Effects of Field Pea Diet and Immunocastration in Heavy Pigs on Fresh Pork and Dry-Cured Ham
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Designs
2.2. Pig Husbandry and Diets (Exp. 1 and Exp. 2)
2.3. Performance, Carcass Quality, and Behavioral Time-Budget of Immunocastrated Female Pigs (Exp. 1)
2.4. Fat and Fatty Acid Analyses of Loin (Exp. 1 and Exp. 2)
2.5. Weight Losses of Dry-Cured Hams (Exp. 1 and Exp. 2)
2.6. Statistical Analysis
3. Results and Discussion
3.1. Growth Performances and Animal Behavior in Immunocastrated Female Pigs (Exp. 1)
3.1.1. Growth and Carcass Performances in Female Pigs
3.1.2. Behavior and Activity in Female Pigs
3.2. Fat and Fatty Acid of L. lumborum, and Dry-Cured Weight Processing Losses of IF (Exp. 1)
3.2.1. Fat Amount and Fatty Acids of L. lumborum in Immunocastrated Female Pigs
3.2.2. Dry-Cured Weight Processing Losses of Iminoacetate Female Pigs
3.3. Fat Amount and Fatty Acid of L. lumborum, and Dry-Cured Weight Processing Losses of Male Pigs (Exp. 2)
3.3.1. Effect of Feeding Strategy on Male Pigs
3.3.2. Effect of Castration Method in Male Pigs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin-Schilstra, L.; Fischer, A.R.H. Paradoxical Consumers in Four European Countries: Meat-Eating Justification and Willingness to Pay for Meat from Animals Treated by Alternatives to Surgical Castration. Meat Sci. 2022, 188, 108777. [Google Scholar] [CrossRef] [PubMed]
- Argemí-Armengol, I.; Villalba, D.; Ripoll, G.; Teixeira, A.; Álvarez-Rodríguez, J. Credence Cues of Pork Are More Important than Consumers’ Culinary Skills to Boost Their Purchasing Intention. Meat Sci. 2019, 154, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Di Vita, G.; Maesano, G.; Zanchini, R.; Barbieri, C.; Spina, D.; Caracciolo, F.; D’Amico, M. The Thin Line between Tradition and Well-Being: Consumer Responds to Health and Typicality Attributes for Dry-Cured Ham. J. Clean. Prod. 2022, 364, 132680. [Google Scholar] [CrossRef]
- Zira, S.; Rydhmer, L.; Ivarsson, E.; Hoffmann, R.; Röös, E. A Life Cycle Sustainability Assessment of Organic and Conventional Pork Supply Chains in Sweden. Sustain. Prod. Consum. 2021, 28, 21–38. [Google Scholar] [CrossRef]
- FAO. Soya Production Statistics. 2021. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 23 August 2023).
- Gatel, F.; Grosjean, F. Composition and nutritive value of peas for pigs: A review of European results. Livest. Prod. Sci. 1990, 26, 155–175. [Google Scholar] [CrossRef]
- Pérez-Ciria, L.; Carcò, G.; Miana-Mena, F.J.; Mitjana, O.; Falceto, M.V.; Latorre, M.A. Immunocastration in Gilts: A Preliminary Study of the Effect of the Second Dose Administration Time on Growth, Reproductive Tract Development, and Carcass and Meat Quality. Animals 2021, 11, 510. [Google Scholar] [CrossRef] [PubMed]
- Dunshea, F.R.; Allison, J.R.D.; Bertram, M.; Boler, D.D.; Brossard, L.; Campbell, R.; Crane, J.P.; Hennessy, D.P.; Huber, L.; De Lange, C.; et al. The Effect of Immunization against GnRF on Nutrient Requirements of Male Pigs: A Review. Animal 2013, 7, 1769–1778. [Google Scholar] [CrossRef]
- Rauw, W.M.; Rydhmer, L.; Kyriazakis, I.; Øverland, M.; Gilbert, H.; Dekkers, J.C.; Hermesch, S.; Bouquet, A.; Gómez Izquierdo, E.; Louveau, I.; et al. Prospects for Sustainability of Pig Production in Relation to Climate Change and Novel Feed Resources. J. Sci. Food Agric. 2020, 100, 3575–3586. [Google Scholar] [CrossRef]
- Pérez-Ciria, L.; Miana-Mena, F.J.; López-Mendoza, M.C.; Álvarez-Rodríguez, J.; Latorre, M.A. Influence of Immunocastration and Diet on Meat and Fat Quality of Heavy Female and Male Pigs. Animals 2021, 11, 3355. [Google Scholar] [CrossRef]
- Gispert, M.; Àngels Oliver, M.; Velarde, A.; Suarez, P.; Pérez, J.; Font i Furnols, M. Carcass and Meat Quality Characteristics of Immunocastrated Male, Surgically Castrated Male, Entire Male and Female Pigs. Meat Sci. 2010, 85, 664–670. [Google Scholar] [CrossRef]
- Daza, A.; Latorre, M.A.; Olivares, A.; López-Bote, C.J. The Effect of Immunocastration and a Diet Based on Granulated Barley on Growth Performance and Carcass, Meat and Fat Quality in Heavy Gilts. Animal 2014, 8, 484–493. [Google Scholar] [CrossRef] [PubMed]
- Di Martino, G.; Scollo, A.; Garbo, A.; Lega, F.; Stefani, A.L.; Vascellari, M.; Natale, A.; Zuliani, F.; Zanardello, C.; Tonon, F.; et al. Impact of Sexual Maturity on the Welfare of Immunocastrated v. Entire Heavy Female Pigs. Animal 2018, 12, 1631–1637. [Google Scholar] [CrossRef] [PubMed]
- Argemí-Armengol, I.; Villalba, D.; Vall, L.; Coma, R.; Roma, J.; Álvarez-Rodríguez, J. Locally Grown Crops and Immunocastration in Fattening Heavy Pigs: Effects on Performance and Welfare. Animals 2022, 12, 1629. [Google Scholar] [CrossRef] [PubMed]
- Che, L.; Chen, H.; Yu, B.; He, J.; Zheng, P.; Mao, X.; Yu, J.; Huang, Z.; Chen, D. Long-Term Intake of Pea Fiber Affects Colonic Barrier Function, Bacterial and Transcriptional Profile in Pig Model. Nutr. Cancer 2014, 66, 388–399. [Google Scholar] [CrossRef] [PubMed]
- Sukhija, P.S.; Palmquist, D.L. Rapid Method for Determination of Total Fatty Acid Content and Composition of Feedstuffs and Feces. J. Agric. Food Chem. 1988, 36, 1202–1206. [Google Scholar] [CrossRef]
- Casal-Plana, N.; Manteca, X.; Dalmau, A.; Fàbrega, E. Influence of Enrichment Material and Herbal Compounds in the Behaviour and Performance of Growing Pigs. Appl. Anim. Behav. Sci. 2017, 195, 38–43. [Google Scholar] [CrossRef]
- Argemí-Armengol, I.; Villalba, D.; Tor, M.; Bertolín, J.R.; Latorre, M.A.; Álvarez-Rodríguez, J. Effects of Dietary Roughage on Organic Pig Performance, Behaviour and Antioxidants Accretion in Perirenal Adipose Tissue. Livest. Sci. 2020, 241, 104255. [Google Scholar] [CrossRef]
- Fàbrega, E.; Marcet-Rius, M.; Vidal, R.; Escribano, D.; Cerón, J.J.; Manteca, X.; Velarde, A. The Effects of Environmental Enrichment on the Physiology, Behaviour, Productivity and Meat Quality of Pigs Raised in a Hot Climate. Animals 2019, 9, 235. [Google Scholar] [CrossRef]
- FEDNA (Fundación Española para el Desarrollo de la Nutrición Animal). Necesidades Nutricionales para Ganado Porcino. 2013. Available online: http://www.fundacionfedna.org/sites/default/files/Normas PORCINO_2013rev2_0.pdf (accessed on 24 November 2023).
- FEFAC. EU Feed Industry Concerns and Call for Action at EU Council Level to Tackle Exploding Energy Costs and Their Advsere Impact on Feed & Food Security. 2023. Available online: https://fefac.eu/newsroom/news/eu-feed-industry-concerns-and-call-for-action-at-eu-council-level-to-tackle-exploding-energy-costs-and-their-advsere-impact-on-feed-food-security/ (accessed on 26 October 2023).
- Hanczakowska, E.; Księżak, J.; Świątkiewicz, M.; Hanczakowska, E.; Księżak, J.; Świątkiewicz, M. Efficiency of Pea Seeds in Sow, Piglet and Fattener Feeding. Anim. Prod. Sci. 2018, 59, 304–313. [Google Scholar] [CrossRef]
- Stein, H.H.; Everts, A.K.R.; Sweeter, K.K.; Peters, D.N.; Maddock, R.J.; Wulf, D.M.; Pedersen, C. The Influence of Dietary Field Peas (Pisum sativum L.) on Pig Performance, Carcass Quality, and the Palatability of Pork1,2. J. Anim. Sci. 2006, 84, 3110–3117. [Google Scholar] [CrossRef]
- White, G.A.; Smith, L.A.; Houdijk, J.G.M.; Homer, D.; Kyriazakis, I.; Wiseman, J. Replacement of Soya Bean Meal with Peas and Faba Beans in Growing/Finishing Pig Diets: Effect on Performance, Carcass Composition and Nutrient Excretion. Anim. Feed. Sci. Technol. 2015, 209, 202–210. [Google Scholar] [CrossRef]
- Palma-Granados, P.; Lara, L.; Seiquer, I.; Lachica, M.; Fernández-Fígares, I.; Haro, A.; Nieto, R. Protein Retention, Growth Performance and Carcass Traits of Individually Housed Immunocastrated Male- and Female- and Surgically Castrated Male Iberian Pigs Fed Diets of Increasing Amino Acid Concentration. Animal 2021, 15, 100187. [Google Scholar] [CrossRef] [PubMed]
- Prandini, A.; Sigolo, S.; Morlacchini, M.; Cerioli, C.; Masoero, F. Pea (Pisum sativum) and Faba Bean (Vicia faba L.) Seeds as Protein Sources in Growing-Finishing Heavy Pig Diets: Effect on Growth Performance, Carcass Characteristics and on Fresh and Seasoned Parma Ham Quality. Ital. J. Anim. Sci. 2011, 10, e45. [Google Scholar] [CrossRef]
- Parrini, S.; Aquilani, C.; Pugliese, C.; Bozzi, R.; Sirtori, F. Soybean Replacement by Alternative Protein Sources in Pig Nutrition and Its Effect on Meat Quality. Animals 2023, 13, 494. [Google Scholar] [CrossRef] [PubMed]
- de Quelen, F.; Brossard, L.; Wilfart, A.; Dourmad, J.-Y.; Garcia-Launay, F. Eco-Friendly Feed Formulation and On-Farm Feed Production as Ways to Reduce the Environmental Impacts of Pig Production Without Consequences on Animal Performance. Front. Vet. Sci. 2021, 8, 689012. [Google Scholar] [CrossRef]
- Ekkel, E.D.; Spoolder, H.A.M.; Hulsegge, I.; Hopster, H. Lying Characteristics as Determinants for Space Requirements in Pigs. Appl. Anim. Behav. Sci. 2003, 80, 19–30. [Google Scholar] [CrossRef]
- Rajendram, J. Behavioural Analysis of Pigs When Presented with Pea-Diets. Ph.D. Thesis, University of Saskatchewan Saskatoon, Saskatoon, SK, Canada, 2012. [Google Scholar]
- Brouns, F.; Edwards, S.A.; English, P.R. Effect of Dietary Fibre and Feeding System on Activity and Oral Behaviour of Group Housed Gilts. Appl. Anim. Behav. Sci. 1994, 39, 215–223. [Google Scholar] [CrossRef]
- Suzuki, K.; Shibata, T.; Kadowaki, H.; Abe, H.; Toyoshima, T. Meat Quality Comparison of Berkshire, Duroc and Crossbred Pigs Sired by Berkshire and Duroc. Meat Sci. 2003, 64, 35–42. [Google Scholar] [CrossRef]
- Alonso, V.; Muela, E.; Gutiérrez, B.; Calanche, J.B.; Roncalés, P.; Beltrán, J.A. The Inclusion of Duroc Breed in Maternal Line Affects Pork Quality and Fatty Acid Profile. Meat Sci. 2015, 107, 49–56. [Google Scholar] [CrossRef]
- Font-i-Furnols, M.; Gispert, M.; Soler, J.; Diaz, M.; Garcia-Regueiro, J.A.; Diaz, I.; Pearce, M.C. Effect of Vaccination against Gonadotrophin-Releasing Factor on Growth Performance, Carcass, Meat and Fat Quality of Male Duroc Pigs for Dry-Cured Ham Production. Meat Sci. 2012, 91, 148–154. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat Deposition, Fatty Acid Composition and Meat Quality: A Review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Ciria, L.; Ripoll, G.; Sanz, M.Á.; Blanco, M.; Miana-Mena, F.J.; Latorre, M.A. Impact of Gilt Immunocastration on Weight Losses and Instrumental and Chemical Characteristics of Teruel Dry-Cured Ham. Meat Sci. 2023, 199, 109125. [Google Scholar] [CrossRef] [PubMed]
- Škrlep, M.; Čandek-Potokar, M.; Lukač, N.B.; Povše, M.P.; Pugliese, C.; Labussière, E.; Flores, M. Comparison of Entire Male and Immunocastrated Pigs for Dry-Cured Ham Production under Two Salting Regimes. Meat Sci. 2016, 111, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Čandek-Potokar, M.; Škrlep, M.; Kostyra, E.; Żakowska-Biemans, S.; Poklukar, K.; Batorek-Lukač, N.; Kress, K.; Weiler, U.; Stefanski, V. Quality of Dry-Cured Ham from Entire, Surgically and Immunocastrated Males: Case Study on Kraški Pršut. Animals 2020, 10, 239. [Google Scholar] [CrossRef] [PubMed]
- Colombo, S.M.; Rodgers, T.F.M.; Diamond, M.L.; Bazinet, R.P.; Arts, M.T. Projected Declines in Global DHA Availability for Human Consumption as a Result of Global Warming. Ambio 2020, 49, 865–880. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Guo, S.; Wang, J.; Wang, Y.; Fu, S.; Shen, Z. Çoklu Doymamış Yağ Asitleri ve Hayvansal Üretim Arasındaki İlişki: Derleme. Kafkas Univ. Vet. Fak. Derg. 2019, 25, 731–740. [Google Scholar] [CrossRef]
- Williams, C.M. Dietary Fatty Acids and Human Health. Ann. Zootech. 2000, 49, 165–180. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The Importance of the Ratio of Omega-6/Omega-3 Essential Fatty Acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Bonfatti, V.; Carnier, P. Prediction of Dry-Cured Ham Weight Loss and Prospects of Use in a Pig Breeding Program. Animal 2020, 14, 1128–1138. [Google Scholar] [CrossRef]
- Candek-Potokar, M.; Monin, G.; Zlender, B. Pork Quality, Processing, and Sensory Characteristics of Dry-Cured Hams as Influenced by Duroc Crossing and Sex1. J. Anim. Sci. 2002, 80, 988–996. [Google Scholar] [CrossRef]
- Mordenti, A.L.; Martelli, G.; Brogna, N.; Nannoni, E.; Vignola, G.; Zaghini, G.; Sardi, L. Effects of a Soybean-Free Diet Supplied to Italian Heavy Pigs on Fattening Performance, and Meat and Dry-Cured Ham Quality. Ital. J. Anim. Sci. 2012, 11, e80. [Google Scholar] [CrossRef]
- Seiquer, I.; Palma-Granados, P.; Haro, A.; Lara, L.; Lachica, M.; Fernández-Fígares, I.; Nieto, R. Meat Quality Traits in Longissimus Lumborum and Gluteus Medius Muscles from Immunocastrated and Surgically Castrated Iberian Pigs. Meat Sci. 2019, 150, 77–84. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Nutrient Requirements of Swine: Eleventh Revised Edition; National Academies Press: Washington, DC, USA, 2012; ISBN 978-0-309-22423-9. [Google Scholar]
- Wood, J.D.; Buxton, P.J.; Whittington, F.M.; Enser, M. The Chemical Composition of Fat Tissues in the Pig: Effects of Castration and Feeding Treatment. Livest. Prod. Sci. 1986, 15, 73–82. [Google Scholar] [CrossRef]
- Bosi, P.; Russo, V. The Production of the Heavy Pig for High Quality Processed Products. Ital. J. Anim. Sci. 2004, 3, 309–321. [Google Scholar] [CrossRef]
- Ruiz-Carrascal, J.; Ventanas, J.; Cava, R.; Andrés, A.I.; García, C. Texture and Appearance of Dry Cured Ham as Affected by Fat Content and Fatty Acid Composition. Food Res. Int. 2000, 33, 91–95. [Google Scholar] [CrossRef]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effects of Fatty Acids on Meat Quality: A Review. Meat Sci. 2004, 66, 21–32. [Google Scholar] [CrossRef]
- Font-i-Furnols, M.; Albano-Gaglio, M.; Brun, A.; Tejeda, J.F.; Gispert, M.; Marcos, B.; Zomeño, C. The Effect of Immunocastration of Male and Female Duroc Pigs on the Morphological, Mechanical and Compositional Characteristics of Pork Belly. Meat Sci. 2023, 204, 109263. [Google Scholar] [CrossRef]
- Gandemer, G. Lipids in Muscles and Adipose Tissues, Changes during Processing and Sensory Properties of Meat Products. Meat Sci. 2002, 62, 309–321. [Google Scholar] [CrossRef]
- Boler, D.D.; Kutzler, L.W.; Meeuwse, D.M.; King, V.L.; Campion, D.R.; McKeith, F.K.; Killefer, J. Effects of Increasing Lysine on Carcass Composition and Cutting Yields of Immunologically Castrated Male Pigs. J. Anim. Sci. 2011, 89, 2189–2199. [Google Scholar] [CrossRef]
- Pauly, C.; Spring, P.; O’Doherty, J.V.; Ampuero Kragten, S.; Bee, G. Growth Performance, Carcass Characteristics and Meat Quality of Group-Penned Surgically Castrated, Immunocastrated (Improvac®) and Entire Male Pigs and Individually Penned Entire Male Pigs. Animal 2009, 3, 1057–1066. [Google Scholar] [CrossRef]
- Neidleman, S.L. Effects of Temperature on Lipid Unsaturation. Biotechnol. Genet. Eng. Rev. 1987, 5, 245–268. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.; Hoz, L.; Cambero, M.I.; Cabeza, M.C.; Ordóñez, J.A. Enrichment of Dry-Cured Ham with α-Linolenic Acid and α-Tocopherol by the Use of Linseed Oil and α-Tocopheryl Acetate in Pig Diets. Meat Sci. 2008, 80, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Pinna, A.; Schivazappa, C.; Virgili, R.; Parolari, G. Effect of Vaccination against Gonadotropin-Releasing Hormone (GnRH) in Heavy Male Pigs for Italian Typical Dry-Cured Ham Production. Meat Sci. 2015, 110, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Tomažin, U.; Škrlep, M.; Prevolnik Povše, M.; Batorek Lukač, N.; Karolyi, D.; Červek, M.; Čandek-Potokar, M. The Effect of Salting Time and Sex on Chemical and Textural Properties of Dry Cured Ham. Meat Sci. 2020, 161, 107990. [Google Scholar] [CrossRef]
- Lopez-Bote, C.J. Sustained Utilization of the Iberian Pig Breed. Meat Sci. 1998, 49, S17–S27. [Google Scholar] [CrossRef]
Experiment 1 | Experiment 2 | |||||
---|---|---|---|---|---|---|
Immunocastrated Female (IF) | Castrated Male (CM) | Immunocastrated Male (IM) | ||||
Item | SBM | PS-L | SBM | PS-L | SBM | PS-L |
Pens (n) | ||||||
Pig performance | 4 | 4 | NA | NA | NA | NA |
Behavior | 4 | 4 | NA | NA | NA | NA |
Pigs (n) | ||||||
Carcass quality | 15 | 15 | 41 | 41 | 41 | 41 |
Fat amount and quality | 12 | 12 | 24 | 24 | 24 | 24 |
Weight losses of dry-cured hams | 12 | 12 | 15 | 14 | 15 | 13 |
FA, % Total | Late Finisher (110–140 kg) | |
---|---|---|
Field Peas: | 0% (SBM) | 40%(PS-L) |
C10:0 capric | 4.09 | 4.05 |
C12:0 lauric | 2.77 | 2.43 |
C14:0 miristic | 0.47 | 0.60 |
C14:1 miristoleic | 0.10 | 0.11 |
C16:0 palmitic | 19.43 | 19.62 |
C17:0 margaric | 1.02 | 0.98 |
C18:0 stearic | 3.29 | 3.26 |
C20:0 arachidic | 1.38 | 1.36 |
C16:1n-9 palmitoleic | 0.21 | 0.22 |
C16:1n-7 hexadecenoic | 0.03 | 0.05 |
C17:1 heptadecanoic | 0.92 | 1.08 |
C18:1n-9 oleic | 23.17 | 23.12 |
C18:1n-7 vaccenic | 1.11 | 1.16 |
C20:1n-9 eicosenoic | 0.99 | 1.05 |
C18:2n-6 linoleic | 37.73 | 37.61 |
C18:3n-6 γ-linolenic | 0.05 | 0.06 |
C18:3n-3 α-linolenic | 3.01 | 2.97 |
C18:4n-3 stearidonic | 0.23 | 0.28 |
Category | Definition |
---|---|
Behaviors | |
Negative social interaction | Head or snout in aggressive contact with another pig, negative social behavior |
Positive social interactions | Head or snout in mild contact with another pig, positive social behavior |
Eat concentrate or drinking | Head or snout over a bowl or feed hopper |
Interaction with the pen fixtures | Licking, chewing, nosing, or sniffing unanimated objects from the pen, excluding enrichment material |
Inactive | The pig remains immobile, showing no other behavior |
Activity | |
Lying | The pig is recumbent on its belly or side |
Sitting inactive | The pig is upright on two front legs and hindquarters (sitting in a dog position) |
Standing inactive | The pig is upright on all four legs, neither moving forward nor backward |
Walking | The pig is upright on all four legs and moves in the pen |
Feeding Strategy (F) | SEM | p-Value 1 | ||
---|---|---|---|---|
Parameter | SBM | PS-L | F | |
Body weight (BW), kg | ||||
Initial, day (d) 0 | 45.5 | 47.1 | 1.70 | ns |
Grower diet (40–80 kg), d 49 | 78.0 | 78.3 | 2.76 | ns |
Early finisher diet (80–110 kg), d 80 | 103.5 | 99.0 | 1.97 | ns |
Late finisher diet (110–140 kg), d 116 | 137.0 | 140.0 | 3.06 | ns |
Average daily gain (ADG), g/day | ||||
Grower diet (40–80 kg) | 723 | 693 | 39.3 | ns |
Early finisher diet (80–110 kg) | 807 | 762 | 21.0 | ns |
Late finisher diet (110–140 kg) | 914 | 951 | 41.3 | ns |
Carcass quality | ||||
Carcass weight (kg) | 105.7 | 106.0 | 2.24 | ns |
Killing-out proportion (%) | 72.5 | 74.5 | 0.95 | ns |
Subcutaneous fat of ham (mm) | 24.4 | 23.3 | 1.88 | ns |
Back fat thickness (mm) | 36.3 | 34.8 | 1.97 | ns |
Lean meat % | 52.4 | 53.8 | 0.89 | ns |
Feeding Strategy (F) | SEM | p-Value † | ||
---|---|---|---|---|
Item | SBM | PS-L | F | |
IMF (%) | 5.4 | 5.2 | 0.3 | ns |
Fatty acid profile | ||||
C14:0 myristic | 1.54 | 1.54 | 0.030 | ns |
C15:0 pentadecanoic | 0.03 | 0.02 | 0.001 | ns |
C16:0 palmitic | 25.69 | 25.85 | 0.220 | ns |
C17:0 margaric | 0.15 | 0.17 | 0.010 | ns |
C18:0 stearic | 13.75 | 13.83 | 0.280 | ns |
C20:0 arachidic | 0.17 | 0.19 | 0.004 | ** |
C14:1n-5 myristoleic | 0.09 | 0.09 | 0.010 | ns |
C16:1n-9 palmitoleic | 0.08 | 0.11 | 0.005 | *** |
C16:1n-7 hexadecenoic | 3.32 | 3.3 | 0.100 | ns |
C17:1 heptadecanoic | 0.17 | 0.23 | 0.030 | ns |
C18:1n-7 vaccenic | 3.46 | 3.4 | 0.100 | ns |
C18:1n-9 oleic | 41.9 | 42.2 | 0.310 | ns |
C20:1n-9 eicosenoic | 0.63 | 0.68 | 0.020 | ns |
C24:1n-9 nervonic | 0.03 | 0.05 | 0.004 | ** |
C18:2n-6 linoleic | 6.74 | 6.26 | 0.270 | ns |
C18:3n-3 α-linolenic | 0.25 | 0.23 | 0.010 | ns |
C18:3n-6 γ-linolenic | 0.02 | 0.02 | 0.001 | ns |
C18:4n-3 stearidonic | 0.049 | 0.045 | 0.001 | * |
C20:2n-6 eicosadienoic | 0.26 | 0.25 | 0.010 | ns |
C20:3n-6 dihomo- γ-linolenic | 0.14 | 0.13 | 0.006 | ns |
C20:4n-6 arachidonic | 1.04 | 0.99 | 0.070 | ns |
C20:5n-3 eicosapentaenoic | 0.05 | 0.06 | 0.003 | ns |
C22:4n-6 adrenic | 0.05 | 0.14 | 0.009 | *** |
C22:5n-3 docosapentaenoic | 0.17 | 0.16 | 0.009 | ns |
C22:6n-3 docosahexaenoic | 0.16 | 0.05 | 0.010 | *** |
ΣSFA | 41.3 | 41.6 | 0.480 | ns |
ΣMUFA | 49.7 | 50.1 | 0.400 | ns |
ΣPUFA | 8.95 | 8.33 | 0.350 | ns |
Σn-6 | 8.11 | 7.66 | 0.320 | ns |
Σn-3 | 0.69 | 0.54 | 0.030 | *** |
Σn-6/Σn-3 | 11.7 | 14.18 | 0.290 | *** |
Feeding Strategy (F) | SEM | p-Value 1 | ||
---|---|---|---|---|
SBM | PS-L | F | ||
Length of curing, days | 512 | 508 | 4.7 | ns |
Weights, kg | ||||
Initial, cold ham before salting | 12.8 | 12.5 | 0.19 | ns |
After salting (15 days) | 12.3 | 11.9 | 0.19 | ns |
End of dry curing (17 months) | 8.9 | 8.7 | 0.19 | ns |
Weight losses, % | ||||
After salting 2 | 4.1 | 4.5 | 0.33 | ns |
End of dry curing 2 | 30.2 | 30.3 | 0.6 | ns |
Feeding Strategy (F) | Method of Castration (C) | SEM | p-Value † | |||||
---|---|---|---|---|---|---|---|---|
SBM | PS-L | IM | CM | F | C | FxC | ||
Carcass | ||||||||
Subcutaneous fat of ham, mm | 23.8 | 21.7 | 21.2 | 24.3 | 0.93 | ns | * | ns |
Backfat thickness, mm | 32.3 | 34.2 | 32.2 | 34.3 | 0.85 | ns | ns | ns |
L. lumborum | ||||||||
Intramuscular fat, % | 5.7 | 5.0 | 4.9 | 5.8 | 0.34 | ns | ns | ns |
Feeding Strategy (F) | Method of Castration (C) | SEM | p-Value 1 | |||||
---|---|---|---|---|---|---|---|---|
SBM | PS-L | IM | CM | F | C | FxC | ||
Fatty acid profile | ||||||||
C14:0 myristic | 1.48 | 1.54 | 1.49 | 1.53 | 0.030 | ns | ns | ns |
C15:0 pentadecanoic | 0.03 | 0.03 | 0.03 | 0.03 | 0.001 | ns | ns | ns |
C16:0 palmitic | 25.35 | 25.50 | 25.35 | 25.50 | 0.200 | ns | ns | ns |
C17:0 margaric | 0.18 | 0.20 | 0.19 | 0.19 | 0.008 | ns | ns | ns |
C18:0 stearic | 13.79 | 13.84 | 14.27 | 13.37 | 0.240 | ns | ** | ns |
C20:0 arachidic | 0.18 | 0.19 | 0.19 | 0.18 | 0.003 | ns | ns | ns |
C14:1n-5 myristoleic | 0.06 | 0.11 | 0.08 | 0.10 | 0.010 | *** | ns | ns |
C16:1n-9 palmitoleic | 0.12 | 0.13 | 0.14 | 0.11 | 0.007 | ns | ** | ns |
C16:1n-7 hexadecenoic | 3.11 | 3.29 | 3.09 | 3.32 | 0.085 | ns | ns | ns |
C17:1 heptadecanoic | 0.26 | 0.25 | 0.25 | 0.26 | 0.030 | ns | ns | ns |
C18:1n-7 vaccenic | 5.13 | 3.55 | 5.34 | 3.34 | 1.380 | ns | ns | ns |
C18:1n-9 oleic | 39.05 | 41.28 | 38.29 | 42.04 | 1.335 | ns | ns | ns |
C20:1n-9 eicosenoic | 0.68 | 0.68 | 0.68 | 0.68 | 0.020 | ns | ns | ns |
C24:1n-9 nervonic | 0.03 | 0.04 | 0.04 | 0.04 | 0.003 | *** | ns | ns |
C18:2n-6 linoleic | 8.10 | 7.09 | 8.12 | 7.07 | 0.290 | * | * | ns |
C18:3n-3 α-linolenic | 0.02 | 0.02 | 0.02 | 0.02 | 0.001 | * | ns | ns |
C18:3n-6 γ-linolenic | 0.32 | 0.27 | 0.32 | 0.26 | 0.010 | * | ** | ns |
C18:4n-3 stearidonic | 0.05 | 0.04 | 0.04 | 0.05 | 0.001 | ns | ** | ns |
C20:2n-6 eicosadienoic | 0.33 | 0.29 | 0.34 | 0.28 | 0.010 | * | ** | ns |
C20:3n-6 dihomo- γ-linolenic | 0.15 | 0.15 | 0.15 | 0.14 | 0.008 | ns | ns | ns |
C20:4n-6 arachidonic | 1.11 | 1.09 | 1.11 | 1.08 | 0.060 | ns | ns | ns |
C20:5n-3 eicosapentaenoic | 0.07 | 0.06 | 0.07 | 0.06 | 0.003 | * | ns | ns |
C22:4n-6 adrenic | 0.06 | 0.18 | 0.13 | 0.10 | 0.008 | *** | ns | * |
C22:5n-3 docosapentaenoic | 0.18 | 0.17 | 0.18 | 0.17 | 0.010 | ns | ns | ns |
C22:6n-3 docosahexaenoic | 0.17 | 0.02 | 0.09 | 0.10 | 0.398 | *** | * | ns |
ΣSFA | 41.01 | 41.29 | 41.52 | 40.78 | 0.398 | ns | ns | ns |
ΣMUFA | 48.44 | 49.34 | 47.91 | 49.88 | 0.360 | ns | *** | ns |
ΣPUFA | 10.55 | 9.37 | 10.58 | 9.34 | 0.383 | * | * | ns |
Σn-6 | 9.62 | 8.66 | 9.72 | 8.56 | 0.355 | ns | * | ns |
Σn-3 | 0.77 | 0.56 | 0.70 | 0.64 | 0.020 | *** | ns | ns |
Σn-6/Σn-3 | 12.41 | 15.20 | 13.95 | 13.65 | 0.130 | *** | ns | ns |
Feeding Strategy (F) | Method of Castration (C) | SEM | p-Value 1 | |||||
---|---|---|---|---|---|---|---|---|
SBM | PS-L | IM | CM | F | C | FxC | ||
Length of curing, days | 493 | 492 | 495 | 491 | 3.40 | ns | ns | ns |
Weights, kg | ||||||||
Initial, cold ham before salting | 12.2 | 12.6 | 12.6 | 12.3 | 0.20 | ns | ns | ns |
After salting (15 days) | 11.7 | 12 | 12 | 11.7 | 0.19 | ns | ns | ns |
End of dry curing (17 months) | 8.3 | 8.6 | 8.4 | 8.4 | 0.16 | ns | ns | ns |
Weight losses, % | ||||||||
After salting 2 | 4.8 | 4.7 | 5.0 | 4.5 | 0.13 | ns | ** | ns |
End of dry curing 2 | 32.5 | 32.1 | 33.6 | 31 | 0.5 | ns | *** | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Argemí-Armengol, I.; Tor, M.; Bottegal, D.; Latorre, M.A.; Serrano-Pérez, B.; Álvarez-Rodríguez, J. Effects of Field Pea Diet and Immunocastration in Heavy Pigs on Fresh Pork and Dry-Cured Ham. Agriculture 2023, 13, 2221. https://doi.org/10.3390/agriculture13122221
Argemí-Armengol I, Tor M, Bottegal D, Latorre MA, Serrano-Pérez B, Álvarez-Rodríguez J. Effects of Field Pea Diet and Immunocastration in Heavy Pigs on Fresh Pork and Dry-Cured Ham. Agriculture. 2023; 13(12):2221. https://doi.org/10.3390/agriculture13122221
Chicago/Turabian StyleArgemí-Armengol, Immaculada, Marc Tor, Diego Bottegal, Maria A. Latorre, Beatriz Serrano-Pérez, and Javier Álvarez-Rodríguez. 2023. "Effects of Field Pea Diet and Immunocastration in Heavy Pigs on Fresh Pork and Dry-Cured Ham" Agriculture 13, no. 12: 2221. https://doi.org/10.3390/agriculture13122221
APA StyleArgemí-Armengol, I., Tor, M., Bottegal, D., Latorre, M. A., Serrano-Pérez, B., & Álvarez-Rodríguez, J. (2023). Effects of Field Pea Diet and Immunocastration in Heavy Pigs on Fresh Pork and Dry-Cured Ham. Agriculture, 13(12), 2221. https://doi.org/10.3390/agriculture13122221