Pressure-Stabilized Flexible End-Effector for Selective Picking of Agaricus bisporus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of the End-Effector
2.1.1. Structural Design of the End-Effector
2.1.2. Material Determination
2.1.3. Finite Element Simulation of the End-Effector
2.2. Adsorption Force Experiment
2.2.1. Flexible Films of Different Thicknesses
2.2.2. Particle Fillers of Different Species
2.3. Design of the Adsorption Force Adjustment System
2.3.1. Principle of Adsorption Force Adjustment
2.3.2. Design of the Adjustment System
2.4. Performance Evaluation of the Adjustment System
2.4.1. Negative-Pressure Stability Comparison
2.4.2. Correlation Experiment
2.5. Experiment on Harvesting Agaricus bisporus
3. Results and Discussion
3.1. Analysis of the Simulation Results
3.2. Analysis of Adsorption Force Experimental Results
3.2.1. Impact Analysis from Film Thickness
3.2.2. Impact Analysis from Particle Species
3.3. Evaluation of the Adsorption Force Adjustment System
3.3.1. Evaluation of Negative-Pressure Stability
3.3.2. Evaluation of the Relevance
3.4. Evaluation of Actual Picking Results
4. Conclusions
- (1)
- In this experiment, when the thickness of the flexible film was 0.90 mm, and the film was filled with a quartz diameter of 200 mesh, the flexible profiling end-effector achieved a good profiling effect;
- (2)
- The relationship between the adsorption force and negative suction pressure was linear. Within an acceptable error range, the influence of friction on suction could be ignored. Therefore, it was feasible to control the adsorption force by controlling the negative pressure;
- (3)
- The designed flexible profiling end actuator was used to harvest Agaricus bisporus with diameters in the range of 25–50 mm. The success rate of harvesting was 98.50%, and the damage rate was 2.50%.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Erjavec, J.; Kos, J.; Ravnikar, M.; Dreo, T.; Saboti, J. Proteins of higher fungi—From forest to application. Trends Biotechnol. 2012, 30, 259–273. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Pu, Y.; Sun, D. Recent advances in quality preservation of postharvest mushrooms (Agaricus bisporus): A review. Trends Food Sci. Technol. 2018, 78, 72–82. [Google Scholar] [CrossRef]
- Perez-Montes, A.; Rangel-Vargas, E.; Lorenzo, J.M.; Romero, L.; Santos, E.M. Edible mushrooms as a novel trend in the development of healthier meat products. Curr. Opin. Food Sci. 2021, 37, 118–124. [Google Scholar] [CrossRef]
- Mleczek, M.; Rzymski, P.; Budka, A.; Siwulski, M.; Jasińska, A.; Kalač, P.; Poniedziałek, B.; Gąsecka, M.; Niedzielski, P. Elemental characteristics of mushroom species cultivated in China and Poland. J. Food Compos. Anal. 2018, 66, 168–178. [Google Scholar] [CrossRef]
- Yin, H.; Yi, W.; Hu, D. Computer vision and machine learning applied in the mushroom industry: A critical review. Comput. Electron. Agric. 2022, 198, 107015. [Google Scholar] [CrossRef]
- Reed, J.N.; Miles, S.J.; Butler, J.; Baldwin, M.; Noble, R. AE—Automation and Emerging Technologies. J. Agric. Eng. Res. 2001, 78, 15–23. [Google Scholar] [CrossRef]
- Zhang, Y.; Geng, W.; Shen, Y.; Wang, Y.; Dai, Y. Edible Mushroom Cultivation for Food Security and Rural Development in China: Bio-Innovation, Technological Dissemination and Marketing. Sustainability 2014, 6, 2961–2973. [Google Scholar] [CrossRef]
- Zhang, B.; Xie, Y.; Zhou, J.; Wang, K.; Zhang, Z. State-of-the-art robotic grippers, grasping and control strategies, as well as their applications in agricultural robots: A review. Comput. Electron. Agric. 2020, 177, 105694. [Google Scholar] [CrossRef]
- Shamshiri, R.R.; Weltzien, C.; Hameed, I.A.; Yule, I.; Grift, T.E.; Balasundram, S.K.; Pitonakova, L.; Ahmad, D.; Chowdhary, G.V. Research and development in agricultural robotics: A perspective of digital farming. Int. J. Agric. Biol. Eng. 2018, 11, 1–14. [Google Scholar] [CrossRef]
- Mu, L.; Cui, G.; Liu, Y.; Cui, Y.; Fu, L.; Gejima, Y. Design and simulation of an integrated end-effector for picking kiwifruit by robot. Inf. Process. Agric. 2020, 7, 58–71. [Google Scholar] [CrossRef]
- Wei, B.; He, J.; Shi, Y.; Jiang, G.; Zhang, X.; Ma, Y. Design and experiment of underactuated end-effector for citrus picking. Trans. Chin. Soc. Agric. Mach. 2021, 52, 120–128. [Google Scholar] [CrossRef]
- Guo, T.; Zheng, Y.; Bo, W.; Liu, J.; Pi, J.; Chen, W.; Deng, J. Research on the Bionic Flexible End-Effector Based on Tomato Harvesting. J. Sens. 2022, 2022, 2564952. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, Z.; Wang, Y.; Bao, R.; Chen, X.; Fu, S.; Tian, M.; Zhang, Y. Research on Flexible End-Effectors with Humanoid Grasp Function for Small Spherical Fruit Picking. Agriculture 2023, 13, 123. [Google Scholar] [CrossRef]
- Yue, H.; Guo, X.; Zhang, W.; Yang, W.Y.; Zhou, Y. Discussion on the application of picking robot in agriculture. Xinjiang Agricult. Mech. 2016, 1, 31–34. [Google Scholar] [CrossRef]
- Binghe, L.; Takanori, U.; Takuya, F.; Shinsuke, Y.; Takashi, S.; Kazuo, I. Development of end-effector for harvesting tomato using suction and cutting mechanism. In Proceedings of the of JSME Annual Conference on Robotics and Mechatronics (Robomec), Tokyo, Japan, 10–13 November 2017; pp. 1A1–D06. [Google Scholar] [CrossRef]
- Hu, X.; Wang, C.; Yu, T. Design and application of visual system in the Agaricus bisporus picking robot. J. Phys. Conf. Ser. 2019, 1187, 32–34. [Google Scholar] [CrossRef]
- Masoudian, A.; Mcisaac, K.A. Application of support vector machine to detect microbial spoilage of mushrooms. In Proceedings of the 2013 International Conference on Computer and Robot Vision, Regina, SK, Canada, 28–31 May 2013; pp. 281–287. [Google Scholar] [CrossRef]
- Huang, M.; He, L.; Choi, D.; Pecchia, J.A.; Li, Y. Picking dynamic analysis for robotic harvesting of Agaricus bisporus mushrooms. Comput. Electron. Agric. 2021, 185, 106145. [Google Scholar] [CrossRef]
- Elango, N.; Faudzi, A. A review article: Investigations on soft materials for soft robot manipulations. Int. J. Adv. Manuf. Technol. 2015, 80, 1027–1037. [Google Scholar] [CrossRef]
- Park, W.; Seo, S.; Bae, J. A Hybrid Gripper with Soft Material and Rigid Structures. IEEE Robot. Autom. Lett. 2019, 4, 65–72. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, X.; Huang, Y.; Cao, L.; Liu, J. A review of soft manipulator research, applications, and opportunities. J. Field Robot. 2021, 39, 281–311. [Google Scholar] [CrossRef]
- Fei, Y.; Wang, J.; Pang, W. A novel fabric-based versatile and stiffness-tunable soft gripper integrating soft pneumatic fingers and wrist. Soft Robot. 2019, 6, 1–20. [Google Scholar] [CrossRef]
- Kurpaska, S.; Sobol, Z.; Pedryc, N.; Hebda, T.; Nawara, P. Analysis of the pneumatic system parameters of the suction cup integrated with the head for harvesting strawberry fruit. J. Sens. 2020, 20, 4389. [Google Scholar] [CrossRef]
- Huang, M.; Jiang, X.; He, L.; Choi, D.; Pecchia, J.; Li, Y. Development of a robotic harvesting mechanism for button mushrooms. Trans. ASABE 2021, 64, 565–575. [Google Scholar] [CrossRef]
- Yang, S.; Ji, J.; Cai, H.; Chen, H. Modeling and Force Analysis of a Harvesting Robot for Button Mushrooms. IEEE Access 2022, 10, 78519–78526. [Google Scholar] [CrossRef]
- Huh, T.M.; Sanders, K.; Danielczuk, M.; Li, M.S.; Goldberg, K.; Stuart, H.S. A Multi-Chamber Smart Suction Cup for Adaptive Gripping and Haptic Exploration. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 1786–1793. [Google Scholar] [CrossRef]
Material | Friction Coefficient |
---|---|
Latex film | 0.3–0.5 |
Silicone film | 0.4–0.8 |
End-Effector Type | Picking Number | Number Successfully Picked | Average Air Pressure/kPa |
---|---|---|---|
End-effector with flexible profiling | 200 | 197 | −9.20 |
Common suction cup (25 mm) | 200 | 181 | −10.30 |
Common suction cup (35 mm) | 200 | 185 | −9.80 |
Common suction cup (45 mm) | 200 | 172 | −11.70 |
Picking Method | Sample Number | Number with Obvious Damages | Number with Minor Damage |
---|---|---|---|
Manual | 200 | 0 | 2 |
End-effector with flexible profiling | 200 | 0 | 5 |
Common suction cups | 200 | 13 | 28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, K.; Li, H.; Ji, J.; Li, Q.; Li, M.; He, Y.; Li, J.; Xing, S. Pressure-Stabilized Flexible End-Effector for Selective Picking of Agaricus bisporus. Agriculture 2023, 13, 2256. https://doi.org/10.3390/agriculture13122256
Zhao K, Li H, Ji J, Li Q, Li M, He Y, Li J, Xing S. Pressure-Stabilized Flexible End-Effector for Selective Picking of Agaricus bisporus. Agriculture. 2023; 13(12):2256. https://doi.org/10.3390/agriculture13122256
Chicago/Turabian StyleZhao, Kaixuan, Hongzhen Li, Jiangtao Ji, Qianwen Li, Mengsong Li, Yongkang He, Jinlong Li, and Suhe Xing. 2023. "Pressure-Stabilized Flexible End-Effector for Selective Picking of Agaricus bisporus" Agriculture 13, no. 12: 2256. https://doi.org/10.3390/agriculture13122256
APA StyleZhao, K., Li, H., Ji, J., Li, Q., Li, M., He, Y., Li, J., & Xing, S. (2023). Pressure-Stabilized Flexible End-Effector for Selective Picking of Agaricus bisporus. Agriculture, 13(12), 2256. https://doi.org/10.3390/agriculture13122256