
Citation: Anyaegbu, C.N.; Okpara,

K.E.; Taweepreda, W.; Akeju, D.;

Techato, K.; Onyeneke, R.U.;

Poshyachinda, S.; Pongpiachan, S.

Impact of Climate Change on

Cassava Yield in Nigeria: An

Autoregressive Distributed Lag

Bound Approach. Agriculture 2023,

13, 80. https://doi.org/10.3390/

agriculture13010080

Academic Editors: Chang Oh Hong

and Sang Yoon Kim

Received: 26 November 2022

Revised: 19 December 2022

Accepted: 21 December 2022

Published: 27 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Article

Impact of Climate Change on Cassava Yield in Nigeria: An
Autoregressive Distributed Lag Bound Approach
Casmir Ndukaku Anyaegbu 1 , Kingsley Ezechukwu Okpara 1,*, Wirach Taweepreda 2, David Akeju 3,
Kuaanan Techato 4 , Robert Ugochukwu Onyeneke 5 , Saran Poshyachinda 6 and Siwatt Pongpiachan 7

1 Environmental Management Program, Faculty of Environmental Management (FEM), Prince of Songkla
University (PSU), Hat Yai 90110, Thailand

2 Polymer Science Program, Division of Physical Science, Faculty of Science, Prince of Songkla
University (PSU), Hat Yai 90110, Thailand

3 Department of Sociology, University of Lagos, Akoka-Yaba, Lagos 100213, Nigeria
4 Program of Sustainable Energy Management, Faculty of Environmental Management (FEM), Prince of

Songkla University (PSU), Hat Yai 90110, Thailand
5 Department of Agriculture, Alex Ekwueme Federal University Ndufu-Alike, Ikwo 482131, Nigeria
6 National Astronomical Research Institute of Thailand (Public Organization), 260 Moo 4, T. Donkaew A. Mae

Rim, Chiang Mai 50180, Thailand
7 NIDA Center for Research & Development of Disaster Prevention & Management, School of Social and

Environmental Development, National Institute of Development Administration (NIDA), 148 Moo 3,
Sereethai Road, Klong-Chan, Bangkapi, Bangkok 10240, Thailand

* Correspondence: okparakingsleyezechukwu@rschst.edu.ng

Abstract: Across the globe, climate change is threatening the environment, crop yield and food
security. The key to ensuring a sustainable environment, crop yield increase and food security
is to identify the long-term significant impact of climate change and the means of reducing the
effect. This study examined the impacts of climate change on cassava yield in Nigeria. Data were
sourced from the Climate Change Knowledge Portal and the Food and Agricultural Organization
of the United Nations spanning from 1990 to 2019. The impact of climate change was analyzed
using Autoregressive Distributed Lag Bound approach, Error Correction Model and Augmented
Dickey–Fuller and Phillips–Perron tests for stationarity test. The model was subjected to diagnostic
tests such as stability tests, normality tests, serial correlation tests and heteroscedasticity tests. With
the exception of temperature, the study revealed that arable land, rainfall and greenhouse gases
such as C2O, nitrous oxide and methane had a long-term significant impact on cassava yield in
Nigeria. The study also noted that methane causes long-term significant damage to cassava yield
more than any other greenhouse gas and climatic variables in the study. We recommended policies
and programs that facilitate the uptake of climate-smart agriculture that centers on greenhouse gas
emission reduction and on crop improvement research by breeding crop varieties that will be resilient
to climate shocks.

Keywords: ARDL; cassava yield; climate change; co-integration; ECM; greenhouse gases

1. Introduction

Food security is the foundation for the overall sustainable development of any econ-
omy. Climate change is significantly threatening the sustainable development of food crops
across the globe and cassava production is not left out. Climate change is characterized by
increased intensity and frequency of storms, drought and flooding, changed hydrological
cycles and variation in precipitation [1]. The indirect effect of climate change is inimical
to agricultural production through changes on species such as pollinators, pests, disease
vectors and invasive species.

Climate change has a greater impact on household welfare indicators (household
income, agricultural income and daily calorie consumption per capita) and food security
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in SSA. The study by Economic and Policy Analysis of Climate Change (EPIC) of FAO [1]
on the impacts of climate change and weather shocks in SSA revealed that climate change
has significant impact on household welfare indicators. The household welfare indicators
involved are the total income, agricultural income and daily calorie consumption per capita.
Hence, these welfare indicators correlate with food security. In Tanzania, increased rainfall
variability correlated with a 35% decrease in total income, while increased temperature
fluctuation correlated with an 11% decrease in daily calorie intake [1]. FAO also had a
similar report from Malawi where an increase in temperature by 1 ◦C (drought shock)
resulted in a 19.9% decrease in consumption per capita and a 38.7% decrease in food calorie
intake. The incident followed suit in Ethiopia and Niger where fluctuations in rainfall
patterns and temperature changes threatened consumption expenditure, household income
and food security [1]. More so, CO2 emissions have impacts on agriculture and household
welfare [2]. Not just in SSA alone but in the whole world, climate change is threatening the
environment, crop yield and food security.

Some scholars considered climate change impact through five major channels which
include: agriculture, roads, hydropower, sea-level rise and cyclones [3]. Climate change
(global warming) plays a pivotal role in a loss in agricultural productivity, sea-level rise and
health effects which also extends to Gross Domestic Product (GDP) growth [4]. Research has
shown that climate change (coastal flooding) leads to financial instability and homelessness
among urban households [5]. It has been further revealed that the agricultural sector is
most susceptible to the negative impacts of climate change, especially for maize and cassava
crops as their yields decrease [3]. Increasing temperature, changing rainfall patterns and
frequent or severe extreme weather events (for example, heat waves, drought, floods, cold
waves and storms) are listed among the indicators of climate change [6]. Each indicator of
climate change has varied hidden risks which challenge our environment [7–12].

For decades, cassava has been one of the major food crops produced and consumed in
Nigeria [13] with many by-products. There has been a consistent increase in the production
of cassava in terms of area cultivated and yield per hectare over the last five decades in
Nigeria [13]. Nigeria takes the lead for decades now as the world’s largest producer of
cassava with an average output of 60,001,531 million tons and 7,737,846 ha of area harvested
in 2020 [13]. “Cassava is mostly grown by low-income, smallholder farmers. It made its
mark in joining the lead of the few staple crops that can be produced efficiently on a small
scale, without the need for mechanization, and in marginal areas with low nutrient soils
and extreme weather events such as drought” [14]. As such, cassava is hardy and any
extreme weather events that affect cassava will most likely affect many other staple food
crops which could lead to a food crisis in Nigeria. Thus, this informed choosing cassava for
this study. This proposition has been supported by a study which predicted that climate
change has less impact on cassava yield relative to maize, millet and sorghum [15]. The
majority of farmers in developing countries like Nigeria are mostly dependent on rain for
agriculture production, thus making farmers more susceptible to climate change extreme
events [16,17].

Across the globe, climate change is threatening the environment, crop yield and food
security. The key to ensuring a sustainable environment, crop yield increase and food
security is by identifying the long-term significant impact of climate change and means of
cushioning the effect. Thus, key knowledge gaps exist in determining the climatic variables
and greenhouse gases that cost more lasting damage to the cassava yield and solutions
to achieve climate action. Several scholars have studied the impacts of climate change
on crops but have not attributed it specifically to climatic variables such as rainfall and
temperature and greenhouse gases such as CO2, N2O and CH4 on cassava yield in Nigeria.
Determining the individual impact of climate change variables on crop yield is a gap to
fill and a step toward stimulating insight into curbing the negative impacts on crop yield
vis-à-vis food security. As research [18] showed that climate change affects crops differently
across different parts of the world, this work is specifically centered on identifying the
impact of climate change (temperature, rainfall, CH4, CO2 and H2O) on cassava in Nigeria.
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Mitigation of greenhouse gas emissions is a requirement to decelerate global warming and
achieve climate action [19].

According to The Royal Society [20], from preindustrial times till the present, “the
atmospheric concentration of CO2 has increased by over 40%, methane by more than
150%, and nitrous oxide by almost 20%”. Climate change is evident in changing trends
of temperature and precipitation and increased incidences of extreme weather events
such as droughts and floods. Climate change, to a large extent, is the outcome of human
activities that results in the accumulation of greenhouse gas (GHG) [21]. Greenhouse gas
(GHG) emissions are a major global issue due to their effects on climate and the subsequent
environmental and human impacts, particularly on agricultural productivity [22–32]. The
primary greenhouse gases (GHGs) include carbon dioxide (CO2), methane (CH4) and
nitrous oxide (N2O) which are emitted into the atmosphere through different human
activities [23].

The human activities that lead to the emission of GHG into the environment include
but are not limited to, energy supply, manufacturing, transportation, commercial and
residential buildings and waste. Conventional and non-conventional agricultural practices
are among the factors that influence GHG emissions substantially [23]. FAOSTAT [13]
narrows down the human activities (agricultural practices) that cause GHG emissions to
crop and livestock activities and forest management, and includes land use and land-use
change processes. Carbon dioxide fertilizes crops which increases crop yield. However,
as CO2 emissions continue to contribute to climate warming, the negative impact will
offset the benefit of increasing crop yield after 10 years [33]. The impact of CO2 is more
complicated [33]. Kim [34] observed that the application of urea fertilizer in crop production
increased cumulative N2O emissions, while conventional tillage also increased N2O relative
to no-tillage.

The agricultural activities that lead to GHG emissions include “burning-crop residues
(0.60%), crop residues (3%), enteric fermentation (47.05%), manure applied to soil (2.80%),
manure left on pasture (12.30%), manure management (6.80%), rice cultivation (12%),
savanna fires (4.90%), and synthetic fertilizers (9.70%)” [13]. Figure 1 below summarizes the
average percentage share of greenhouse gas (GHG) emissions from agricultural activities
from 2000 to 2019 across the globe [13]. Figure 1 shows that enteric fermentation (47.05%)
claimed almost half of all the GHG emissions from agricultural activities across the globe.
Enteric fermentation produces methane (CH4) in the rumen of ruminant animals (such
as cattle, goats, sheep, etc.) as microbial fermentation takes place during the process
of digestion.

“One of the biggest challenges in the 21st century is climate change which threatens
food security” [14]. This situation could be associated with low agricultural productivity
occasioned by climate extreme events. The growing “precipitation intensity” observed
in southeastern Nigeria, occasioned by climate change is introducing “erosion and flood
of different magnitude” [35]. Erosion and flooding wash off soil nutrients and destroy
soil’s physical structure leading to land degradation and lower productivity. There is
evidence that “climate change is already having significant negative impacts on smallholder
farmers” [36] and cassava production is not left out.

This paper seeks to study some identified climatic variables (like temperature and
rainfall), greenhouse gases (such as CO2, CH4 and N2O) and a covariance variable (such as
the area of land used for cassava production) that have a long-term impact on the cassava
yield which will lead to developing insight on how to reduce the impact of these variables
on cassava yield. The results of this study could lead to enhanced food security.
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2. Material and Methods
Description of Study Area

The study was conducted in Nigeria. It is also known as the giant of Africa due to
its population, landmass, human and capital development and Gross Domestic Product
(GDP). Nigeria is characterized by three climatic zones which include a tropical monsoon
climate in the southern part of the country with a mean annual rainfall of about 2000 mm
with 31 ◦C and 23 ◦C of average day and night temperatures; a tropical savannah climate
for most of the central regions with an average annual rainfall of greater than 1200 mm;
33 ◦C and 22 ◦C temperature for day and night, respectively; a Sahelian hot and semi-arid
climatic condition in the northern part of Nigeria with 35 ◦C and 21 ◦C temperature for
daytime and nighttime, respectively, and a 700 mm mean annual rainfall. In a chronological
manner, the following are the most produced commodities in Nigeria from 1990 to 2019
which include but are not limited to cassava, yams, cereals, egg and hen in shell, vegetable
primary, fruit primary, oil palm fruit, maize and sorghum [13]. It was revealed that Nigeria
is leading in cassava production across the globe followed by Congo, Thailand, Brazil,
Indonesia, Ghana and Angola [13].

According to the World Bank [37], Nigeria has 34 million arable land which made
cultivation of cassava and other arable crops possible. In Nigeria, 19,043,008 tons and
59,411,510 tons of cassava were harvested in 1990 and 2019 in an area of land that amount
to 1,634,130 ha to 7,449,387 ha, respectively [13]. The IPCC revealed that the GHG emissions
in Nigeria amount to 40,222.47 of carbon dioxide (CO2 eq) in 1990 and 85,256.81 of carbon
dioxide (CO2 eq) in 2019; 55.3 of nitrous oxide (N2O) in 1990 and 103.86 of nitrous oxide
(N2O) in 2019; 906.04 of methane (CH4) in 1990 and 2061.88 of CH4 in 2019 [3].
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3. Data Sources

The time series data used in this article are climatic variables (such as temperature
and rainfall), greenhouse gases and land area in hectares across Nigeria spanning from
1990 to 2019. The climatic variables include annual mean temperature and rainfall, while
greenhouse gas emission data include CH4, CO2 and N2O. These data were obtained from
the Climate Change Knowledge Portal [38] and the Food and Agricultural Organization of
the United Nations [13].

4. Model Estimation Procedures

The long-run dynamic relationship between the yield of cassava and the predictor
variables was estimated using Autoregressive Distributed Lag (ARDL) Bound approach.
ARDL model was chosen for this study because it is used to determine the long-term
relationship between variables under study. The relationship tends to quash when the
series is integrated at order 2(1), hence showing presence of a unit root. When the series
are integrated in different orders, such as 1(0) and 1(1), the Bounds Test Co-integration
and Error Correction Model (ECM) of ARDL become appropriate to establish a long-run
relationship in the model. The Johansen Co-integration Test is no longer valid in this study
because of a combination of 1(0) and 1(1) order of integration in the series. The unit root
test was to ascertain that no variable was integrated at order 2(1) and for ARDL model
specification and appropriate interpretation.

The first step in the ARDL relationship analysis is the stationarity test (unit root
test) [39]. Stationarity test shows the level of integration of each variable understudy.
Similar work has been conducted by some scholars [39–41] using ARDL model.

The empirical application of the ARDL methodology comprises three steps:

1. identifying the order of integration of variables using the unit root tests as presented
in Table 1;

2. conducting the Bounds test co-integration (long-run) relationship as presented in
Table 2 and

3. estimation of an Error Correction Model (ECM) to ascertain the speed of adjustment
and spurious status of the estimation.

Table 1. Results of the Stationarity/Unit Root test.

Variables At Level 1(0) Remarks At 1st
Deference 1(1) Remarks Decision: H0

Order of
Integration

t-statistic t-statistic

Results of Augmented Dickey–Fuller Test
Y 0.05 Not stationary −3.29 ** Stationary Reject 1(1) at 5%
X1 −0.25 Not stationary −4.03 ** Stationary Reject 1(1) at 5%
X2 −3.50 ** Stationary −4.51 ** Stationary Reject 1(0) at 5%
X3 1.00 Not stationary −4.37 ** Stationary Reject 1(1) at 5%
X4 −0.76 Not stationary −4.07 ** Stationary Reject 1(1) at 5%
X5 −0.82 Not stationary −4.72 ** Reject 1(1) at 5%
X6 −2.62 Not stationary −13.00 ** Stationary Reject 1(1) at 5%

Results of Phillips–Perron Test
Y −2.35 Not stationary −16.67 *** Stationary Reject 1(1) at 1%
X1 −1.78 Not stationary −7.67 *** Stationary Reject 1(1) at 1%
X2 −3.46 ** Stationary 19.18 *** Stationary Reject 1(0) at 1%
X3 0.10 Not stationary −4.35 *** Stationary Reject 1(1) at 1%
X4 −0.63 Not stationary −6.51 *** Stationary Reject 1(1) at 1%
X5 −0.89 Not stationary −4.61 *** Stationary Reject 1(1) at 1%
X6 −6.58 Not stationary −15.11 *** Stationary Reject 1(1) at 1%

Note: ** and *** represent significance levels at 5% and 1%, respectively. H0 = series have a unit root. Data
source: Output from Eviews 12.
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Table 2. Bounds test for co-integration.

Equation F-Statistic Lower Bound 1(0)
5%

Upper Bound 1(1)
5%

lnYield = lnLand lnTemp
lnCO2 lnN2O lnCH4 lnRF 9.27 2.45 3.61

Data source: Output from Eviews 12.

4.1. Unit Root Test

A unit root test analysis of each of the time series variables under the study was
conducted to determine the order of integration. Thus, the Augmented Dickey–Fuller (ADF)
and the Phillips–Perron (PP) tests were employed to determine the order of integration of
the chosen variables.

The model for the ADF test is presented in Equation (1):

∆Yt = α + ∂Yt−1 + Σγ∆Yt−j + et (1)

where,

Y = series o f tested
∆Yt = f irst di f f erence o f Yt
∂ = test difference coefficient
j = lag length chosen for ADF
et = white noise
t = time or trend variable

Here, the significance ∂ was tested against the null hypothesis (Ho), ∂ = 0 and
alternative hypothesis, ∂ < 0. If we do not reject the null, the series is non-stationary.
Hence, if the hypothesis of non-stationarity cannot be rejected, each of the variables was
differenced until they became stationary (that is significant at the 5% level). At this point,
the existence of a unit root was rejected. The stationarity test is also known as the unit root
test. The unit root test was to ascertain that no variable was integrated at order 2 and for
ARDL model specification [42]. Thereafter, co-integration was conducted.

4.2. Co-Integration Analysis: ARDL Bounds Test

The Bounds test ARDL model was adopted in testing the long-run relationship (co-
integration) between the cassava yield and predictor variables. This has been adopted by
some scholars in similar work [43–45]. The predictor variables are arable land in hectares,
climatic variables (temperature and rainfall) and greenhouse gases like CO2, N2O and CH4.
As soon as co-integration is established, the conditional ARDL (p, q1, q2, q3, q4, q5 and q6)
and the long-run model for Yt can be specified as:

lnYt = β0 + ∑
p
i=1 α1 ln Yt−1 + ∑

q1
i=0 α2lnland1t−1 + ∑

q2
i=0 α3lntemp2t−1+

∑
q3
i=0 α4 ln CO23t−1 + ∑

q4
i=0 α5lnN2O4t−1 + ∑

q5
i=0 α6lnCH45t−1 + ∑

q6
i=0 α7lnRF6t−1

(2)

This involves selecting the orders of the ARDL (p, q1, q2, q3, q4, q5 and q6) model in
the six predictor variables using Akaike Information Criterion as cited in a literature [46].

4.3. Error Correction Model (ECM)

The ECM is specified in Equation (3):

∆Yt = α0 + α1∆Žt − α2(Yt − Zt)t−1 + et (3)

where,

Žt = the vector o f explanatory variables
Yt and Zt = the co − integrating variables
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α2 = error correction term (ECT)
et = error term

In line with some scholars [46], the ECM is specified as:

∆Yt = β0 + ∑
p
i=1 α1∆Yt−1 + ∑

q1
i=0 α2∆land1t−1 + ∑

q2
i=0 α3∆temp2t−1+

∑
q3
i=0 α4∆CO23t−1 + ∑

q4
i=0 α5∆N2O4t−1 + ∑

q5
i=0 α6∆CH45t−1 + ∑

q6
i=0 α7∆RF6t−1−

α(Y − land − temp − CO2 − N2O − CH4 − RF) + et

(4)

5. Results and Discussion
5.1. ADF Test for Stationarity (Unit Root Test)

This research work studied the long-run implication of climate change on cassava
yield in Nigeria. Arable land available for cultivation, climatic variables and greenhouse
gases were regressed against cassava yield. We used the Augmented Dickey–Fuller (ADF)
test and the Phillips–Perron (PP) test to determine the stationarity of the dependent and
independent variables. Table 1 shows the summary statistics of the stationarity test and the
variables under consideration. The variables include: cassava yield, area of land cassava
was cultivated on, mean temperature, carbon iv oxide (CO2), nitrous oxide (N2O), methane
(CH4) and rainfall (RF). These were converted to a natural log for ease of analysis.

The ADF test of t-statistics for cassava yield (Y), area of land cultivated (X1), tem-
perature (X2), CO2 (X3), N2O (X4), CH4 (X5) and rainfall (X6) were −3.29, −4.03, −3.50,
−4.37, −4.07, −4.72 and −13.00, respectively, and statistically significant at 5% level. In
the same order, PP test of t-statistics were −16.67, −7.67, −3.46, −4.35, −6.51, −4.61 and
−15.1, respectively, as presented in Table 1.

In this study, the ADF test and PP test results at level and at first difference were in
the discourse of the unit root test. The results show the presence of co-integration between
the dependent and independent variables which informed the decision to conduct the
Bounds test for co-integration. Hence, the results of the test show that only temperature
was stationary at the level with an order of integration of 1(0), while cassava yield, area
of land cultivated, CO2, N2O, CH4 and rainfall were stationary at the first difference with
an order of integration of 1(1), respectively. The study revealed that the variables under
review influenced cassava production over time. Thus, some scholars [47–49] had similar
findings in Nigeria. Specifically, Onyeneke [18] further revealed that the majority of climatic
variables on crop production show stationarity at their first differencing 1(1) and others at
level 1(0). This is in line with the results of this study under review.

There is a combination of 1(0) and 1(1) order of integration in the series. The series
are integrated of different orders, hence Bounds test Co-integration and ECM of ARDL is
appropriate to establish a long-run relationship in the model. The Johansen Co-integration
Test is no longer valid in this study because of a combination of 1(0) and 1(1) order of
integration in the series. The unit root test was to ascertain that no variable was integrated
at order 2(1) and for ARDL model specification.

5.2. Bounds Test for Co-Integration

Table 2 presents F-statistic, lower bound and upper bound for long-run relationship.
The F-statistic is 9.27 which is significantly higher than both the lower bound of 2.45 and
the upper bound of 3.61 at a 5% level. This implies that there is a long-run term relationship
between dependent and independent variables in the model. Table 2 shows that the null
hypothesis of no co-integration is rejected at a 5% level of significance which confirms that
there is co-integration among the variables.

5.3. Long-Run Impacts of Climate Change on Cassava Yield

The long-run estimates of the cassava yield presented the area of land used for cassava
cultivation, temperature, CO2, N2O, CH4 and rainfall as regressors of the estimate in Table 3
while cassava yield is the dependent variable. Out of six regressors (predictor variables),
five were found to be significant at a 10% level while only one was not significant. This
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implies that the five significant predictor variables have a long-term relationship with
cassava yield (dependent variable). The significant variables are the area of land used for
cassava production, CO2, N2O, CH4 and rainfall while the temperature was not significant.

Table 3. Long-run (LR) estimate of cassava yield.

Predictor Variables Coefficient Standard Error t-Statistic p-Value

Area of land (ha) 0.2 0.11 1.81 0.09 *
Temperature 0.02 0.03 0.62 0.54

CO2 3.24 1.66 1.95 0.07 *
N2O 0.82 0.43 1.92 0.07 *
CH4 −0.46 0.26 −1.75 0.10 *

Rainfall 0.07 0.04 1.80 0.09 *
Constant 26.24 16.85 −1.56 0.14

The independent variables are significant at a 10% (*) level. Data source: Output from Eviews 12.

Table 3 presents the long-run implications of climate change on cassava yield in
Nigeria. Here, cassava yield was regressed against arable land, temperature, rainfall and
greenhouse gases such as CO2, N2O and CH4.

In Table 3, the study revealed that the area of land in hectares has a positive coefficient
estimate of 0.20 at a 10% level of significance. The result shows that a unit increase in the
area of land for cassava production will increase cassava yield by 20%. This shows that
arable land has a long-term relationship with cassava yield. This implies that the large
expanse of arable land available for cultivation is a comparative advantage for cassava
farmers in Nigeria to increase their yield in the long run. Land has been a limiting factor
in crop production, especially in the southern part of Nigeria which is the research area.
The land tenure system practice in Nigeria especially in the southeast part of the country
has made access to land difficult. By implication, the higher the arable land available for
cassava production, the more the economies of scale and the higher the cassava yield. Thus,
the availability of arable land for cultivation has a positive long-term significant impact on
the cassava yield in Nigeria.

In this study, carbon iv oxide (CO2) has a positive coefficient estimate of 0.07 at a 10%
level of significance. This shows that the higher the CO2, the higher the cassava yield. CO2
is essential during the process of photosynthesis. Photosynthesis is the process by which
crops such as cassava create sugar and oxygen using sunlight, water (H2O) and carbon
dioxide (CO2). The sugar in the form of glucose is utilized during the cellular respiration of
the cassava crop. More so, glucose is used by the cassava crop as an important source of
carbon to produce cassava stems and roots thereby increasing the yield. However, increased
CO2 above the optimum requirement of crops in the presence of warmer temperatures and
wetter climates promotes weed, pest and fungi infestation. Hence, the result establishes
that CO2 emissions have a positive long-term significant impact on the cassava yield in
Nigeria. This is in contrast with the findings of some scholars, according to Schipani [50].
He reported that CO2 shows positive impact on crops but will diminish and have a negative
impact when atmospheric CO2 reaches a saturation point.

The study revealed that rainfall has a positive coefficient estimate of 0.07 at a 10%
level of significance. This indicates that a unit increase in rainfall within the optimum
requirement of cassava will lead to a 7% increase in cassava yield. In Sub-Saharan Africa
(SSA), the majority of farmers depend on rain for their crop production, thus making
farmers more susceptible to climate change extreme events [16,17]. As such, changes in
rainfall affect crop production. More so, changes in climatic factors such as rainfall and
temperature exert significant influences on the mean yield levels and yield variance of
pulses [51]. Cultivation of cassava requires water in the form of rainfall for photosynthesis
which promotes the performance of cassava. Thus, the higher the rain within the optimum
requirement of cassava, the higher the yield of cassava. Hence, rainfall has a positive
long-term significant impact on the cassava yield in Nigeria. However, the growing
“precipitation intensity” observed in southeastern Nigeria, occasioned by climate change is
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introducing “erosion and flood of different magnitude” [35]. Erosion and flooding wash
off soil nutrients and destroy soil’s physical structure leading to land degradation and
lower productivity.

Nitrous oxide (N2O) has a positive coefficient estimate of 0.82 and a significant impact
on cassava yield at a 10% level. By implication, a unit increase in the supply of N2O will
lead to an 82% increase in cassava production. This indicates that the higher the N2O
application, the higher the cassava yield. Hence, N2O has a long-term positive effect on
cassava yield. Nitrogen is an essential nutrient for plant growth, which is why it is used in
the production of synthetic fertilizers applied to farmland across the globe [52]. However,
the emission of greenhouse gases like N2O contributes to climate change which in turn
affects crop production negatively. Researchers have noted that the anthropogenic source
of N2O has jumped by 30% and that the majority of that increase (87%) was stimulated by
agriculture [52].

Methane (CH4) has a negative coefficient estimate of −0.46 at a 10% level of signifi-
cance. By implication, a unit increase in CH4 supply to cassava will result to a 46% decrease
in the yield of cassava in Nigeria. This indicates that an increase in the supply of CH4
will significantly lower the cassava yield in Nigeria. The result reveals that methane has a
long-term negative impact on cassava yield in Nigeria. Methane is a greenhouse gas (GHG)
emission which contributes to global warming. The study revealed that methane caused
long-term significant damage to cassava more than any other greenhouse gas in the study.
This is in line with some scholars [53] who assumed maize losses to be CH4 and wheat
losses to be CO2 (due to warming) and CH4. The study revealed that other GHG emissions
like CO2 and N2O show a positive significant relationship with cassava yield.

CH4 emissions are very harmful to crops as the gas increases surface ozone that causes
harmful chlorosis (yellowing of the leaves) [33]. This is in line with the result of this study.
Thus, CH4 emissions promote global warming, cost damage to public health and lessen the
yield and productivity of agricultural and forest ecosystems [54].

Livestock produces significant amounts of methane (CH4) as part of their normal di-
gestive processes. Methane-reducing feed additives and supplements inhibit methanogens
in the rumen and later reduce enteric CH4 emissions. This will help to achieve Sustainable
Development Goal 13 (climate action) by 2030. Methane-reducing feed additives and
supplements include: (1) synthetic chemicals, (2) natural supplements and compounds,
such as tannins and seaweed and (3) fats and oils. Some researchers [55] revealed that the
burning of biomass and landfills involving waste releases greenhouse gases like CO2 and
CH4 into the atmosphere. By implication, combustion efficiency of biomass and better
waste disposal other than landfills will reduce GHG emissions. While a study [56] noted
that the reduction potential of GHG emissions depends on (1) number of crops per year, (2)
residue management, (3) the amount of applied irrigation water and (4) sand content.

The result showed that temperature had a positive coefficient estimate of 0.02 but was
not significant. The result suggests that a unit rise in temperature will not significantly
raise cassava output in Nigeria. Climate change causes extreme temperature and rainfall
leading to floods and droughts which harm crops and reduces yield. Temperature above
optimal requirement of cassava crop tends to be harsh on the crop and reduces vegetation
performance and yield.

5.4. Error Correction Model (ECM) Regression

Table 4 presents the Error Correction Model (ECM) estimation.
Table 4 was used to interpret the Error Correction Model (ECM) and spurious nature

of the model. The coefficient of Error Correction Term (−0.57) is negative and statistically
significant at a 1% level. The negative and significant coefficient estimate of ECM indicates
that there is a co-integrating relationship between cassava yield and its determinants.
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Table 4. Error Correction Model (ECM) Estimation.

Variables Coefficient Standard Error t-Stat p-Value

CointEq (−1) −0.57 0.06 −9.24 0.00
Constant −26.24 2.84 −9.23 0.00

R2 0.80 - - -
Adjusted R2 0.77 - - -

F-statistic 33.03 - - -
Prob(F-statistic) 0.00 - - -

Durbin-Watson stat 2.50 - - -
Data source: Output from Eviews 12.

In Table 4, the magnitude of the coefficient estimate of ECM suggests that 57% of the
disequilibrium caused by previous years’ shocks converges back to the long-run equilib-
rium in the current year. This reveals that the speed of adjustment is above average and it is
a bit fast to adjust to the long-term equilibrium. By implication, the independent variables
(land area, temperature, CO2, N2O, CH4 and rainfall) would adjust any negative short-run
and long-run shocks to the cassava production in the long run. Some scholars [18,42,47–49]
have shown similar findings in their research.

Table 4 also presents the spurious nature of the model. Here, the Durbin–Watson
statistic (2.50) is greater than the R-squared (R2) value of 0.80 which implies that the model
is not spurious.

5.5. Diagnostic Test

Figure 2 presents the CUSUM test of stability. The rule of thumb in the CUSUM
test is that if the blue line at the center did not touch the upper and lower bound lines,
the model is stable and if otherwise, the model is not stable as presented in Figure 2.
Table 5 presents the diagnostic test assumptions of the ARDL model of the estimate. These
diagnostic test assumptions include stability test, normality test, serial correlation test and
heteroscedasticity test.

Table 5. Diagnostic test.

Diagnostic Test Test Probability
Value t-Statistic F-Statistic Prob

Chi-Square

Stability test Ramsey RESET
test - 0.79 0.79 -

Normality test Jarque–Bera stat 0.13 - - -
Serial correlation

test LM test 0.17 - - 0.09

Heteroscedasticity
test

Breusch–Pagan–
Godfrey 0.46 - - 0.39

In this study, Ramsey RESET and CUSUM tests were adopted in the stability test of
the ARDL model. The rule of thumb for Ramsey RESET test is that if the t-statistic and
F-statistic are greater than 0.05 (5%), it shows that the model is stable. The result revealed a
t-statistic of 0.79 and an F-statistic of 0.79 which is greater than 0.05. Thus, the model is
stable. To corroborate the stability test, the CUSUM test was also conducted which further
proved that the model is stable.

The normality test was conducted using the Jarque–Bera statistic. Here, the proba-
bility value (0.13) is greater than 0.05 (5%), which shows that the residue of the model is
normally distributed.

Data source: Output from Eviews 12. A serial correlation test was also conducted
employing the LM test. Here, the probability value of 0.17 and the probability of chi-square
value of 0.09 were greater than 0.05 (5%). This implies that there is no serial correlation in
the model.
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The heteroscedasticity test was conducted using the Breusch–Pagan–Godfrey test.
Here, the probability value of 0.46 and probability of chi-square value of 0.39 were greater
than 0.05 (5%). This shows that the model is homoscedasticity. Hence, the diagnostic test
revealed that the ARDL model used for the study is a good fit and is reliable. The results
showed the appropriateness of ARDL to model the impact of climatic variables, greenhouse
gases and land on cassava production in Nigeria.

6. Conclusions

The study examined the long-run implication of climate change and greenhouse gases
on cassava yield in Nigeria. Arable land available for cultivation, climatic variables and
greenhouse gases were regressed against cassava yield. Specifically, the regressors are
arable land (ha) used for cassava cultivation, temperature, CO2, N2O, CH4 and rainfall. The
stationarity test (unit root test) was conducted using the ADF and PP tests which show that
all the variables are significant at 5% and 1% levels, respectively. The unit root test results
show that only temperature showed stationarity at level with an order of integration of 1(0),
while cassava yield, area of land cultivated, CO2, N2O, CH4 and rainfall were stationary at
first difference with an order of the integration of 1(1).

The series are integrated at different orders, hence Bounds test Co-integration and
Error Correction Model of ARDL were adjudged appropriate to establish a long-run re-
lationship between the cassava yield and the predictor variables (regressors). It implies
that a unit increase in the supply of CH4 will lead to a 46% decrease in cassava yield in
Nigeria. The result of the Bounds test for co-integration rejected the null hypothesis of no
co-integration at a 5% level of significance which established that there is a co-integration
among the variables under consideration. The study revealed that arable land, climatic
variables and greenhouse gases had a long-term significant impact on the cassava yield in
Nigeria. However, the temperature is not significant. The study also revealed that methane



Agriculture 2023, 13, 80 12 of 14

caused a long-term significant damage to cassava more than any other greenhouse gas and
climatic variable in the study.

Recommendations

The study recommends climate-smart agriculture (CSA) and manure management as
a low-cost countermeasure with a high reduction potential of GHG emissions across the
globe to aid in achieving SDGs 2 and 13 by 2030, as CSA was developed in 2010 by FAO
to achieve three main objectives: (1) sustainably increasing agricultural productivity and
incomes; (2) adapting and building resilience to climate change and (3) reduction and/or
removal of greenhouse gas emissions, where possible.
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