Importance of Compost, Bentonite, and Calcium Oxide in Reducing Trace Element Content in Maize on Agricultural Soil Contaminated with Diesel Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Methodology
2.2. Methodology of Laboratory Analyses and Statistical Calculations
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amundson, R.; Berhe, A.A.; Hopmans, J.W.; Olson, C.; Sztein, A.E.; Sparks, D.L. Soil and human security in the 21st century. Science 2015, 348, 1261071. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Wang, L.; Yang, J. The willingness and technology preferences of farmers and their influencing factors for soil remediation. Land 2022, 11, 1821. [Google Scholar] [CrossRef]
- Pinedo, J.; Ibáñez, R.; Lijzen, J.P.A.; Irabien, T. Assessment of soil pollution based on total petroleum hydrocarbons and individual oil substances. J. Environ. Manag. 2013, 130, 72–79. [Google Scholar] [CrossRef]
- Cocârţă, D.; Stoian, M.; Karademir, A. Crude oil contaminated sites: Evaluation by using risk assessment approach. Sustainability 2017, 9, 1365. [Google Scholar] [CrossRef]
- Sattar, S.; Hussain, R.; Shah, S.M.; Bibi, S.; Ahmad, S.R.; Shahzad, A.; Zamir, A.; Rauf, Z.; Noshad, A.; Ahmad, L. Composition, impacts, and removal of liquid petroleum waste through bioremediation as an alternative clean-up technology: A review. Heliyon 2022, 8, e11101. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Hernández, I.; Ochoa-Gaona, S.; Adams Schroeder, R.H.; River-Cruz, M.C.; Geissen, V. Tolerance of four tropical tree species to heavy petroleum contamination. Water Air Soil Pollut. 2013, 224, 1637. [Google Scholar] [CrossRef]
- Johnston, J.E.; Lim, E.; Roh, H. Impact of upstream oil extraction and environmental public health: A review of the evidence. Sci. Total Environ. 2019, 657, 187–199. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Ziółkowska, A. Effect of compost, bentonite and CaO on some properties of soil contaminated with petrol and diesel oil. Ecol. Chem. Eng. A 2011, 18, 1373–1384. [Google Scholar]
- Wyszkowski, M.; Ziółkowska, A. Effect of petrol and diesel oil on content of organic carbon and mineral components in soil. Am. Eurasian J. Sustain. Agric. 2008, 2, 54–60. [Google Scholar]
- Gospodarek, J.; Rusin, M.; Kandziora-Ciupa, M.; Nadgórska-Socha, A. The subsequent effects of soil pollution by petroleum products and its bioremediation on the antioxidant response and content of elements in Vicia faba plants. Energies 2021, 14, 7748. [Google Scholar] [CrossRef]
- Borowik, A.; Wyszkowska, J.; Kucharski, M.; Kucharski, J. The role of Dactylis glomerata and diesel oil in the formation of microbiome and soil enzyme activity. Sensors 2020, 20, 3362. [Google Scholar] [CrossRef] [PubMed]
- Mitter, E.K.; Germida, J.J.; de Freitas, J.R. Impact of diesel and biodiesel contamination on soil microbial community activity and structure. Sci. Rep. 2021, 11, 10856. [Google Scholar] [CrossRef] [PubMed]
- Bona, C.; de Rezende, I.M.; de Oliveira Santos, G.; de Souza, L.A. Effect of soil contaminated by diesel oil on the germination of seeds and the growth of Schinus terebinthifolius Raddi (Anacardiaceae) seedlings. Braz. Arch. Biol. Technol. 2011, 54, 1379–1387. [Google Scholar] [CrossRef]
- Hawrot-Paw, M.; Wijatkowski, A.; Mikiciuk, M. Influence of diesel and biodiesel fuel-contaminated soil on microorganisms, growth and development of plants. Plant Soil Environ. 2015, 61, 189–194. [Google Scholar] [CrossRef]
- Hawrot-Paw, M.; Koniuszy, A.; Zając, G.; Szyszlak-Bargłowicz, J. Ecotoxicity of soil contaminated with diesel fuel and biodiesel. Sci. Rep. 2020, 10, 16436. [Google Scholar] [CrossRef]
- Castro-Mancilla, Y.V.; de la Rosa-Manzano, E.; Castro-Nava, S.; Martínez-Avalos, J.G. Physiological responses of Quercus oleoides (Schltdl & Cham) to soils contaminated by diesel. Plant Prod. Sci. 2019, 22, 519–529. [Google Scholar] [CrossRef]
- Redondo-Gomez, S.; Petenello, M.C.; Feldman, S.R. Growth, nutrient status, and photosynthetic response to diesel-contaminated soil of a cordgrass. Spartina Argentinensis. Mar. Pollut. Bull. 2014, 79, 34–38. [Google Scholar] [CrossRef]
- Mukome, F.N.D.; Buelow, M.C.; Shang, J.S.; Peng, J.; Rodriguez, M.; Mackay, D.M.; Pignatello, J.P.; Sihota, N.; Hoelen, T.; Parikh, S.J. Biochar amendment as a remediation strategy for surface soils impacted by crude oil. Environ. Pollut. 2020, 265, 115006. [Google Scholar] [CrossRef]
- Pérez, A.P.; Eugenio, N.R. Status of Local Soil Contamination in Europe: Revision of the Indicator ‘Progress in the Management Contaminated Sites in EUROPE’. JRC. 2018. Available online: https://Data.Europa.Eu/Doi/10.2760/093804 (accessed on 4 September 2023).
- Ujowundu, C.O.; Kalu, F.N.; Nwaoguikpe, R.N.; Kalu, O.I.; Ihejirika, C.E.; Nwosunjoku, E.C.; Okechukwu, R.I. Biochemical and physical characterization of diesel petroleum contaminated soil in southeastern Nigeria. Res. J. Chem. Sci. 2011, 1, 57–62. [Google Scholar]
- Shi, T.; Ma, J.; Zhang, Y.; Liu, C.; Hu, Y.; Gong, Y.; Wu, X.; Ju, T.; Hou, H.; Zhao, L. Status of lead accumulation in agricultural soils across China (1979–2016). Environ. Int. 2019, 129, 35. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Gong, Y.; Liu, Q.; Yang, S.; Ma, J.; Zhao, L.; Hou, H. Status of copper accumulation in agricultural soils across China (1985–2016). Chemosphere 2020, 244, 125516. [Google Scholar] [CrossRef] [PubMed]
- Moon, D.H.; Park, J.W.; Koutsospyros, A.; Cheong, K.H.; Chang, Y.Y.; Beak, K.; Jo, R.; Park, J.H. Assessment of soil washing for simultaneous removal of heavy metals and low-level petroleum hydrocarbons using various washing solutions. Environ. Earth Sci. 2016, 75, 884. [Google Scholar] [CrossRef]
- Effendi, A.J.; Wulandari, M. The impact of ultrasonic power and time for the removal of Total Petroleum Hydrocarbon from low permeability contaminated soils. IOP Conf. Ser. Earth Environ. Sci. 2019, 314, 012005. [Google Scholar] [CrossRef]
- Anthony, E.J.; Wang, J. Pilot plant investigations of thermal remediation of tar-contaminated soil and oil-contaminated gravel. Fuel 2006, 85, 443–450. [Google Scholar] [CrossRef]
- Falciglia, P.P.; Giustra, M.G.; Vagliasindi, F.G.A. Low-temperature thermal desorption of diesel polluted soil: Influence of temperature and soil texture on contaminant removal kinetics. J. Hazard. Mater. 2011, 185, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Adipah, S. Remediation of petroleum hydrocarbons contaminated soil by Fenton’s oxidation. J. Environ. Sci. Pub. Health 2018, 2, 168–178. [Google Scholar] [CrossRef]
- Ahmad, S.; Ba-Naimoon, M.S.M.; Bahraq, A.A.; Al-Amoudi, O.S.B.; Maslehuddin, M.; Al-Malack, A.H. Stabilization/Solidification of petroleum oil-contaminated soil using different stabilizers to deliver a pavement subbase material. Arab. J. Sci. Eng. 2022, 47, 13687–13697. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Kordala, N. Trace element contents in petrol-contaminated soil following the application of compost and mineral materials. Materials 2022, 15, 5233. [Google Scholar] [CrossRef]
- Ruley, J.A.; Amoding, A.; Tumuhairwe, J.B.; Basamba, T.A.; Opolot, E.; Oryem-Origa, H. Enhancing the phytoremediation of hydrocarbon-contaminated soils in the Sudd Wetlands, South Sudan, using organic manure. Appl. Environ. Soil Sci. 2020, 2020, 4614286. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, D.; Ren, H. Bioremediation of oil contaminated soil using agricultural wastes via microbial consortium. Sci. Rep. 2020, 10, 9188. [Google Scholar] [CrossRef]
- Ahmad, A.A.; Muhammad, I.; Shah, T.; Kalwar, Q.; Zhang, J.; Liang, Z.; Mei, D.; Juanshan, Z.; Yan, P.; Zhi, D.X.; et al. Remediation methods of crude oil contaminated soil. World J. Agric. Soil Sci. 2020, 4, 1–8. [Google Scholar] [CrossRef]
- Sui, X.; Wang, X.; Li, Y.; Ji, H. Remediation of petroleum-contaminated soils with microbial and microbial combined methods: Advances, mechanisms, and challenges. Sustainability 2021, 13, 9267. [Google Scholar] [CrossRef]
- Ku-Fan, C.; Yu-Chen, C.; Wan-Ting, C. Remediation of diesel-contaminated soil using in situ chemical oxidation (ISCO) and the effects of common oxidants on the indigenous microbial community: A comparison study. J. Chem. Technol. Biotechnol. 2016, 91, 1877–1888. [Google Scholar] [CrossRef]
- Liao, X.; Wu, Z.; Li, Y.; Cao, H.; Su, C. Effect of various chemical oxidation reagents on soil indigenous microbial diversity in remediation of soil contaminated by PAHs. Chemosphere 2019, 226, 483–491. [Google Scholar] [CrossRef]
- Giannopoulos, D.; Kolaitis, D.I.; Togkalidou, A.; Skevis, G.; Founti, M.A. Quantification of emissions from the co-incineration of cutting oil emulsions in cement plants – Part II: Trace species. Fuel 2007, 86, 2491–2501. [Google Scholar] [CrossRef]
- Kang, C.-U.; Kim, D.-H.; Khan, M.A.; Kumar, R.; Ji, S.-E.; Choi, K.-W.; Paeng, K.-J.; Park, S.; Jeon, B.-H. Pyrolytic remediation of crude oil-contaminated soil. Sci. Total Environ. 2020, 713, 136498. [Google Scholar] [CrossRef]
- Liu, R.; Jadeja, R.N.; Zhou, Q.; Liu, Z. Treatment and remediation of petroleum-contaminated soils using selective ornamental plants. Environ. Eng. Sci. 2012, 29, 494–501. [Google Scholar] [CrossRef]
- Kaczorek, E.; Pacholak, A.; Zdarta, A.; Smułek, W. The impact of biosurfactants on microbial cell properties leading to hydrocarbon bioavailability increase. Colloids Interfaces 2018, 2, 35. [Google Scholar] [CrossRef]
- Bezza, F.A.; Nkhalambayausi Chirwa, E.M. Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil. Chemosphere 2016, 144, 635–644. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Sajad, A.A. Phytoremediation of heavy metals—Concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef]
- Kafle, A.; Timilsina, A.; Gautam, A.; Adhikari, K.; Bhattarai, A.; Aryal, N. Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environ. Adv. 2022, 8, 100203. [Google Scholar] [CrossRef]
- Mahar, A.; Wang, P.; Ali, A.; Awasthi, M.K.; Lahori, A.H.; Wang, Q.; Li, R.; Zhang, Z. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicol. Environ. Saf. 2016, 126, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Ramamurthy, A.S.; Memarian, R. Phytoremediation of mixed soil contaminants. Water Air Soil Pollut. 2012, 223, 511–518. [Google Scholar] [CrossRef]
- Adam, G.; Duncan, H. Influence of diesel fuel on seed germination. Environ. Pollut. 2002, 120, 363–370. [Google Scholar] [CrossRef]
- Eze, M.O.; Hose, G.C.; George, S.C. Assessing the effect of diesel fuel on the seed viability and germination of Medicago sativa using the event-time model. Plants 2020, 9, 1062. [Google Scholar] [CrossRef] [PubMed]
- Bolan, N.; Kunhikrishnan, A.; Thangarajan, R.; Kumpiene, J.; Park, J.; Makino, T.; Kirkham, M.B.; Scheckel, K. Remediation of heavy metal(loid)s contaminated soils—To mobilize or to immobilize? J. Hazard. Mater. 2014, 266, 141–166. [Google Scholar] [CrossRef] [PubMed]
- Palansooriya, K.N.; Shaheen, S.M.; Chen, S.S.; Tsang, D.C.W.; Hashimoto, Y.; Hou, D.; Bolan, N.S.; Rinklebe, J.; Ok, Y.S. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environ. Int. 2020, 134, 105046. [Google Scholar] [CrossRef]
- Mulligan, C.; Yong, B.; Gibbs, B. Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Eng. Geol. 2001, 60, 193–207. [Google Scholar] [CrossRef]
- Lwin, C.S.; Seo, B.-H.; Kim, H.-U.; Owens, G.; Kim, K.-R. Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality—A critical review. Soil Sci. Plant Nut. 2018, 64, 156–167. [Google Scholar] [CrossRef]
- Wang, L.; Chen, S.S.; Sun, Y.; Tsang, D.C.; Yip, A.C.; Ding, S.; Hou, D.; Baek, K.; Ok, Y.S. Efficacy and limitations of low-cost adsorbents for in-situ stabilisation of contaminated marine sediment. J. Clean. Prod. 2019, 212, 420–427. [Google Scholar] [CrossRef]
- Mi, J.; Gregorich, E.G.; Xu, S.; McLaughlin, N.B.; Liu, J. Effects of a one-time application of bentonite on soil enzymes in a semi-arid region. Can. J. Soil Sci. 2018, 98, 542–555. [Google Scholar] [CrossRef]
- Borowik, A.; Wyszkowska, J. Remediation of soil contaminated with diesel oil. J. Elem. 2018, 23, 767–788. [Google Scholar] [CrossRef]
- Liu, C.; Kwon, J.-H.; Prabhu, S.M.; Ha, G.-S.; Khan, M.A.; Park, Y.-K.; Jeon, B.-H. Efficiency of diesel-contaminated soil washing with different tween 80 surfactant concentrations, pH, and bentonite ratios. Environ. Res. 2022, 214, 113830. [Google Scholar] [CrossRef] [PubMed]
- Uyizeye, O.C.; Thiet, R.K.; Knorr, M.A. Effects of community-accessible biochar and compost on diesel-contaminated soil. Bioremediat. J. 2019, 23, 107–117. [Google Scholar] [CrossRef]
- Kumpiene, J.; Lagerkvist, A.; Maurice, C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—A review. Waste Manag. 2008, 28, 215–225. [Google Scholar] [CrossRef]
- Jakubus, M.; Bakinowska, E. The effect of immobilizing agents on Zn and Cu availability for plants in relation to their potential health risks. Appl. Sci. 2022, 12, 6538. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014; World Soil Resources Report; International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Update 2015; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; p. 182. Available online: https://www.fao.org/3/i3794en/I3794en.pdf (accessed on 27 November 2022).
- Wyszkowski, M.; Kordala, N. Role of different material amendments in shaping the content of heavy metals in maize (Zea mays L.) on soil polluted with petrol. Materials 2022, 15, 2623. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Kordala, N. Applicability of compost and mineral materials for reducing the effect of diesel oil on trace element content in soil. Materials 2023, 16, 3655. [Google Scholar] [CrossRef]
- US-EPA Method 3051A. Microwave Assisted Acid Digestion of Sediment, Sludges, Soils, and Oils; United States Environmental Protection Agency: Washington, DC, USA, 2007; pp. 1–30. Available online: https://www.epa.gov/sites/production/files/2015-12/documents/3051a.pdf (accessed on 22 December 2022).
- Ostrowska, A.; Gawliński, S.; Szczubiałka, Z. Methods for Analysis and Evaluation of Soil and Plant Properties; Institute of Environmental Protection: Warsaw, Poland, 1991; pp. 1–334. [Google Scholar]
- TIBCO Software Inc. Statistica Version 13; Data Analysis Software System; Tibco Software Inc.: Palo Alto, CA, USA, 2021; Available online: http://statistica.io (accessed on 15 March 2023).
- Wyszkowski, M.; Wyszkowska, J.; Kordala, N.; Borowik, A. Applicability of ash wastes for reducing trace element content in Zea mays L. grown in eco-diesel contaminated soil. Molecules 2022, 27, 897. [Google Scholar] [CrossRef]
- Rusin, M.; Gospodarek, J.; Nadgórska-Socha, A.; Barczyk, G.; Boligłowa, E.; Dabioch, M. Effect of petroleum-derived substances on life history traits of bird cherry-oat aphid (Rhopalosiphum padi L.) and on the growth and chemical composition of winter wheat. Environ. Sci. Pollut. Res. 2018, 25, 27000–27012. [Google Scholar] [CrossRef]
- Rusin, M.; Gospodarek, J.; Nadgórska-Socha, A. The effect of petroleum-derived substances on the growth and chemical composition of Vicia faba L. Pol. J. Environ. 2015, 24, 2157–2166. [Google Scholar] [CrossRef] [PubMed]
- Gospodarek, J.; Rusin, M.; Nadgórska-Socha, A. Effect of petroleum-derived substances and their bioremediation on Triticum aestivum L. growth and chemical composition. Pol. J. Environ. Stud. 2019, 28, 2131–2137. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Wyszkowska, J.; Borowik, A.; Kordala, N. Sewage sludge as a tool in limiting the content of trace elements in Avena sativa. Materials 2021, 14, 4003. [Google Scholar] [CrossRef] [PubMed]
- Adesina, G.; Adelasoye, K. Effect of crude oil pollution on heavy metal contents, microbial population in soil, and maize and cowpea growth. Agric. Sci. 2014, 5, 43–50. [Google Scholar] [CrossRef]
- Pulles, T.; Denier van der Gon, H.; Appelman, W.; Verheul, M. Emission factors for heavy metals from diesel and petrol used in European vehicles. Atmos. Environ. 2012, 61, 641–651. [Google Scholar] [CrossRef]
- Akpoveta, O.V.; Osakwe, S.A. Determination of heavy metal contents in refined petroleum products. IOSR J. Appl. Chem. 2014, 7, 1–2. [Google Scholar] [CrossRef]
- Wirnkor, V.A.; Iheanyichukwu, O.A.; Christian Ebere, E.; Ngozi, V.E.; Natheniel, C.O.; Kingsley, O.U.; Chizoruo, I.F.; Amaka, A.P. Petroleum hydrocarbons and heavy metals risk of consuming fish species from Oguta Lake, Imo State, Nigeria. J. Chem. Health Risks 2021, 1, 1–15. [Google Scholar] [CrossRef]
- Dahl, J.; Moldowan, J.M.; Teerman, S.C.; McCaffrey, M.A.; Sundararaman, P.; Stelting, C.E. Source rock quality determination from oil biomarkers; a new geochemical technique. Assoc. Pet. Geol. Bull. 1994, 78, 1507–1528. [Google Scholar] [CrossRef]
- Su, Q.; Yu, J.; Fang, K.; Dong, P.; Li, Z.; Zhang, W.; Liu, M.; Xiang, L.; Cai, J. Microbial removal of petroleum hydrocarbons from contaminated soil under arsenic stress. Toxics 2023, 11, 143. [Google Scholar] [CrossRef]
- Akpan, G.U.; Udoh, B.T. Evaluation of some properties of soils affected by diesel oil pollution in Uyo, Niger Delta Area, Nigeria. J. Biol. Agric. Healthc. 2013, 3, 33–43. Available online: https://www.iiste.org/Journals/index.php/JBAH/article/view/6722/6835 (accessed on 31 March 2023).
- Adamczyk-Szabela, D.; Wolf, W.M. The impact of soil pH on heavy metals uptake and photosynthesis efficiency in Melissa officinalis, Taraxacum officinalis, Ocimum basilicum. Molecules 2022, 27, 4671. [Google Scholar] [CrossRef] [PubMed]
- Neina, D. The role of soil pH in plant nutrition and soil remediation. Appl. Environ. Soil Sci. 2019, 2019, 5794869. [Google Scholar] [CrossRef]
- Agbogidi, O.M.; Eruotor, P.G.; Akparobi, S.O.; Nnaji, G.U. Heavy metal contents of maize (Zea mays L.) grown in soil contaminated with crude oil. Int. J. Bot. 2007, 3, 385–389. [Google Scholar] [CrossRef]
- Radziemska, M.; Wyszkowski, M.; Bęś, A.; Mazur, Z.; Jeznach, J.; Brtnický, M. The applicability of compost, zeolite and calcium oxide in assisted remediation of acidic soil contaminated with Cr(III) and Cr(VI). Environ. Sci. Pollut. Res. Int. 2019, 26, 21351–21362. [Google Scholar] [CrossRef]
- Tlustoš, P.; Száková, J.; Kořínek, K.; Pavlíková, D.; Hanč, A.; Balík, J. The effect of liming on cadmium, lead, and zinc uptake reduction by spring wheat grown in contaminated soil. Plant Soil Environ. 2006, 52, 16–24. [Google Scholar] [CrossRef]
- Tan, W.-N.; Li, Z.-A.; Qiu, J.; Zou, B.; Li, N.-Y.; Zhuang, P.; Wang, G. Lime and phosphate could reduce cadmium uptake by five vegetables commonly grown in south China. Pedosphere 2011, 21, 223–229. [Google Scholar] [CrossRef]
- Hamid, Y.; Tang, L.; Wang, X.; Hussain, B.; Yaseen, M.; Aziz, M.Z.; Yang, X. Immobilization of cadmium and lead in contaminated paddy field using inorganic and organic additives. Sci. Rep. 2018, 8, 17839. [Google Scholar] [CrossRef]
- Karami, N.; Clemente, R.; Moreno-Jimenez, E.; Lepp, N.W.; Beesley, L. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J. Hazard. Mater. 2011, 191, 41–48. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Wang, Q.; Chen, H.; Liu, T.; Awasthi, S.K.; Duan, Y.; Varjani, S.; Pandey, A.; Zhang, Z. Role of compost biochar amendment on the (im)mobilization of cadmium and zinc for Chinese cabbage (Brassica rapa L.) from contaminated soil. J. Soil Sediments 2019, 19, 3883–3897. [Google Scholar] [CrossRef]
- Soares, M.A.; Marto, S.; Quina, M.J.; Gando-Ferreira, L.; Quinta-Ferreira, R. Evaluation of eggshell-rich compost as biosorbent for removal of Pb(II) from aqueous solutions. Water Air Soil Pollut. 2016, 227, 150. [Google Scholar] [CrossRef]
- Huang, M.; Zhu, Y.; Li, Z.; Huang, B.; Luo, N.; Zeng, G. Compost as a soil amendment to remediate heavy metal-contaminated agricultural soil: Mechanisms, efficacy, problems, and strategies. Water Air Soil Pollut. 2016, 227, 359. [Google Scholar] [CrossRef]
- Alvarenga, P.; Goncalves, A.P.; Fernandes, R.M.; Varennes, A.; Vallini, G.; Duarte, E. Organic residues as immobilizing agents in aided phytostabilization: (I) Effects on soil chemical characteristics. Chemosphere 2009, 74, 1292–1300. [Google Scholar] [CrossRef] [PubMed]
- Chang Chien, S.W.; Wang, M.C.; Huang, C.C.; Seshaiah, K. Characterization of humic substances derived from swine manure-based compost and correlation of their characteristics with reactivities with heavy metals. J. Agric. Food Chem. 2007, 55, 4820–4827. [Google Scholar] [CrossRef] [PubMed]
- Teshome, B.; Tana, T.; Dechassa, N.; Singh, T.N. Effect of compost, lime and p on selected properties of acidic soils of Assosa. J. Biol. Agric. Healthc. 2017, 7, 34–44. Available online: https://www.iiste.org/Journals/index.php/JBAH/article/view/35960/36956 (accessed on 5 September 2023).
- Miu, B.A.; Pop, C.-E.; Crăciun, N.; Deák, G. Bringing life back into former mining sites: A mini-review on soil remediation using organic amendments. Sustainability 2022, 14, 12469. [Google Scholar] [CrossRef]
- Yang, L.; Fan, L.; Huang, B.; Xin, J. Efficiency and mechanisms of fermented horse manure, vermicompost, bamboo biochar, and fly ash on Cd accumulation in rice. Environ. Sci. Pollut. Res. 2020, 27, 27859–27869. [Google Scholar] [CrossRef]
- Yin, A.; Shen, C.; Huang, Y.; Yue, M.; Huang, B.; Xin, J. Reduction of Cd accumulation in Se-biofortified rice by using fermented manure and fly ash. Environ. Sci. Pollut. Res. 2020, 27, 39391–39401. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Sivitskaya, V. Effect of sorbents on the content of trace elements in maize cultivated on soil contaminated with heating oil. Int. Agrophys. 2019, 33, 437–444. [Google Scholar] [CrossRef]
- Bhattacharyya, K.G.; Gupta, S.S. Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Adv. Colloid Interface Sci. 2008, 140, 114–131. [Google Scholar] [CrossRef]
- Klik, B.; Holatko, J.; Jaskulska, I.; Gusiatin, M.Z.; Hammerschmiedt, T.; Brtnicky, M.; Liniauskienė, E.; Baltazar, T.; Jaskulski, D.; Kintl, A.; et al. Bentonite as a functional material enhancing phytostabilization of post-industrial contaminated soils with heavy metals. Materials 2022, 15, 8331. [Google Scholar] [CrossRef]
- Kumararaja, P.; Manjaiah, K.M.; Datta, S.C.; Ahammedshabeer, T.P. Potential of bentonite clay for heavy metal immobilization in soil. Clay Res. 2014, 33, 83–96. [Google Scholar]
- Zulqurnain Haider, M.; Hussain, S.; Muhammad Adnan Ramzani, P.; Iqbal, M.; Iqbal, M.; Shahzad, T.; Fatima, M.; Ali Khan, S.; Khan, I.; Shahid, M.; et al. Bentonite and biochar mitigate pb toxicity in Pisum sativum by reducing plant oxidative stress and pb translocation. Plants 2019, 8, 571. [Google Scholar] [CrossRef]
- Tito, G.A.; Chaves, L.H.G.; Silva, F.A.S. Bentonite effects on zinc concentration in plants irrigated with wastewater. Am. J. Plant Sci. 2017, 8, 2433–2444. [Google Scholar] [CrossRef]
- Kayama, M.; Nimpila, S.; Hongthong, S.; Yoneda, R.; Himmapan, W.; Noda, I. Effect of bentonite on the early growth characteristics of teak seedlings planted in sandy soil in northeast Thailand—A pilot study. Forests 2021, 12, 26. [Google Scholar] [CrossRef]
- Mi, J.; Gregorich, E.G.; Xu, S.; McLaughlin, N.B.; Liu, J. Effect of bentonite as a soil amendment on field water-holding capacity, and millet photosynthesis and grain quality. Sci. Rep. 2020, 10, 18282. [Google Scholar] [CrossRef]
- Czaban, J.; Siebielec, G. Effects of bentonite on sandy soil chemistry in a long-term plot experiment (II); Effect on pH, CEC, and macro- and micronutrients. Pol. J. Environ. Stud. 2013, 22, 1669–1676. [Google Scholar]
- Burges, A.; Epelde, L.; Benito, G.; Artetxe, U.; Becerril, J.M.; Garbisu, C. Enhancement of ecosystem services during endophyte-assisted aided phytostabilization of metal contaminated mine soil. Sci. Total Environ. 2016, 562, 480–492. [Google Scholar] [CrossRef] [PubMed]
Amendment | DO Dose (cm3 kg−1 d.m. of Soil) | Average | r | |||
---|---|---|---|---|---|---|
0 | 2.5 | 5 | 10 | |||
Cadmium (Cd) | ||||||
Without amendments | 0.181 b | 0.202 cd | 0.208 d | 0.203 cd | 0.199 A | 0.661 ** |
Compost | 0.186 bc | 0.207 d | 0.200 cd | 0.203 cd | 0.199 A | 0.556 * |
Bentonite | 0.192 b–d | 0.198 b–d | 0.201 cd | 0.197 b–d | 0.197 A | 0.469 |
CaO | 0.194 b–d | 0.161 a | 0.163 a | 0.159 a | 0.169 B | −0.727 ** |
Average | 0.188 A | 0.192 A | 0.193 A | 0.191 A | 0.191 | 0.325 |
Lead (Pb) | ||||||
Without amendments | 0.441 ab | 0.575 c–e | 0.530 cd | 0.625 de | 0.543 B | 0.839 ** |
Compost | 0.441 ab | 0.460 ab | 0.494 bc | 0.523 b–d | 0.480 A | 0.985 ** |
Bentonite | 0.510 bc | 0.599 c–e | 0.629 de | 0.681 e | 0.605 C | 0.947 ** |
CaO | 0.369 a | 0.598 c–e | 0.504 bc | 0.594 c–e | 0.516 AB | 0.670 ** |
Average | 0.440 B | 0.558 A | 0.539 A | 0.606 C | 0.536 | 0.866 ** |
Chromium (Cr) | ||||||
Without amendments | 1.176 a | 8.133 e | 8.233 e | 8.266 e | 6.452 A | 0.693 ** |
Compost | 2.940 b | 7.499 e | 7.933 e | 8.266 e | 6.660 A | 0.766 ** |
Bentonite | 5.193 c | 6.399 d | 7.466 e | 7.733 e | 6.698 A | 0.907 ** |
CaO | 6.337 d | 2.300 b | 1.133 a | 0.467 a | 2.559 B | −0.852 ** |
Average | 3.912 B | 6.083 A | 6.191 A | 6.183 A | 5.592 | 0.705 ** |
Amendment | DO Dose (cm3 kg−1 d.m. of Soil) | Average | r | |||
---|---|---|---|---|---|---|
0 | 2.5 | 5 | 10 | |||
Nickel (Ni) | ||||||
Without amendments | 1.155 ab | 1.622 b–d | 1.960 c–e | 2.380 e | 1.779 A | 0.981 ** |
Compost | 1.006 ab | 2.298 de | 2.415 e | 2.380 e | 2.025 A | 0.709 ** |
Bentonite | 1.669 b–d | 2.111 c–e | 2.100 c–e | 2.123 c–e | 2.001 A | 0.703 ** |
CaO | 1.509 bc | 0.817 a | 0.805 a | 0.805 a | 0.984 B | −0.692 ** |
Average | 1.335 B | 1.712 A | 1.820 A | 1.922 A | 1.697 | 0.883 ** |
Zinc (Zn) | ||||||
Without amendments | 13.06 a–c | 16.40 cd | 18.04 de | 15.58 b–d | 15.77 A | 0.415 |
Compost | 12.96 a–c | 16.01 b–d | 21.41 e | 14.06 a–d | 16.11 A | 0.120 |
Bentonite | 16.45 cd | 12.27 ab | 13.32 a–c | 12.92 a–c | 13.74 C | −0.587 ** |
CaO | 11.12 a | 11.48 a | 10.44 a | 10.86 a | 10.98 B | −0.457 |
Average | 13.40 A | 14.04 A | 15.80 B | 13.36 A | 14.15 | 0.004 |
Copper (Cu) | ||||||
Without amendments | 0.980 a | 3.083 a–d | 15.748 f | 17.332 f | 9.286 C | 0.899 ** |
Compost | 1.633 ab | 2.250 a–d | 3.583 a–d | 4.250 b–e | 2.929 A | 0.962 ** |
Bentonite | 4.736 c–e | 4.333 b–e | 4.000 b–d | 5.000 de | 4.517 B | 0.316 |
CaO | 6.859 e | 2.666 a–d | 2.000 a–e | 2.750 a–d | 3.569 AB | −0.643 ** |
Average | 3.552 A | 3.083 A | 6.333 B | 7.333 B | 5.075 | 0.897 ** |
Amendment | DO Dose (cm3 kg−1 d.m. of Soil) | Average | r | |||
---|---|---|---|---|---|---|
0 | 2.5 | 5 | 10 | |||
Manganese (Mn) | ||||||
Without amendments | 28.44 b–d | 32.66 cd | 41.88 ef | 49.93 f | 38.23 C | 0.986 ** |
Compost | 26.87 a–d | 31.15 b–d | 25.90 a–d | 27.76 a–d | 27.92 A | −0.124 |
Bentonite | 29.04 b–d | 28.11 a–d | 33.48 de | 29.51 b–d | 30.04 A | 0.236 |
CaO | 19.43 a | 24.03 a–c | 25.43 a–d | 23.68 ab | 23.14 B | 0.574 * |
Average | 25.95 A | 28.99 AB | 31.67 BC | 32.72 C | 29.83 | 0.927 ** |
Iron (Fe) | ||||||
Without amendments | 30.78 a–c | 31.72 a–c | 37.52 c–e | 34.31 b–e | 33.58 A | 0.577 * |
Compost | 29.01 a–c | 34.11 a–e | 25.63 ab | 24.50 a | 28.31 B | −0.670 ** |
Bentonite | 42.03 de | 63.92 fg | 70.46 g | 56.92 f | 58.33 C | 0.387 |
CaO | 32.49 a–d | 43.51 e | 35.11 b–d | 31.00 a–c | 35.53 A | −0.383 |
Average | 33.58 A | 43.32 B | 42.18 B | 36.68 A | 38.94 | 0.078 |
Cobalt (Co) | ||||||
Without amendments | 0.314 b–e | 0.400 d–f | 0.510 ef | 0.542 f | 0.442 A | 0.929 ** |
Compost | 0.407 d–f | 0.397 d–f | 0.432 d–f | 0.460 d–f | 0.424 A | 0.922 ** |
Bentonite | 0.409 d–f | 0.397 d–f | 0.390 d–f | 0.330 d–f | 0.382 A | −0.962 ** |
CaO | 0.088 a | 0.095 ab | 0.165 a–c | 0.267 a–d | 0.154 B | 0.979 ** |
Average | 0.305 A | 0.322 AB | 0.374 AB | 0.400 B | 0.350 | 0.961 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wyszkowski, M.; Kordala, N. Importance of Compost, Bentonite, and Calcium Oxide in Reducing Trace Element Content in Maize on Agricultural Soil Contaminated with Diesel Oil. Agriculture 2023, 13, 1948. https://doi.org/10.3390/agriculture13101948
Wyszkowski M, Kordala N. Importance of Compost, Bentonite, and Calcium Oxide in Reducing Trace Element Content in Maize on Agricultural Soil Contaminated with Diesel Oil. Agriculture. 2023; 13(10):1948. https://doi.org/10.3390/agriculture13101948
Chicago/Turabian StyleWyszkowski, Mirosław, and Natalia Kordala. 2023. "Importance of Compost, Bentonite, and Calcium Oxide in Reducing Trace Element Content in Maize on Agricultural Soil Contaminated with Diesel Oil" Agriculture 13, no. 10: 1948. https://doi.org/10.3390/agriculture13101948
APA StyleWyszkowski, M., & Kordala, N. (2023). Importance of Compost, Bentonite, and Calcium Oxide in Reducing Trace Element Content in Maize on Agricultural Soil Contaminated with Diesel Oil. Agriculture, 13(10), 1948. https://doi.org/10.3390/agriculture13101948