Impact of Climate Change on Cassava Yield in Nigeria: An Autoregressive Distributed Lag Bound Approach
Abstract
:1. Introduction
2. Material and Methods
Description of Study Area
3. Data Sources
4. Model Estimation Procedures
- identifying the order of integration of variables using the unit root tests as presented in Table 1;
- conducting the Bounds test co-integration (long-run) relationship as presented in Table 2 and
- estimation of an Error Correction Model (ECM) to ascertain the speed of adjustment and spurious status of the estimation.
4.1. Unit Root Test
4.2. Co-Integration Analysis: ARDL Bounds Test
4.3. Error Correction Model (ECM)
5. Results and Discussion
5.1. ADF Test for Stationarity (Unit Root Test)
5.2. Bounds Test for Co-Integration
5.3. Long-Run Impacts of Climate Change on Cassava Yield
5.4. Error Correction Model (ECM) Regression
5.5. Diagnostic Test
6. Conclusions
Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Climate Change and Food Security: Risks and Responses; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2015. [Google Scholar]
- Eshete, Z.S.; Mulatu, D.W.; Gatiso, T.G. CO2 emissions, agricultural productivity and welfare in Ethiopia. Int. J. Clim. Chang. Strateg. Manag. 2020, 12, 687–704. [Google Scholar] [CrossRef]
- Manuel, L.; Chiziane, O.; Mandhlate, G.; Hartley, F.; Tostão, E. Impact of climate change on the agriculture sector and household welfare in Mozambique: An analysis based on a dynamic computable general equilibrium model. Clim. Chang. 2021, 167, 6. [Google Scholar] [CrossRef]
- Kompas, T.; Pham, V.H.; Che, T.N. The effects of climate change on GDP by country and the global economic gains from complying with the Paris Climate Accord. Earth’s Future 2018, 6, 1153–1173. [Google Scholar] [CrossRef] [Green Version]
- Bick, I.A.; Santiago Tate, A.F.; Serafin, K.A.; Miltenberger, A.; Anyansi, I.; Evans, M.; Ortolano, L.; Ouyang, D.; Suckale, J. Rising seas, rising inequity? Communities at risk in the San Francisco Bay Area and implications for adaptation policy. Earth’s Future 2021, 9, e2020EF001963. [Google Scholar] [CrossRef]
- Ghadge, A.; Wurtmann, H.; Seuring, S. Managing climate change risks in global supply chains: A review and research agenda. Int. J. Prod. Res. 2019, 5, 44–64. [Google Scholar] [CrossRef]
- Huynh, H.T.L.; Nguyen Thi, L.; Dinh Hoang, N. Assessing the impact of climate change on agriculture in Quang Nam Province, Viet Nam using modeling approach. Int. J. Clim. Change Strateg. Manag. 2020, 12, 757–771. [Google Scholar] [CrossRef]
- Irvine, G.; Pauli, N.; Varea, R.; Boruff, B. A Participatory Approach to Understanding the Impact of Multiple Natural Hazards in Communities along the Ba River, Fiji. In Climate-Induced Disasters in the Asia-Pacific Region: Response, Recovery, Adaptation (Community, Environment and Disaster Risk Management; Neef, A., Pauli, N., Eds.; Emerald Publishing Limited: Bingley, UK, 2020; Volume 22, pp. 57–86. [Google Scholar] [CrossRef]
- Liu, B.; Fan, Y.; Xue, B.; Wang, T.; Chao, Q. Feature extraction and classification of climate change risks: A bibliometric analysis. Environ. Monit. Assess. 2022, 194, 495. [Google Scholar] [CrossRef]
- Muchuru, S.; Nhamo, G. Climate change and the African livestock sector: Emerging adaptation measures from UNFCCC national communications. Int. J. Clim. Chang. Strateg. Manag. 2017, 9, 241–260. [Google Scholar] [CrossRef]
- Steiner, A. Climate Change, Environment, and Sustainable Development in Africa; Nnadozie, E., Jerome, A., Eds.; African Economic Development; Emerald Publishing Limited: Bingley, UK, 2019; pp. 93–110. [Google Scholar] [CrossRef]
- Van Putten, I.; Metcalf, S.; Frusher, S.; Marshall, N.; Tull, M. Fishing for the impacts of climate change in the marine sector: A case study. Int. J. Clim. Chang. Strateg. Manag. 2014, 6, 421–441. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agricultural Organization of the United Nations. 2022. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 2 November 2022).
- FAO. Climate-Smart Agriculture Sourcebook. In Food and Agriculture Organization of the United Nations; Department NRMaE: Rome, Italy, 2013. [Google Scholar]
- Blanc, E. The Impact of Climate Change on Crop Yields in Sub-Saharan Africa. Am. J. Clim. Chang. 2012, 1, 18072. Available online: https://www.scirp.org/html/1-2360002_18072.htm (accessed on 5 August 2022). [CrossRef] [Green Version]
- Akrofi-Atitianti, F.; Ifejika, S.C.; Bockel, L.; Asare, R. Assessing climate smart agriculture and its determinants of practice in Ghana: A case of the cocoa production system. Land 2018, 7, 30. [Google Scholar] [CrossRef] [Green Version]
- Tibesigwa, B.; Visser, M.; Turpie, J. The impact of climate change on net revenue and food adequacy of subsistence farming households in South Africa. Environ. Dev. Econ. 2015, 20, 327–353. [Google Scholar] [CrossRef] [Green Version]
- Onyeneke, R.U.; Ejike, R.D.; Osuji, E.E.; Chidiebere-Mark, N.M. Does climate change affect crops differently? New evidence from Nigeria. Environ. Dev. Sustain. 2022. [Google Scholar] [CrossRef]
- Shi, Y.; Lou, Y.; Zhang, Z.; Ma, L.; Ojara, M. Estimation of methane emissions based on crop yield and remote sensing data in a paddy field. Greenh. Gases: Sci. Technol. 2020, 10, 196–207. [Google Scholar] [CrossRef]
- “The Royal Society” (2020). Climate Change Evidence & Causes. An Overview from the Royal Society and the US National Academy of Sciences. Available online: https://bit.ly/2XdUphh (accessed on 5 August 2022).
- Vermeulen, S.J. Climate change, food security and small-scale producers: Analysis of findings of the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC). In CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) Info Note; CGIAR Research Program on Climate Change; Agriculture and Food Security (CCAFS): Copenhagen, Denmark, 2014. [Google Scholar]
- Batisani, N.; Ndiane, A. Advancing grassroots climate change awareness in Botswana: BCA campus greenhouse gas baseline inventory. Int. J. Sustain. High. Educ. 2014, 15, 304–313. [Google Scholar] [CrossRef]
- Donald, G.H.; William, P.; Joanne, L.; Neelam, C.P. Factors influencing greenhouse gas emissions from land use, land-use change, and forest activities. Ph.D. Thesis, University of Tennessee, Knoxville, TN, USA, 2016. [Google Scholar]
- Egbetokun, S.; Osabuohien, E.; Akinbobola, T.; Onanuga, O.T.; Gershon, O.; Okafor, V. Environmental pollution, economic growth and institutional quality: Exploring the nexus in Nigeria. Manag. Environ. Qual. 2020, 31, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Hou, L.; Yang, Y.; Zhang, X.; Jiang, C. Carbon footprint for wheat and maize production modulated by farm size: A study in the North China plain. Int. J. Clim. Chang. Strateg. Manag. 2021, 13, 302–319. [Google Scholar] [CrossRef]
- Kwakwa, P.A.; Alhassan, H.; Adzawla, W. Environmental degradation effect on agricultural development: An aggregate and a sectoral evidence of carbon dioxide emissions from Ghana. J. Bus. Socio-Econ. Dev. 2022, 2, 82–96. [Google Scholar] [CrossRef]
- Mora, C.; Spirandelli, D.; Franklin, E.C.; Lynham, J.; Kantar, M.B.; Miles, W.; Smith, C.Z.; Freel, K.; Moy, J.; Louis, L.V.; et al. Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions. Nat. Clim. Chang. 2018, 8, 1062–1071. [Google Scholar] [CrossRef]
- Murad, W.; Ratnatunga, J. Carbonomics of the Bangladesh agricultural output: Causality and long-run equilibrium. Manag. Environ. Qual. 2013, 24, 256–271. [Google Scholar] [CrossRef]
- Ogundari, K.; Ademuwagun, A.A.; Ajao, O.A. Revisiting Environmental Kuznets Curve in Sub-Sahara Africa: Evidence from deforestation and all GHG emissions from agriculture. Int. J. Soc. Econ. 2017, 44, 222–231. [Google Scholar] [CrossRef]
- Qu, J.; Han, J.; Liu, L.; Xu, L.; Li, H.; Fan, Y. Inter-provincial correlations of agricultural GHG emissions in China based on social network analysis methods. China Agric. Econ. Rev. 2021, 13, 229–246. [Google Scholar] [CrossRef]
- Swallow, B.M.; Goddard, T.W. Developing Alberta’s greenhouse gas offset system within Canadian and international policy contexts. Int. J. Clim. Chang. Strateg. Manag. 2016, 8, 318–337. [Google Scholar] [CrossRef]
- Warner, D.; Tzilivakis, J.; Green, A.; Lewis, K. Prioritising agri-environment options for greenhouse gas mitigation. Int. J. Clim. Chang. Strateg. Manag. 2017, 9, 104–122. [Google Scholar] [CrossRef] [Green Version]
- Branscombe, A. Which greenhouse gas does the most damage to crops? Eos 2016, 97. [Google Scholar] [CrossRef]
- Kim, S.U.; Lee, H.H.; Moon, S.M.; Han, R.H.; Hong, C.O. Nitrous oxide emissions and maize yield as influenced by nitrogen fertilization and tillage operations in upland soil. Appl. Biol. Chem. 2021, 64, 18. [Google Scholar] [CrossRef]
- Onyeneke, R.U.; Igberi, C.O.; Uwadoka, C.O.; Aligbe, J.O. Status of climate-smart agriculture in southeast Nigeria. GeoJournal 2018, 83, 333–346. [Google Scholar] [CrossRef]
- Harvey, C.A.; Saborio-Rodríguez, M.; Martinez-Rodríguez, M.R.; Viguera, B.; Chain-Guadarrama, A.; Vignola, R.; Alpizar, F. Climate change impacts and adaptation among smallholder farmers in Central America. Agric. Food Secur. 2018, 7, 57. [Google Scholar] [CrossRef]
- World Bank. Arable Land (Hectares)–Nigeria, 2018. Available online: https://data.worldbank.org/indicator/AG.LND.ARBL.HA?locations=NG (accessed on 5 August 2022).
- Climate Change Knowledge Portal. For Development Practitioners and Policymakers. 2020. Available online: https://climateknowledgeportal.worldbank.org/country/nigeria/climate-data-historical (accessed on 20 December 2021).
- Ntim-Amo, G.; Qi, Y.; Ankrah-Kwarko, E.; Ankrah Twumasi, M.; Ansah, S.; Boateng Kissiwa, L.; Ruiping, R. Investigating the validity of the agricultural-induced environmental Kuznets curve (EKC) hypothesis for Ghana: Evidence from an autoregressive distributed lag (ARDL) approach with a structural break. Manag. Environ. Qual. 2022, 33, 494–526. [Google Scholar] [CrossRef]
- Menegaki, A.N. The ARDL Method in the Energy-Growth Nexus Field; Best Implementation Strategies. Economies 2019, 7, 105. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, M.B.; Bhatta, G.R. Selecting appropriate methodological framework for time series data analysis. J. Financ. Data Sci. 2018, 4, 71–89. Available online: https://www.sciencedirect.com/science/article/pii/S2405918817300405. (accessed on 5 August 2022). [CrossRef]
- Nkoro, E.; Uko, A.K. Autoregressive Distributed Lag (ARDL) cointegration technique: Application and interpretation. J. Stat. Econom. Methods 2016, 5, 63–91. [Google Scholar]
- Chandio, A.A.; Jiang, Y.; Fatima, T.; Ahmad, F.; Ahmad, M.; Li, J. Assessing the impacts of climate change on cereal production in Bangladesh: Evidence from ARDL modelling approach. Int. J. Clim. Change Strateg. Manag. 2022, 14, 125–147. [Google Scholar] [CrossRef]
- Ebrima, K.C.; Mohamed, B.O.N. Climate change, food security and economic growth nexus in the Gambia: Evidence from an econometrics analysis. Res. Glob. 2022, 5, 100089. [Google Scholar]
- Liang, Z.; Qamruzzaman, M. An asymmetric investigation of the nexus between economic policy uncertainty, knowledge spillover, climate change, and green economy: Evidence from BRIC Nations. Front. Environ. Sci. 2022, 9, 807424. [Google Scholar] [CrossRef]
- Edet, E.O.; Udoe, P.O.; Isong, I.A.; Abang, S.O.; Ovbiroro, F.O. Impact of climate variability on yield of maize and yam in Cross River State, Nigeria: An autoregressive distributed lag bound approach. World News Nat. Sci. Int. Sci. J. 2021, 36, 60–74. [Google Scholar]
- Emenekwe, C.C.; Onyeneke, R.U.; Nwajiuba, C.U. Assessing the combined effects of temperature, precipitation, total ecological footprint, and carbon footprint on rice production in Nigeria: A dynamic ARDL simulations approach. Environ. Sci. Pollut. Res. 2022, 56, 85005–85025. [Google Scholar] [CrossRef]
- Gershon, O.; Mbajekwe, C. Investigating the nexus of climate change and agricultural production in Nigeria. Int. J. Energy Econ. Policy 2020, 10, 1–8. [Google Scholar] [CrossRef]
- Olayide, O.E.; Tetteh, I.K.; Popoola, L. Differential impacts of rainfall and irrigation on agricultural production in Nigeria: Any lessons for climate-smart agriculture? Agric. Water Manag. 2016, 178, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Schipani, V. CO2: Friend or Foe to Agriculture? FactCheck.Org. 2017. Available online: https://www.factcheck.org/2017/08/co2-friend-foe-agriculture/ (accessed on 13 November 2022).
- Guntukula, R.; Goyari, P. “How does the yield variability in rainfed crops respond to climate variables? Evidence from pulses yields in Telangana, India”. J. Agribus. Dev. Emerg. Econ. 2022, 12, 262–280. [Google Scholar] [CrossRef]
- Tian, H.; Xu, R.; Canadell, J.G.; Thompson, R.L.; Winiwarter, W.; Suntharalingam, P.; Davidson, E.A.; Ciais, P.; Jackson, R.B.; Janssens-Maenhout, G.; et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 2020, 586, 248–256. [Google Scholar] [CrossRef]
- Shindell, D.; Faluvegi, G.; Kasibhatla, P.; Dingenen, R.V. Spatial Patterns of Crop Yield Change by emitted pollutants. Earths Future 2019, 7, 101–112. Available online: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018EF001030 (accessed on 13 November 2022). [CrossRef] [PubMed] [Green Version]
- Shindell, D.T.; Fuglestvedt, J.S.; Collins, W.J. The social cost of methane: Theory and applications. Faraday Discuss 2017, 200, 429–451. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Rajput, P. Role of Biomass Burning in Greenhouse Gases Emission. In Greenhouse Gases: Sources, Sinks and Mitigation; Springer: Singapore, 2022; pp. 157–177. [Google Scholar]
- Kraus, D.; Werner, C.; Janz, B.; Klatt, S.; Sander, B.O.; Wassmann, R.; Kiese, R.; Butterbach-Bahl, K. Greenhouse gas mitigation potential of Alternate Wetting and Drying for rice production at national scale—A modeling case study for the Philippines. J. Geophys. Res. Biogeosci. 2022, 127, e2022JG006848. [Google Scholar] [CrossRef]
Variables | at Level 1(0) | Remarks | at 1st Deference 1(1) | Remarks | Decision: H0 | Order of Integration |
---|---|---|---|---|---|---|
t-statistic | t-statistic | |||||
Results of Augmented Dickey–Fuller Test | ||||||
Y | 0.05 | Not stationary | −3.29 ** | Stationary | Reject | 1(1) at 5% |
X1 | −0.25 | Not stationary | −4.03 ** | Stationary | Reject | 1(1) at 5% |
X2 | −3.50 ** | Stationary | −4.51 ** | Stationary | Reject | 1(0) at 5% |
X3 | 1.00 | Not stationary | −4.37 ** | Stationary | Reject | 1(1) at 5% |
X4 | −0.76 | Not stationary | −4.07 ** | Stationary | Reject | 1(1) at 5% |
X5 | −0.82 | Not stationary | −4.72 ** | Reject | 1(1) at 5% | |
X6 | −2.62 | Not stationary | −13.00 ** | Stationary | Reject | 1(1) at 5% |
Results of Phillips–Perron Test | ||||||
Y | −2.35 | Not stationary | −16.67 *** | Stationary | Reject | 1(1) at 1% |
X1 | −1.78 | Not stationary | −7.67 *** | Stationary | Reject | 1(1) at 1% |
X2 | −3.46 ** | Stationary | 19.18 *** | Stationary | Reject | 1(0) at 1% |
X3 | 0.10 | Not stationary | −4.35 *** | Stationary | Reject | 1(1) at 1% |
X4 | −0.63 | Not stationary | −6.51 *** | Stationary | Reject | 1(1) at 1% |
X5 | −0.89 | Not stationary | −4.61 *** | Stationary | Reject | 1(1) at 1% |
X6 | −6.58 | Not stationary | −15.11 *** | Stationary | Reject | 1(1) at 1% |
Equation | F-Statistic | Lower Bound 1(0) 5% | Upper Bound 1(1) 5% |
---|---|---|---|
lnYield = lnLand lnTemp lnCO2 lnN2O lnCH4 lnRF | 9.27 | 2.45 | 3.61 |
Predictor Variables | Coefficient | Standard Error | t-Statistic | p-Value |
---|---|---|---|---|
Area of land (ha) | 0.2 | 0.11 | 1.81 | 0.09 * |
Temperature | 0.02 | 0.03 | 0.62 | 0.54 |
CO2 | 3.24 | 1.66 | 1.95 | 0.07 * |
N2O | 0.82 | 0.43 | 1.92 | 0.07 * |
CH4 | −0.46 | 0.26 | −1.75 | 0.10 * |
Rainfall | 0.07 | 0.04 | 1.80 | 0.09 * |
Constant | 26.24 | 16.85 | −1.56 | 0.14 |
Variables | Coefficient | Standard Error | t-Stat | p-Value |
---|---|---|---|---|
CointEq (−1) | −0.57 | 0.06 | −9.24 | 0.00 |
Constant | −26.24 | 2.84 | −9.23 | 0.00 |
R2 | 0.80 | - | - | - |
Adjusted R2 | 0.77 | - | - | - |
F-statistic | 33.03 | - | - | - |
Prob(F-statistic) | 0.00 | - | - | - |
Durbin-Watson stat | 2.50 | - | - | - |
Diagnostic Test | Test | Probability Value | t-Statistic | F-Statistic | Prob Chi-Square |
---|---|---|---|---|---|
Stability test | Ramsey RESET test | - | 0.79 | 0.79 | - |
Normality test | Jarque–Bera stat | 0.13 | - | - | - |
Serial correlation test | LM test | 0.17 | - | - | 0.09 |
Heteroscedasticity test | Breusch–Pagan–Godfrey | 0.46 | - | - | 0.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anyaegbu, C.N.; Okpara, K.E.; Taweepreda, W.; Akeju, D.; Techato, K.; Onyeneke, R.U.; Poshyachinda, S.; Pongpiachan, S. Impact of Climate Change on Cassava Yield in Nigeria: An Autoregressive Distributed Lag Bound Approach. Agriculture 2023, 13, 80. https://doi.org/10.3390/agriculture13010080
Anyaegbu CN, Okpara KE, Taweepreda W, Akeju D, Techato K, Onyeneke RU, Poshyachinda S, Pongpiachan S. Impact of Climate Change on Cassava Yield in Nigeria: An Autoregressive Distributed Lag Bound Approach. Agriculture. 2023; 13(1):80. https://doi.org/10.3390/agriculture13010080
Chicago/Turabian StyleAnyaegbu, Casmir Ndukaku, Kingsley Ezechukwu Okpara, Wirach Taweepreda, David Akeju, Kuaanan Techato, Robert Ugochukwu Onyeneke, Saran Poshyachinda, and Siwatt Pongpiachan. 2023. "Impact of Climate Change on Cassava Yield in Nigeria: An Autoregressive Distributed Lag Bound Approach" Agriculture 13, no. 1: 80. https://doi.org/10.3390/agriculture13010080