Impact of Preharvest Ethephon Foliar Spray on the Postharvest Fatty Acid Profile and Dietary Indicators of Macadamia Nuts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethephon Spray and Concentration
2.2. Nut Collection and Preparation
2.3. Storage Conditions
2.4. Quantification of Fatty Acid Profile
2.5. Dietary Indicators
2.6. Data Analysis
3. Results and Discussion
3.1. Fatty Acid Profile
3.2. Principal Component Analysis (PCA)
3.3. Hierarchical Clustering Heat Map and Correlation Analysis
3.4. Dietary Indices
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bouarakia, O.; Anders, M.; Linden, V.M.; Grass, I.; Westphal, C.; Taylor, P.J.; Foord, S.H. Reduced macadamia nut quality is linked to wetter growing seasons but mitigated at higher elevations. J. Agric. Food Res. 2023, 12, 100569. [Google Scholar] [CrossRef]
- Derewiaka, D.; Szwed, E.; Wolosiak, R. Physicochemical properties and composition of lipid fraction of selected edible nuts. Pak. J. Bot 2014, 46, 337–343. [Google Scholar]
- Vannice, G.; Rasmussen, H. Position of the academy of nutrition and dietetics: Dietary fatty acids for healthy adults. J. Acad. Nutr. Diet. 2014, 114, 136–153. [Google Scholar] [CrossRef] [PubMed]
- Rengel, A.; Pérez, E.; Piombo, G.; Ricci, J.; Servant, A.; Tapia, M.S.; Gibert, O.; Montet, D. Lipid profile and antioxidant activity of macadamia nuts (Macadamia integrifolia) cultivated in Venezuela. Nat. Sci. 2015, 7, 535–547. [Google Scholar]
- Trueman, S.J.; McConchie, C.A.; Turnbull, C.G.N. Ethephon promotion of crop abscission for unshaken and mechanically shaken macadamia. Aust. J. Exp. Agric. 2002, 42, 1001–1008. [Google Scholar] [CrossRef]
- Taylor, J.E.; Whitelaw, C.A. Signals in abscission. New Phytol. 2001, 151, 323–340. [Google Scholar] [CrossRef]
- Vincent, C.; Munné-Bosch, S. Ethylene in the regulation of major biotechnological processes. In The Plant Hormone Ethylene; Academic Press: Cambridge, MA, USA, 2023; pp. 89–105. [Google Scholar]
- Li, H.; Ma, X.; Wang, W.; Zhang, J.; Liu, Y.; Yuan, D. Enhancing the accumulation of linoleic acid and α-linolenic acid through the pre-harvest ethylene treatment in Camellia oleifera. Front. Plant Sci. 2023, 14, 1080946. [Google Scholar] [CrossRef] [PubMed]
- Nualwijit, N.; Lerslerwong, L. Post harvest ripening of oil palm fruit is accelerated by application of exogenous ethylene. Songklanakarin J. Sci. Technol 2014, 36, 255–259. [Google Scholar]
- Zhang, J.; Gao, Y.; Xu, L.; Han, L. Transcriptome analysis of Kentucky bluegrass subject to drought and ethephon treatment. PLoS ONE 2021, 16, e0261472. [Google Scholar] [CrossRef]
- Li, F.; Min, D.; Ren, C.; Dong, L.; Shu, P.; Cui, X.; Zhang, X. Ethylene altered fruit cuticular wax, the expression of cuticular wax synthesis-related genes and fruit quality during cold storage of apple (Malus domestica Borkh. cv Starkrimson) fruit. Postharvest Biol. Technol. 2019, 149, 58–65. [Google Scholar] [CrossRef]
- Chakrabarti, M.; Bharti, S. Role of EIN2-mediated ethylene signaling in regulating petal senescence, abscission, reproductive development, and hormonal crosstalk in tobacco. Plant Sci. 2023, 332, 111699. [Google Scholar] [CrossRef]
- Gama, T.; Wallace, H.M.; Trueman, S.J.; Hosseini-Bai, S. Quality and shelf life of tree nuts: A review. Sci. Hortic. 2018, 242, 116–126. [Google Scholar] [CrossRef]
- Nunn, J.; De Faveri, J.; O’Connor, K.; Alam, M.; Hardner, C.; Akinsanmi, O.; Topp, B. Genome-wide association study for abscission failure of fruit pericarps (stick-tights) in wild macadamia germplasm. Agronomy 2022, 12, 1913. [Google Scholar] [CrossRef]
- Buthelezi, N.M.D.; Magwaza, L.S.; Tesfay, S.Z. Postharvest pre-storage processing improves antioxidants, nutritional and sensory quality of macadamia nuts. Sci. Hortic. 2019, 251, 197–208. [Google Scholar] [CrossRef]
- Aruwajoye, N.N.; Buthelezi, N.M.D.; Mditshwa, A.; Tesfay, S.Z.; Magwaca, L.S. Assessing the Impact of Roasting Temperatures on Biochemical and Sensory Quality of Macadamia Nuts (Macadamia integrifolia). Foods 2023, 12, 2116. [Google Scholar] [CrossRef] [PubMed]
- Orkusz, A.; Wolańska, W.; Krajinska, U. The assessment of changes in the fatty acid profile and dietary indicators depending on the storage conditions of goose meat. Molecules 2021, 26, 5122. [Google Scholar] [CrossRef] [PubMed]
- Maguire, L.S.; O’Sullivan, S.M.; Galvin, K.; O’Connor, T.P.; O’Brien, N.M. Fatty acid profile, tocopherol, squalene and phytosterol content of walnuts, almonds, peanuts, hazelnuts and the macadamia nut. Int. J. Food Sci. Nutr. 2004, 55, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M. Influence of stearic acid on cholesterol metabolism relative to other long-chain fatty acids. Am. J. Clin. Nutr. 1994, 60, S986–S990. [Google Scholar] [CrossRef] [PubMed]
- van Rooijen, M.A.; Plat, J.; Blom, W.A.; Zock, P.L.; Mensink, R.P. Dietary stearic acid and palmitic acid do not differently affect ABCA1-mediated cholesterol efflux capacity in healthy men and postmenopausal women: A randomized controlled trial. Clin. Nutr. 2021, 40, 804–811. [Google Scholar] [CrossRef] [PubMed]
- Shramko, V.S.; Polonskaya, Y.V.; Kashtanova, E.V.; Stakhneva, E.M.; Ragino, Y.I. The short overview on the relevance of fatty acids for human cardiovascular disorders. Biomolecules 2020, 10, 1127. [Google Scholar] [CrossRef]
- Kim, S.H.; Lim, S.R.; Hong, S.J.; Cho, B.K.; Lee, H.; Lee, C.G.; Choi, H.K. Effect of ethephon as an ethylene-releasing compound on the metabolic profile of Chlorella vulgaris. J. Agric. Food Chem. 2016, 64, 4807–4816. [Google Scholar] [CrossRef] [PubMed]
- Laskowski, K.; Merewitz, E. Influence of ice encasement and ethylene regulation on cellular-protection responses in annual bluegrass. J. Am. Soc. Hortic. Sci. 2021, 146, 87–98. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, K.; Wu, C.; Zhao, Y.; Yin, X.; Zhang, B.; Grierson, D.; Chen, K.; Xu, C. Effect of ethylene on cell wall and lipid metabolism during alleviation of postharvest chilling injury in peach. Cells 2019, 8, 1612. [Google Scholar] [CrossRef] [PubMed]
- Lunn, J.; Theobald, H.E. The health effects of dietary unsaturated fatty acids. Nutr. Bull. 2006, 31, 178–224. [Google Scholar] [CrossRef]
- Lalas, S.; Gortzi, O.; Athanasiadis, V.; Dourtoglou, E.; Dourtoglou, V. Full characterisation of Crambe abyssinica Hochst. seed oil. J. Am. Oil Chem. Soc. 2012, 89, 2253–2258. [Google Scholar] [CrossRef]
- Wang, P.; Xiong, X.; Zhang, X.; Wu, G.; Liu, F. A review of erucic acid production in Brassicaceae oilseeds: Progress and prospects for the genetic engineering of high and low-erucic acid rapeseeds (Brassica napus). Front. Plant Sci. 2003, 13, 899076. [Google Scholar] [CrossRef] [PubMed]
- Ros, E.; Matai, J. Fatty acid composition of nuts—Implications for cardiovascular health. Br. J. Nutr. 2006, 96 (Suppl. S2), S29–S35. [Google Scholar] [CrossRef]
- Cerrón-Mercado, F.; Botella-Martínez, C.M.; Salvá-Ruíz, B.K.; Fernández-López, J.; Pérez-Alvarez, J.A.; Viuda-Martos, M. Effect of gelled emulsions elaborated with soybean oil, maca (Lepidium meyenni) flour, and chincho (Tagetes elliptica Sm.) essential oil upon animal fat substitution in beef burgers. Foods 2022, 11, 2198. [Google Scholar] [CrossRef]
- Williams, C.D.; Whitley, B.M.; Hoyo, C.; Grant, D.J.; Iraggi, J.D.; Newman, K.A.; Gerber, L.; Taylor, L.A.; McKeever, M.G.; Freedland, S.J. A high ratio of dietary n-6/n-3 polyunsaturated fatty acids is associated with increased risk of prostate cancer. Nutr. Res. 2011, 31, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Videla, L.A.; Hernandez-Rodas, M.C.; Metherel, A.H.; Valenzuela, R. Influence of the nutritional status and oxidative stress in the desaturation and elongation of n−3 and n−6 polyunsaturated fatty acids: Impact on non-alcoholic fatty liver disease. Prostaglandins Leukot. Essent. Fat. Acids 2022, 181, 102441. [Google Scholar] [CrossRef]
- Tricò, D.; Galderisi, A.; Van Name, M.A.; Caprio, S.; Samuels, S.; Li, Z.; Galuppo, B.T.; Savoye, M.; Mari, A.; Feldstein, A.E.; et al. A low n−6 to n−3 polyunsaturated fatty acid ratio diet improves hyperinsulinaemia by restoring insulin clearance in obese youth. Diabetes Obes. Metab. 2022, 24, 1267–1276. [Google Scholar] [CrossRef] [PubMed]
- Pino-Ortega, J.; Rojas-Valverde, D.; Gómez-Carmona, C.D.; Rico-González, M. Training design, performance analysis, and talent identification—A systematic review about the most relevant variables through the principal component analysis in Soccer, Basketball, and Rugby. Int. J. Environ. Res. Public Health 2021, 18, 2642. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Huang, S.; Ma, H.; Huang, N.; Ye, N. Differential responses of walnut cultivars to cold storage and their correlation with postharvest physiological parameters. Hortic. Environ. Biotechnol. 2019, 60, 345–356. [Google Scholar] [CrossRef]
- Orkusz, A. Edible insects versus meat—Nutritional comparison: Knowledge of their composition is the key to good health. Nutrients 2021, 13, 1207. [Google Scholar] [CrossRef]
- Mekonnen, M.F.; Desta, D.T.; Alemayehu, F.R.; Kelikay, G.N.; Daba, A.K. Evaluation of fatty acid-related nutritional quality indices in fried and raw nile tilapia, (Oreochromis Niloticus), fish muscles. Food Sci. Nutr. 2020, 8, 4814–4821. [Google Scholar] [CrossRef] [PubMed]
- Tadesse Zula, A.; Desta, D.T.; Willis, M.S. Nile tilapia (Oreochromis niloticus) fried in recycled palm oil: Implications for nutrition and health. Int. J. Food Prop. 2021, 24, 806–817. [Google Scholar] [CrossRef]
- Attia, Y.A.; Al-Harthi, M.A.; Korish, M.A.; Shiboob, M.M. Fatty acid and cholesterol profiles and hypocholesterolemic, atherogenic, and thrombogenic indices of table eggs in the retail market. Lipids Health Dis. 2015, 14, 136. [Google Scholar] [CrossRef] [PubMed]
- Otero, P.; López-Martínez, M.I.; García-Risco, M.R. Application of pressurized liquid extraction (PLE) to obtain bioactive fatty acids and phenols from Laminaria ochroleuca collected in Galicia (NW Spain). J. Pharm. Biomed. Anal. 2019, 164, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Sinanoglou, V.J.; Strati, I.F.; Miniadis-Meimaroglou, S. Lipid, fatty acid and carotenoid content of edible egg yolks from avian species: A comparative study. Food Chem. 2011, 124, 971–977. [Google Scholar] [CrossRef]
- Szyndler-Nedza, M.; Swiatkiewicz, M.; Migdał, Ł.; Migdał, W. The Quality and Health-Promoting Value of Meat from Pigs of the Native Breed as the Effect of Extensive Feeding with Acorns. Animals 2021, 11, 789. [Google Scholar] [CrossRef]
Treatment | Day | Lauric Acid (C12:0) | Myristic Acid (C14:0) | Pentadecanoic Acid (C15:0) | Palmitic Acid (C16:0) | Palmitoleic Acid (C16:1) | Heptadecanoic Acid (C17:0) | Stearic Acid (C18:0) |
---|---|---|---|---|---|---|---|---|
CD | 0 | 395.1 ± 18.08 ab | 3755 ± 130.79 abc | 70.02 ± 4.10 ab | 56,838 ± 2561.39 abc | 99,582 ± 4990.18 ab | 162.9 ± 11.19 a | 19,291 ± 658.01 abc |
ED | 0 | 437.6 ± 16.25 ab | 4566 ± 317.24 bcd | 90.53 ± 9.11 b | 68,632 ± 4236.48 c | 156,446 ± 9299.51 e | 219.8 ± 8.08 a | 21,872 ± 1652.29 bc |
CD | 36 | 462.3 ± 27.09 ab | 4815 ± 107.35 cd | 75.04 ± 10.54 ab | 62,736 ± 1156.96 bc | 136,538 ± 3511.92 de | 213.4 ± 16.08 a | 19,178 ± 107.52 abc |
ED | 36 | 442.4 ± 5.05 ab | 4382 ± 9.46 bcd | 77.38 ± 2.38 ab | 63,297 ± 669.35 bc | 137,833 ± 1508.76 de | 213.4 ± 0,91 a | 18,265 ± 164.54 ab |
CD | 72 | 592.5 ± 12.29 c | 5165 ± 51.19 d | 70.76 ± 1.83 ab | 56,628 ± 1306.99 abc | 134,027 ± 2922.03 d | 184.0 ± 8.86 a | 16,764 ± 170.26 ab |
ED | 72 | 389.4 ± 4.85 ab | 4210 ± 83.21 bcd | 75.91 ± 2.62 ab | 62,674 ± 1034.34 bc | 118,159 ± 2807.36 bcd | 221.7 ± 37.56 a | 24,622 ± 658.74 c |
Treatment | Day | Oleic Acid C18:1 (cis) | Linoleic Acid C18:2 (cis) | Arachidic Acid (C20:0) | Eicosatrienoic Acid + Alpha-linolenic Acid (C20:1 + C18:3n3) | Heneicosanoic Acid (C21:0) | Docosanoic Acid (C22:0) | Eicosatrienoic Acid + Erucic Acid (C20:3n3 + C22:1) |
CD | 0 | 342,102 ± 10,793.36 abc | 19,530 ± 798.08 f | 15,283 ± 587.35 ab | 7279 ± 209.79 bcd | 35.44 ± 6.34 ab | 4176 ± 101.99 abc | 737.4 ± 15.42 cd |
ED | 0 | 378,430 ± 25,126.64 bc | 19,290 ± 1146.71 ef | 17,771 ± 1324.36 b | 7559 ± 492.45 cd | 55.98 ± 7.79 b | 5137 ± 203.35 c | 726.5 ± 45.03 cd |
CD | 36 | 359,739 ± 5505.98 abc | 18,095 ± 439.15 ef | 15,595 ± 365.73 ab | 7422 ± 160.33 cd | 42.76 ± 2.39 ab | 4858 ± 240.69 bc | 732.9 ± 17.59 cd |
ED | 36 | 352,704 ± 2704.59 abc | 18,764 ± 210.28 ef | 15,151 ± 113.74 ab | 7465 ± 100.44 cd | 47.85 ± 5.16 ab | 4865 ± 167.58 bc | 783.2 ± 13.18 de |
CD | 72 | 387,473 ± 4298.73 c | 15,316 ± 471.14 cde | 15,252 ± 119.84 ab | 8739 ± 84.61 d | 47.37 ± 2.85 ab | 4811 ± 177.05 abc | 938.8 ± 10.98 e |
ED | 72 | 346,413 ± 4826.80 abc | 17,173 ± 442.70 def | 17,128 ± 378.03 b | 6637 ± 117.11 abc | 41.35 ± 2.79 ab | 4366 ± 189.99 abc | 641 ± 13.15 bcd |
Treatment | Day | Arachidonic Acid (C20:4n6) | Tricosanoic Acid (C23:0) | Tetracosanoic Acid (C24:0) | MUFA | PUFA | SFA | PUFA:SFA |
CD | 0 | 31.53 ± 4.42 a | 68.46 ± 3.68 a | 1924 ± 45.91 bcde | 441,684 ± 15,772.48 abc | 42,860 ± 1585.13 de | 80,512 ± 3342.11 abcd | 0.53 ± 0.01 g |
ED | 0 | 59.27 ± 14.13 ab | 48.25 ± 6.97 a | 2020 ± 129.79 de | 534,876 ± 34,417.53 c | 45,406 ± 2994.74 e | 95,818 ± 6208.41 d | 0.47 ± 0 de |
CD | 36 | 46.68 ± 6.27 a | 55.12 ± 1.71 a | 1912 ± 43.31 bcde | 496,278 ± 8416.62 abc | 41,891 ± 958.29 cde | 87,480 ± 1366.18 bcd | 0.48 ± 0 e |
ED | 36 | 56.5 ± 2.71 a | 55.66 ± 0.70 a | 2027 ± 29.26 de | 490,537 ± 4113.63 abc | 42,219 ± 424.29 cde | 86,677 ± 846.50 bcd | 0.49 ± 0 ef |
CD | 72 | 114.8 ± 26.09 b | 52.59 ± 2.89 a | 2137 ± 29.270 e | 521,500 ± 5037.15 bc | 40,360 ± 619.07 bcde | 79,404 ± 1529.48 abcd | 0.51 ± 0 fg |
ED | 72 | 26.38 ± 4.56 a | 54.88 ± 1.69 a | 1983 ± 47.90 cde | 464,572 ± 7351.12 abc | 41,605 ± 931.15 cde | 92,193 ± 1768.74 cd | 0.45 ± 0 bcd |
Treatment | Day | TFA | Omega-6 (n−6) | Omega-3 (n−3) | ∑ n−6)/(∑ n−3) | |||
CD | 0 | 571,240 ± 12,614.22 abc | 19,350 ± 797.97 e | 8016 ± 225.19 bc | 2.44 ± 0.03 e | |||
ED | 0 | 683,381 ± 450,303.65 c | 19,561 ± 1160.79 e | 8285 ± 537.43 bc | 2.31 ± 0.03 de | |||
CD | 36 | 632,517 ± 20,433.35 abc | 18,141 ± 439.6 e | 8155 ± 177.72 bc | 2.21 ± 0.02 d | |||
ED | 36 | 626,429 ± 4658.12 abc | 18,820 ± 211.31 e | 8249 ± 113.50 bc | 2.28 ± 0.02 de | |||
CD | 72 | 648,314 ± 13,223.65 bc | 15,431 ± 474.97 cde | 8155 ± 94.61 bc | 1.59 ± 0.05 c | |||
ED | 72 | 604,813 ± 13,609.36 abc | 17,199 ± 444.30 de | 7278 ± 130.23 ab | 2.36 ± 0.04 de |
Treatment | Day | Lauric Acid (C12:0) | Myristic Acid (C14:0) | Pentadecanoic Acid (C15:0) | Palmitic Acid (C16:00) | Palmitoleic Acid (C16:1) | Heptadecanoic Acid (C17:0) | Stearic Acid (C18:0) |
---|---|---|---|---|---|---|---|---|
CD | 0 | 456.1 ± 52.38 ab | 3856 ± 560.64 abc | 58.21 ± 5,83 a | 49,028 ± 6394.12 ab | 116,149 ± 15,516.71 bcd | 241.3 ± 39.24 a | 18,472 ± 2361.10 ab |
ED | 0 | 340.1 ± 20.96 a | 2704 ± 140.84 a | 49.53 ± 1.21 a | 41,870 ± 2049.04 a | 93,446 ± 5644.47 a | 219.2 ± 8.93 a | 16,904 ± 1051.49 ab |
CD | 36 | 362.4 ± 14.82 a | 3540 ± 160.33 ab | 67.17 ± 5.16 ab | 49,733 ± 1705.95 ab | 105,114 ± 2412.54 abc | 297.0 ± 40.63 a | 14,310 ± 617.25 a |
ED | 36 | 441.5 ± 28.44 ab | 3793 ± 212.98 abc | 68.13 ± 6.77 ab | 48,819 ± 2740.12 ab | 122,610 ± 5727.06 cd | 231.7 ± 17.53 a | 18,092 ± 865.77 ab |
CD | 72 | 491.3 ± 9.31 bc | 4018 ± 134.20 bcd | 54 ± 1.71 a | 44,103 ± 1424.11 a | 111,163 ± 4861.47 abcd | 289.5 ± 60.94 a | 19,711 ± 124.08 abc |
ED | 72 | 394.6 ± 6.71 ab | 3362 ± 98.02 ab | 52.14 ± 1.14 a | 45,678 ± 1431.26 a | 103,515 ± 2746.10 abc | 208.8 ± 9.35 a | 21,783 ± 766.09 bc |
Treatment | Day | Oleic Acid C18:1 (cis) | Linoleic Acid C18:2 (cis) | Arachidic Acid (C20:0) | Eicosatrienoic Acid + Alpha-linolenic Acid (C20:1 + C18:3n3) | Heneicosanoic Acid (C21:00) | Docosanoic Acid (C22:00) | Eicosatrienoic Acid + Erucic Acid (C20:3n3 + C22:1) |
CD | 0 | 297,263 ± 41,541.23 abc | 11,257 ± 1723.93 abc | 14,227 ± 1899.80 ab | 6191 ± 888.11 abc | 27.53 ± 6.58 ab | 4146 ± 566.59 abc | 598.8 ± 90.53 abcd |
ED | 0 | 290,300 ± 8623.62 ab | 8630 ± 315.15 a | 12,548 ± 416.73 a | 6071 ± 162.57 abc | 22.69 ± 0.47 a | 3581 ± 133.90 a | 595.5 ± 21.31 abcd |
CD | 36 | 301,545 ± 10,891.06 abc | 13,898 ± 585.06 bcd | 11,641 ± 405.32 a | 5800 ± 231.48 abc | 28.36 ± 4.54 ab | 3632 ± 129.58 ab | 503.8 ± 12.77 ab |
ED | 36 | 287,033 ± 18,356.90 ab | 10,086 ± 441 ab | 13,709 ± 744.47 ab | 6241 ± 392.35 abc | 28.14 ± 7.28 ab | 3707 ± 268.38 ab | 582.3 ± 37.33 abc |
CD | 72 | 282,001 ± 8719.03 a | 7938 ± 375.11 a | 14,415 ± 182.85 ab | 5250 ± 156.46 a | 20.79 ± 3.05 a | 3795 ± 58.76 ab | 468.3 ± 15.66 ab |
ED | 72 | 284,023 ± 9958.49 a | 7508 ± 220.39 a | 14,021 ± 570.28 ab | 5301 ± 218.14 ab | 34.69 ± 9.14 ab | 3571 ± 163.07 a | 430.6 ± 29.59 a |
Treatment | Day | Arachidonic Acid (C20:4n6) | Tricosanoic Acid (C23:0) | Tetracosanoic Acid (C24:0) | MUFA | PUFA | SFA | PUFA:SFA |
CD | 0 | 23.1 ± 9.94 a | 32.99 ± 5.69 a | 1573 ± 225.10 abcd | 413,412 ± 57,056.50 abc | 32,297 ± 4592.10 abcd | 72,112 ± 9394.56 abc | 0.45 ± 0.01 bc |
ED | 0 | 8.29 ± 42.10 a | 33.79 ± 0.52 a | 1518 ± 48.96 abcd | 383,745 ± 14,244.28 a | 27,853 ± 875.29 a | 62,086 ± 3233.89 a | 0.45 ± 0.01 bcd |
CD | 36 | 12.77 ± 4.57 a | 45.92 ± 19.07 a | 1392 ± 58.131 a | 392,147 ± 13,243.63 ab | 30,647 ± 1180.94 ab | 68,309 ± 249.77 ab | 0.49 ± 0 ef |
ED | 36 | 28.33 ± 14.98 a | 50.43 ± 3.31 a | 1574 ± 109.31 abcd | 424,156 ± 24,051.43 abc | 31,855 ± 1615.99 abc | 71,446 ± 3864.65 abc | 0.47 ± 0 cde |
CD | 72 | 10.18 ± 3.20 a | 36.7 ± 1.51 a | 1464 ± 38.19 ab | 395,186 ± 13,574 ab | 27,686 ± 625.17 a | 69,407 ± 1482.83 ab | 0.39 ± 0 a |
ED | 72 | 7.97 ± 4.73 a | 38.89 ± 4.03 a | 1473 ± 59.37 abc | 385,517 ± 12,657.02 a | 27,663 ± 1012.57 a | 70,739 ± 2287.67 abc | 0.40 ± 0 a |
Treatment | Day | TFA | Omega-6 (n−6) | Omega-3 (n−3) | ∑ n−6)/(∑ n−3) | |||
CD | 0 | 523,601 ± 97,815 abc | 11,280 ± 1733.68 abc | 6790 ± 978.47 ab | 1.66 ± 0.003 c | |||
ED | 0 | 478,839 ± 28,603.60 a | 8638 ± 313.04 a | 6667 ± 183.87 ab | 1.3 ± 0.03 a | |||
CD | 36 | 497,414 ± 31,833.44 ab | 13,910 ± 580.49 bcd | 6304 ± 235.52 ab | 2.21 ± 0.04 d | |||
ED | 36 | 531,603 ± 28,788.47 abc | 10,115 ± 455.94 ab | 6824 ± 429.62 ab | 1.49 ± 0.03 bc | |||
CD | 72 | 498,714 ± 11,740.23 ab | 7948 ± 378.29 a | 5718 ± 172.10 a | 1.39 ± 0.02 ab | |||
ED | 72 | 48,7919 ± 24,421 ab | 7516 ± 222.80 a | 5732 ± 233.23 a | 1.30 ± 0.02 a |
Beaumont | Treatment | Day | Atherogenic Indices | Thrombogenic Index | Saturation Index | Lipid Nutritional Value | Hypocholesterolemic/Hypercholesterolemic Ratio |
---|---|---|---|---|---|---|---|
CD | 0 | 0.1539 ± 0 ef | 0.3346 ± 0 ef | 0.1648 ± 0 fgh | 0.1685 ± 0 bc | 7.569 ± 0.08 b | |
ED | 0 | 0.1553 ± 0 fg | 0.3331 ± 0 ef | 0.1638 ± 0 efgh | 0.1852 ± 0 f | 7.525 ± 0.02 b | |
CD | 36 | 0.1578 ± 0 g | 0.3268 ± 0 ed | 0.1612 ± 0 def | 0.1800 ± 0 ef | 7.564 ± 0.01 b | |
ED | 36 | 0.1570 ± 0 fg | 0.3268 ± 0 ed | 0.1613 ± 0 defg | 0.1834 ± 0 ef | 7.477 ± 0.01 b | |
CD | 72 | 0.1425 ± 0 b | 0.2824 ± 0 a | 0.1398 ± 0 a | 0.1549 ± 0.01 a | 8.61 ± 0.13 e | |
ED | 72 | 0.1634 ± 0 h | 0.3687 ± 0 g | 0.1808 ± 0 i | 0.1850 ± 0 f | 7.162 ± 0.04 a | |
788 | Treatment | Day | Atherogenic Indices | Thrombogenic Index | Saturation Index | Lipid Nutritional Value | Hypocholesterolemic/Hypercholesterolemic Ratio |
CD | 0 | 0.1506 ± 0 de | 0.3263 ± 0.01 de | 0.1604 ± 0 de | 0.1733 ± 0 cd | 7.948 ± 0.06 c | |
ED | 0 | 0.1328 ± 0 a | 0.3027 ± 0.01 b | 0.1492 ± 0 b | 0.1501 ± 0.01 a | 8.748 ± 0.12 e | |
CD | 36 | 0.1558 ± 0 fg | 0.3228 ± 0 cd | 0.1594 ± 0 d | 0.1783 ± 0 de | 7.571 ± 0.01 b | |
ED | 36 | 0.1461 ± 0 c | 0.3158 ± 0 c | 0.1555 ± 0 c | 0.1703 ± 0 bc | 8.185 ± 0.03 d | |
CD | 72 | 0.1484 ± 0 cd | 0.3375 ± 0.01 f | 0.1654 ± 0 gh | 0.1665 ± 0 b | 8.292 ± 0.06 d | |
ED | 72 | 0.1493 ± 0 cd | 0.3399 ± f | 0.1664 ± 0 h | 0.1501 ± 0 a | 8.748 ± 0.02 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aruwajoye, N.N.; Mditshwa, A.; Magwaza, L.S.; Ngidi, M.S.C.; Tesfay, S.Z. Impact of Preharvest Ethephon Foliar Spray on the Postharvest Fatty Acid Profile and Dietary Indicators of Macadamia Nuts. Agriculture 2023, 13, 1898. https://doi.org/10.3390/agriculture13101898
Aruwajoye NN, Mditshwa A, Magwaza LS, Ngidi MSC, Tesfay SZ. Impact of Preharvest Ethephon Foliar Spray on the Postharvest Fatty Acid Profile and Dietary Indicators of Macadamia Nuts. Agriculture. 2023; 13(10):1898. https://doi.org/10.3390/agriculture13101898
Chicago/Turabian StyleAruwajoye, Noluthando Noxolo, Asanda Mditshwa, Lembe Samukelo Magwaza, Mjabuliseni Simon Cloapas Ngidi, and Samson Zeray Tesfay. 2023. "Impact of Preharvest Ethephon Foliar Spray on the Postharvest Fatty Acid Profile and Dietary Indicators of Macadamia Nuts" Agriculture 13, no. 10: 1898. https://doi.org/10.3390/agriculture13101898
APA StyleAruwajoye, N. N., Mditshwa, A., Magwaza, L. S., Ngidi, M. S. C., & Tesfay, S. Z. (2023). Impact of Preharvest Ethephon Foliar Spray on the Postharvest Fatty Acid Profile and Dietary Indicators of Macadamia Nuts. Agriculture, 13(10), 1898. https://doi.org/10.3390/agriculture13101898