISSN 2464-8779. [Google Scholar]
- Harding, G. A Wine Miscellany: A Jaunt Through the Whimsical World of Wine; Clarkson Potter: New York, NY, USA, 2005. [Google Scholar]
- St Leger, A.S.; Cochrane, A.L.; Moore, F. Factors associated with cardiac mortality in developed countries with particular reference to the consumption of wine. Lancet 1979, 313, 1017–1020. [Google Scholar] [CrossRef] [PubMed]
- Artero, A.; Artero, A.; Tarín, J.J.; Cano, A. The impact of moderate wine consumption on health. Maturitas 2015, 80, 3–13. [Google Scholar] [CrossRef]
- McEvoy, L.K.; Bergstrom, J.; Tu, X.; Garduno, A.C.; Cummins, K.M.; Franz, C.E.; Laughlin, G.A. Moderate alcohol use is associated with reduced cardiovascular risk in middle-aged men independent of health, behavior, psychosocial, and earlier life factors. Nutrients 2022, 14, 2183. [Google Scholar] [CrossRef] [PubMed]
- Artaud-Wild, S.M.; Connor, S.L.; Sexton, G.; Connor, W.E. Differences in coronary mortality can be explained by differences in cholesterol and saturated fat intakes in 40 countries but not in France and Finland. A paradox. Circulation 1993, 88, 2771–2779. [Google Scholar] [CrossRef] [PubMed]
- Galinski, C.N.; Zwicker, J.I.; Kennedy, D.R. Revisiting the mechanistic basis of the French Paradox: Red wine inhibits the activity of protein disulfide isomerase in vitro. Thromb. Res. 2016, 137, 169–173. [Google Scholar] [CrossRef]
- Fragopoulou, E.; Choleva, M.; Antonopoulou, S.; Demopoulos, C.A. Wine and its metabolic effects. A comprehensive review of clinical trials. Metabolism 2018, 83, 102–119. [Google Scholar] [CrossRef]
- De Oliveira e Silva, E.R.; Foster, D.; Harper, M.M.; Seidman, C.E.; Smith, J.D.; Breslow, J.L.; Brinton, E.A. Alcohol consumption raises HDL cholesterol levels by increasing the transport rate of apolipoproteins A-I and A-II. Circulation 2000, 102, 2347–2352. [Google Scholar] [CrossRef]
- Gaziano, J.M.; Buring, J.E.; Breslow, J.L.; Goldhaber, S.Z.; Rosner, B.; VanDenburgh, M.; Willett, W.; Hennekens, C.H. Moderate alcohol intake, increased levels of high-density lipoprotein and its subfractions, and decreased risk of myocardial infarction. N. Eng. J. Med. 1993, 329, 1829–1834. [Google Scholar] [CrossRef]
- Teissedre, P.L.; Stockley, C.; Boban, M.; Gambert, P.; Alba, M.O.; Flesh, M.; Ruf, J.C. The effects of wine consumption on cardiovascular disease and associated risk factors: A narrative review. OENO One 2018, 52, 67–79. [Google Scholar] [CrossRef]
- Kleinhenz, D.J.; Sutliff, R.L.; Polikandriotis, J.A.; Walp, E.R.; Dikalov, S.I.; Guidot, D.M.; Hart, C.M. Chronic ethanol ingestion increases aortic endothelial nitric oxide synthase expression and nitric oxide production in the rat. Alcohol. Clin. Exp. Res. 2008, 32, 148–154. [Google Scholar] [CrossRef]
- Krenz, M.; Korthuis, R.J. Moderate ethanol ingestion and cardiovascular protection: From epidemiologic associations to cellular mechanisms. J. Mol. Cell Cardiol. 2012, 52, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Vejarano, R.; Luján-Corro, M. Red Wine and Health: Approaches to Improve the Phenolic Content During Winemaking. Front. Nutr. 2022, 9, 1126. [Google Scholar] [CrossRef]
- Bryazka, D.; Reitsma, M.B.; Griswold, M.G.; Abate, K.H.; Abbafati, C.; Abbasi-Kangevari, M.; Diress, M. Population-level risks of alcohol consumption by amount, geography, age, sex, and year: A systematic analysis for the Global Burden of Disease Study 2020. Lancet 2022, 400, 185–235. [Google Scholar]
- Zimatkin, S.M.; Pronko, S.P.; Vasiliou, V.; Gonzalez, F.J.; Deitrich, R.A. Enzymatic Mechanisms of Ethanol Oxidation in the Brain. Alcohol. Clin. Exp. Res. 2006, 30, 1500–1505. [Google Scholar] [CrossRef] [PubMed]
- Peter Guengerich, F.; Avadhani, N.G. Roles of cytochrome P450 in metabolism of ethanol and carcinogens. Adv. Exp. Med. Biol. 2018, 1032, 15. [Google Scholar] [PubMed]
- Doody, E.E.; Groebner, J.L.; Walker, J.R.; Frizol, B.M.; Tuma, D.J.; Fernandez, D.J.; Tuma, P.L. Ethanol metabolism by alcohol dehydrogenase or cytochrome P450 2E1 differentially impairs hepatic protein trafficking and growth hormone signaling. Am. J. Physiol.-Gastr. L 2017, 313, G558–G569. [Google Scholar]
- Rumgay, H.; Murphy, N.; Ferrari, P.; Soerjomataram, I. Alcohol and cancer: Epidemiology and biological mechanisms. Nutrients 2021, 13, 3173. [Google Scholar] [CrossRef]
- Shield, K.D.; Parry, C.; Rehm, J. Chronic diseases and conditions related to alcohol use. Alcohol. Res.-Curr. Rev. 2014, 35, 155. [Google Scholar]
- Furtwængler, N.A.F.F.; De Visser, R.O. Lack of international consensus in low-risk drinking guidelines. Drug Alcohol. Rev. 2013, 32, 11–18. [Google Scholar] [CrossRef]
- Kalinowski, A.; Humphreys, K. Governmental standard drink definitions and low-risk alcohol consumption guidelines in 37 countries. Addiction 2016, 111, 1293–1298. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture and U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025, 9th ed.; December 2020. Available online: https://www.dietaryguidelines.gov/ (accessed on 25 January 2023).
- Huang, S.; Li, J.; Shearer, G.C.; Lichtenstein, A.H.; Zheng, X.; Wu, Y.; Jin, C.; Wu, S.; Gao, X. Longitudinal study of alcohol consumption and HDL concentrations: A community-based study. Am. J. Clin. Nutr. 2017, 105, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Kloner, R.A.; Rezkalla, S.H. To Drink or not to drink? That is the question. Circulation 2007, 116, 1306–1317. [Google Scholar] [CrossRef] [PubMed]
- Gambini, J.; Gimeno-Mallench, L.; Olaso-Gonzalez, G.; Mastaloudis, A.; Traber, M.G.; Monleón, D.; Borrás, C.; Viña, J. Moderate red wine consumption increases the expression of longevity-associated genes in controlled human populations and extends lifespan in Drosophila melanogaster. Antioxidants 2021, 10, 301. [Google Scholar] [CrossRef] [PubMed]
- Wood, A.M.; Kaptoge, S.; Butterworth, A.; Nietert, P.J.; Warnakula, S.; Bolton, T.; Paige, E.; Paul, D.S.; Sweeting, M.; Burgess, S.; et al. Risk thresholds for alcohol consumption: Combined analysis of individual-participant data for 599,912 current drinkers in 83 prospective studies. Lancet 2018, 391, 1513–1523. [Google Scholar] [CrossRef] [PubMed]
- Davies, E.L.; Foxcroft, D.R.; Puljevic, C.; Ferris, J.A.; Winstock, A.R. Global comparisons of responses to alcohol health information labels: A cross sectional study of people who drink alcohol from 29 countries. Addict Behav. 2022, 131, 107330. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Pan, A.; Wang, D.D.; Liu, X.; Dhana, K.; Franco, O.H.; Kaptoge, S.; Di Angelantonio, E.; Stampfer, M.; Willett, W.C.; et al. Impact of healthy lifestyle factors on life expectancies in the US population. Circulation 2018, 138, 345–355. [Google Scholar] [CrossRef]
- Loef, M.; Walach, H. The combined effects of healthy lifestyle behaviors on all cause mortality: A systematic review and meta-analysis. Prev. Med. 2012, 55, 163–170. [Google Scholar] [CrossRef]
- Nemzer, B.; Kalita, D.; Yashin, A.Y.; Yashin, Y.I. Chemical Composition and polyphenolic compounds of red wines: Their antioxidant activities and effects on human health—A review. Beverages 2022, 8, 1. [Google Scholar] [CrossRef]
- Jakubíková, M.; Sádecká, J.; Hroboňová, K. Determination of total phenolic content and selected phenolic compounds in sweet wines by fluorescence spectroscopy and multivariate calibration. Microchem. J. 2022, 181, 107834. [Google Scholar] [CrossRef]
- Jackson, R.S. Specific and distinctive wine styles. In Wine Science, 3rd ed.; Elsevier academic press: Amsterdam, The Netherlands, 2008; pp. 520–576. ISBN 9780080568744. [Google Scholar]
- Yang, P.; Li, H.; Wang, H.; Han, F.; Jing, S.; Yuan, C.; Guo, A.; Zhang, Y.; Xu, Z. dispersive liquid-liquid microextraction method for HPLC determination of phenolic compounds in wine. Food Anal. Met. 2017, 10, 2383–2397. [Google Scholar] [CrossRef]
- Gutiérrez-Escobar, R.; Aliaño-González, M.J.; Cantos-Villar, E. Wine polyphenol content and its influence on wine quality and properties: A review. Molecules 2021, 26, 718. [Google Scholar] [CrossRef]
- Giacosa, S.; Parpinello, G.P.; Segade, S.R.; Ricci, A.; Paissoni, M.A.; Curioni, A.; Versari, A. Diversity of Italian red wines: A study by enological parameters, color, and phenolic indices. Food Res. Int. 2021, 143, 110277. [Google Scholar] [CrossRef] [PubMed]
- Castaldo, L.; Narváez, A.; Izzo, L.; Graziani, G.; Gaspari, A.; Di Minno, G.; Ritieni, A. Red wine consumption and cardiovascular health. Molecules 2019, 24, 3626. [Google Scholar] [CrossRef]
- Cavallini, G.; Straniero, S.; Donati, A.; Bergamini, E. Resveratrol requires red wine polyphenols for optimum antioxidant activity. J. Nutr. Health Aging 2016, 20, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Ghanim, H.; Sia, C.L.; Abuaysheh, S.; Korzeniewski, K.; Patnaik, P.; Marumganti, A.; Chaudhuri, A.; Dandona, P. An antiinflammatory and reactive oxygen species suppressive effects of an extract of polygonum cuspidatum containing resveratrol. J. Clin. Endocrinol. Metab. 2010, 95, E1–E8. [Google Scholar] [CrossRef] [PubMed]
- Snopek, L.; Mlcek, J.; Sochorova, L.; Baron, M.; Hlavacova, I.; Jurikova, T.; Kizek, R.; Sedlackova, E.; Sochor, J. Contribution of red wine consumption to human health protection. Molecules 2018, 23, 1684. [Google Scholar] [CrossRef]
- Liu, Y.S.; Yuan, M.H.; Zhang, C.Y.; Liu, H.M.; Liu, J.R.; Wei, A.L.; Ye, Q.; Zeng, B.; Li, M.F.; Guo, Y.P.; et al. Puerariae Lobatae radix flavonoids and puerarin alleviate alcoholic liver injury in zebrafish by regulating alcohol and lipid metabolism. Biomed. Pharmacother. 2021, 134, 111121. [Google Scholar] [CrossRef]
- Radeka, S.; Rossi, S.; Bestulić, E.; Budić-Leto, I.; Kovačević Ganić, K.; Horvat, I.; Dvornik, Š. Bioactive compounds and antioxidant activity of red and white wines produced from autochthonous croatian varieties: Effect of moderate consumption on human health. Foods 2022, 11, 1804. [Google Scholar] [CrossRef]
- Visioli, F.; Panaite, S.A.; Tomé-Carneiro, J. Wine’s phenolic compounds and health: A pythagorean view. Molecules 2020, 25, 4105. [Google Scholar] [CrossRef]
- Lingua, M.S.; Fabani, M.P.; Wunderlin, D.A.; Baroni, M.V. In vivo antioxidant activity of grape, pomace and wine from three red varieties grown in Argentina: Its relationship to phenolic profile. J. Funct. Foods 2016, 20, 332–345. [Google Scholar] [CrossRef]
- Waterhouse, A.L. Wine Phenolics. Ann. N. Y. Acad. Sci. 2002, 957, 21–36. [Google Scholar] [CrossRef] [PubMed]
- Piñeiro, Z.; Palma, M.; Barroso, C.G. Determination of catechins by means of extraction with pressurized liquids. J. Chromatogr. A 2004, 1026, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, R.F.; Valls-Fonayet, J.; Richard, T.; Cantos-Villar, E. A rapid quantification of stilbene content in wine by ultra-high pressure liquid chromatography—Mass spectrometry. Food Control 2020, 108, 106821. [Google Scholar] [CrossRef]
- Garrido, J.; Borges, F. Wine and grape polyphenols—A chemical perspective. Food Res. Int. 2013, 54, 1844–1858. [Google Scholar] [CrossRef]
- Fernández-Mar, M.I.; Mateos, R.; García-Parrilla, M.C.; Puertas, B.; Cantos-Villar, E. Bioactive compounds in wine: Resveratrol, hydroxytyrosol and melatonin: A review. Food Chem. 2012, 130, 797–813. [Google Scholar] [CrossRef]
- Frankel, E.N.; Waterhouse, A.L.; Teissedre, P.L. Principal phenolic phytochemicals in selected California wines and their antioxidant activity in inhibiting oxidation of human low-density lipoproteins. J. Agric. Food Chem. 1995, 43, 890–894. [Google Scholar] [CrossRef]
- Rodriguez-Lopez, P.; Rueda-Robles, A.; Borrás-Linares, I.; Quirantes-Piné, R.M.; Emanuelli, T.; Segura-Carretero, A.; Lozano-Sánchez, J. Grape and Grape-Based Product Polyphenols: A Systematic Review of Health Properties, Bioavailability, and Gut Microbiota Interactions. Horticulturae 2022, 8, 583. [Google Scholar] [CrossRef]
- Pickering, G.J. Low-and reduced-alcohol wine: A review. J. Wine Res. 2000, 11, 129–144. [Google Scholar] [CrossRef]
- Novello, V.; de Palma, L. Viticultural strategy to reduce alcohol levels in wine. In Alcohol Level Reduction in Wine-Oenoviti International Network; Vigne et Vin Publications Internationales: Villenave d’Ornon, France, 2013; Volume 7, pp. 3–8. [Google Scholar]
- Sun, X.; Dang, G.; Ding, X.; Shen, C.; Liu, G.; Zuo, C.; Chen, X.; Xing, W.; Jin, W. Production of alcohol-free wine and grape spirit by pervaporation membrane technology. Food Bioprod. Process. 2020, 123, 262–273. [Google Scholar] [CrossRef]
- Schelezki, O.J.; Smith, P.A.; Hranilovic, A.; Bindon, K.A.; Jeffery, D.W. Comparison of consecutive harvests versus blending treatments to produce lower alcohol wines from Cabernet Sauvignon grapes: Impact on polysaccharide and tannin content and composition. Food Chem. 2018, 244, 50–59. [Google Scholar] [CrossRef]
- Bovo, B.; Nadai, C.; Vendramini, C.; Fernandes Lemos Junior, W.J.; Carlot, M.; Skelin, A.; Giacomini, A.; Corich, V. Aptitude of Saccharomyces yeasts to ferment unripe grapes harvested during cluster thinning for reducing alcohol content of wine. Int. J. Food Microbiol. 2016, 236, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Hranilovic, A.; Gambetta, J.M.; Jeffery, D.W.; Grbin, P.R.; Jiranek, V. Lower-alcohol wines produced by Metschnikowia pulcherrima and Saccharomyces cerevisiae co-fermentations: The effect of sequential inoculation timing. Int. J. Food Microbiol. 2020, 329, 108651. [Google Scholar] [CrossRef] [PubMed]
- Contreras, A.; Hidalgo, C.; Schmidt, S.; Henschke, P.A.; Curtin, C.; Varela, C. The application of non-Saccharomyces yeast in fermentations with limited aeration as a strategy for the production of wine with reduced alcohol content. Int. J. Food Microbiol. 2015, 205, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Canonico, L.; Solomon, M.; Comitini, F.; Ciani, M.; Varela, C. Volatile profile of reduced alcohol wines fermented with selected non-Saccharomyces yeasts under different aeration conditions. Food Microbiol. 2019, 84, 103247. [Google Scholar] [CrossRef] [PubMed]
- Varela, C.; Sengler, F.; Solomon, M.; Curtin, C. Volatile flavour profile of reduced alcohol wines fermented with the non-conventional yeast species Metschnikowia pulcherrima and Saccharomyces uvarum. Food Chem. 2016, 209, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Varela, C.; Barker, A.; Tran, T.; Borneman, A.; Curtin, C. Sensory profile and volatile aroma composition of reduced alcohol Merlot wines fermented with Metschnikowia pulcherrima and Saccharomyces uvarum. Int. J. Food Microbiol. 2017, 252, 1–9. [Google Scholar] [CrossRef]
- Tilloy, V.; Cadière, A.; Ehsani, M.; Dequin, S. Reducing alcohol levels in wines through rational and evolutionary engineering of Saccharomyces cerevisiae. Int. J. Food Microbiol. 2015, 213, 49–58. [Google Scholar] [CrossRef]
- Minzer, S.; Estruch, R.; Casas, R. Wine intake in the framework of a Mediterranean diet and chronic non-communicable diseases: A short literature review of the last 5 years. Molecules 2020, 25, 5045. [Google Scholar] [CrossRef]
- Fiore, M.; Alaimo, L.S.; Chkhartishvil, N. The amazing bond among wine consumption, health and hedonistic well-being. Brit. Food J. 2020, 122, 2707–2723. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lante, A.; Marangon, M.; Vincenzi, S.; Lomolino, G.; Crapisi, A.; Pasini, G.; Malavasi, S.; Curioni, A. Wine and Health: From the Perspective of Alvise Cornaro to the Latest Scientific Opinions. Agriculture 2023, 13, 415. https://doi.org/10.3390/agriculture13020415
Lante A, Marangon M, Vincenzi S, Lomolino G, Crapisi A, Pasini G, Malavasi S, Curioni A. Wine and Health: From the Perspective of Alvise Cornaro to the Latest Scientific Opinions. Agriculture. 2023; 13(2):415. https://doi.org/10.3390/agriculture13020415
Chicago/Turabian StyleLante, Anna, Matteo Marangon, Simone Vincenzi, Giovanna Lomolino, Antonella Crapisi, Gabriella Pasini, Stefania Malavasi, and Andrea Curioni. 2023. "Wine and Health: From the Perspective of Alvise Cornaro to the Latest Scientific Opinions" Agriculture 13, no. 2: 415. https://doi.org/10.3390/agriculture13020415
APA StyleLante, A., Marangon, M., Vincenzi, S., Lomolino, G., Crapisi, A., Pasini, G., Malavasi, S., & Curioni, A. (2023). Wine and Health: From the Perspective of Alvise Cornaro to the Latest Scientific Opinions. Agriculture, 13(2), 415. https://doi.org/10.3390/agriculture13020415