Residues of the Acaricides Abamectin, Hexythiazox, and Spiromesifen in Eggplant (Solanum melongena L.) Fruits Grown under Field Conditions in Najran, Saudi Arabia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Analytical Procedure
2.2.1. Standard and Reagent Solutions
2.2.2. Sample Preparation
2.2.3. Instrumentation
2.2.4. Effect of Dilution on the Matrix Effect
2.2.5. Method Validation
2.3. Field Experiments
2.4. Terminal Residues
2.5. Dietary Risk Assessment
2.6. Statistical Analysis
3. Results and Discussions
3.1. LC-MS/MS Optimization
3.2. Matrix Effect
3.3. Method Validation
3.3.1. Linearity and Matrix Effects
3.3.2. LOD and LOQ
3.3.3. Method Accuracy and Precision
3.4. Dissipation of Abamectin, Hexythiazox, and Spiromesifen in Eggplant Fruits
3.4.1. Abamectin
3.4.2. Hexythiazox
3.4.3. Spiromesifen
3.5. Terminal Residues
3.6. Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Aktar, W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelbagi, A.O.; Ismail, R.E.A.; Ishag, A.E.S.A.; Hammad, A.M.A. Pesticide Residues in Eggplant Fruit from Khartoum State, Sudan. J. Health Pollut. 2020, 10, 200304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakha, M. Growth, yield, and fruit quality of Eggplant (Solanum melongena L.) as affected by irrigation intervals and foliar application of some antitranspirants. J. Plant Prod. 2014, 5, 2069–2083. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization of the United Nations. 2020. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 7 March 2022).
- Conn, K. Pepper & Eggplant Disease Guide Edited by Pepper & Eggplant Disease Guide; Seminis® Vegetable Seeds Inc.: Oxnard, CA, USA, 2006; pp. 1–72. [Google Scholar]
- Malhat, F.; Abdallah, O.; Anagnostopoulos, C.; Hussien, M.; Purnama, I.; Helmy, R.M.A.; Soliman, H.; El-Hefny, D. Residue, dissipation, and dietary intake evaluation of fenpyroximate acaricide in/on guava, orange, and eggplant under open field condition. Front. Nutr. 2022, 9, 1846. [Google Scholar] [CrossRef]
- Abdallah, O.I.; Malhat, F.M. Thiacloprid residues in green onion (Allium cepa) using micro liquid–liquid extraction and liquid chromatography–tandem mass spectrometry. Agric. Res. 2020, 9, 340–348. [Google Scholar] [CrossRef]
- Delcour, I.; Spanoghe, P.; Uyttendaele, M. Literature review: Impact of climate change on pesticide use. Food Res. Int. 2015, 68, 7–15. [Google Scholar] [CrossRef]
- Campbell, W.C. Ivermectin and Abamectin; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Jansson, R.K.; Dybas, R.A. Avermectins: Biochemical Mode of Action, Biological Activity and Agricultural Importance. In Insecticides with Novel Modes of Action; Springer: Berlin/Heidelberg, Germany, 1998; pp. 152–170. [Google Scholar] [CrossRef]
- Dekeyser, M.A. Acaricide mode of action. Pest Manag. Sci. Former. Pestic. Sci. 2005, 61, 103–110. [Google Scholar] [CrossRef]
- Kadir, H.A.; Knowles, C.O. Inhibition of ATP Dephosphorylation by Acaricides with Emphasis on the Anti-ATPase Activity of the Carbodiimide Metabolite of Diafenthiuron. J. Econ. Entomol. 1991, 84, 801–805. [Google Scholar] [CrossRef]
- Salman, S.Y.; Recep, A.Y. Analysis of hexythiazox resistance mechanisms in a laboratory selected predatory mite Neoseiulus californicus (Acari: Phytoseiidae). Turk. Entomol. Derg. 2013, 37, 409–422. [Google Scholar]
- Badawy, M.E.; Mahmoud, M.S.; Khattab, M.M. Residues and dissipation kinetic of abamectin, chlorfenapyr and pyridaben acaricides in green beans (Phaseolus vulgaris L.) under field conditions using QuEChERS method and HPLC. J. Environ. Sci. Health Part B 2020, 55, 517–524. [Google Scholar] [CrossRef]
- Xie, W.-M.; Ko, K.-Y.; Kim, S.-H.; Chang, H.-R.; Lee, K.-S. Determination of Abamectin Residue in Paprika by High-Performance Liquid Chromatography. Korean J. Environ. Agric. 2006, 25, 359–364. [Google Scholar] [CrossRef] [Green Version]
- Varghese, T.S.; Mathew, T.B.; George, T.; Beevi, S.N.; Xavier, G. Dissipation of propargite and spiromesifen in/on chilli fruits. Pestic. Res. J. 2011, 23, 135–139. [Google Scholar]
- Raj, M.F.; Solanki, P.P.; Singh, S.; Vaghela, K.M.; Shah, P.G.; Patel, A.R.; Diwan, K.D. Dissipation of spiromesifen in/on okra under middle Gujarat conditions. Pestic. Res. J. 2012, 24, 25–27. [Google Scholar]
- Abd-Alrahman, S.H. Dissipation of hexythiozox on beans pods by HPLC–DAD. Bull. Environ. Contam. Toxicol. 2013, 90, 504–507. [Google Scholar] [CrossRef]
- Saber, A.N.; Malhat, F.M.; Badawy, H.M.; Barakat, D.A. Dissipation dynamic, residue distribution and processing factor of hexythiazox in strawberry fruits under open field condition. Food Chem. 2016, 196, 1108–1116. [Google Scholar] [CrossRef]
- Masiá, A.; Blasco, C.; Picó, Y. Last trends in pesticide residue determination by liquid chromatography–mass spectrometry. Trends Environ. Anal. Chem. 2014, 2, 11–24. [Google Scholar] [CrossRef]
- Satheshkumar, A.; Senthurpandian, V.K.; Shanmugaselvan, V.A. Dissipation kinetics of bifenazate in tea under tropical conditions. Food Chem. 2014, 145, 1092–1096. [Google Scholar] [CrossRef]
- Majumder, S.; Ghosh, B.; Roy, S.; Bhattacharyya, A. Residual fate and dissipation behaviour of hexythiazox in brinjal. J. Crop. Weed 2015, 11, 183–185. [Google Scholar]
- Sharma, K.; Dubey, J.; Deka, S.; Chandrasekaran, S.; Kalpana; Gupta, P.; Kumar, A.; Vandana; Devi, M.J.; Singh, B.; et al. Dissipation kinetics of spiromesifen on tea (Camellia sinensis) under tropical conditions. Chemosphere 2007, 68, 790–796. [Google Scholar] [CrossRef]
- Sharma, K.K.; Mukherjee, I.; Singh, B.; Mandal, K.; Sahoo, S.K.; Banerjee, H.; Banerjee, T.; Roy, S.; Shah, P.G.; Patel, H.K.; et al. Persistence and risk assessment of spiromesifen on tomato in India: A multilocational study. Environ. Monit. Assess. 2014, 186, 8453–8461. [Google Scholar] [CrossRef]
- Sharma, K.K.; Dubey, J.K.; Mukherjee, I.; Parihar, N.S.; Battu, R.S.; Singh, B.; Kumar, A.; Gupta, P.; Kalpana, B.; Sharma, I.D.; et al. Residual Behavior and Risk Assessment of Spiromesifen (Oberon 240 SC) on Eggplant (Solanum melonongena L.) in India: A Multilocational Study. Bull. Environ. Contam. Toxicol. 2006, 76, 760–765. [Google Scholar] [CrossRef]
- Sharma, K.K.; Rao, C.S.; Dubey, J.K.; Patyal, S.K.; Parihar, N.S.; Battu, R.S.; Sharma, V.; Gupta, P.; Kumar, A.; Kalpana; et al. Persistence and Dissipation Kinetics of Spiromesifen in Chili and Cotton. Environ. Monit. Assess. 2006, 132, 25–31. [Google Scholar] [CrossRef]
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [PubMed]
- Lehotay, S.J. Quick, Easy, Cheap, Effective, Rugged, and Safe Approach for Determining Pesticide Residues. In Pesticide Protocols; Springer: Berlin/Heidelberg, Germany, 2006; pp. 239–261. [Google Scholar] [CrossRef]
- Lehotay, S.J.; De Kok, A.; Hiemstra, M.; Van Bodegraven, P. Validation of a Fast and Easy Method for the Determination of Residues from 229 Pesticides in Fruits and Vegetables Using Gas and Liquid Chromatography and Mass Spectrometric Detection. J. AOAC Int. 2005, 88, 595–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, K.-H.; Wai, H.-Y.; Leung, K.M.; Tsang, V.W.; Tang, C.-F.; Cheung, R.Y.; Lam, M.H. A study of the partitioning behavior of Irgarol-1051 and its transformation products. Chemosphere 2006, 64, 1177–1184. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Kou, H.; Mu, B.; Wang, J.; Zhang, Z. Dietary risk evaluation of tetraconazole and bifenazate residues in fresh strawberry from protected field in North China. Regul. Toxicol. Pharmacol. 2019, 106, 1–6. [Google Scholar] [CrossRef]
- Roy, S.; Majumder, S.; Das, S.; Singha, D.; Kumar, M. Residual fate and safety risk assessment of Hexythiazox in okra. Int. J. Trop. Agric. 2019, 37, 97–102. [Google Scholar]
- Abdellseid, A.; Rahman, T. Residue and dissipation dynamics of abamectin in tomato fruit using QuEChERS methodology. In Proceedings of the International Conference on Food, Biological and Medical Sciences Bangkok, Bangkok, Thailand, 28–29 January 2014. [Google Scholar]
- Al-Rahman, A.; Hussein, S.; Almaz, M.M.; Ahmed, N.S. Dissipation of fungicides, insecticides, and acaricide in tomato using HPLC-DAD and QuEChERS methodology. Food Anal. Methods 2012, 5, 564–570. [Google Scholar] [CrossRef]
- El-Hamid, A.; Reem, M.; Dahrog, S.M.; Hanafi, A.; Nasr, I.N. Dissipation of Hexythiazox and Abamectin Residues on Strawberry Grown in Open Field. J. Plant Prot. Pathol. 2015, 6, 793–801. [Google Scholar] [CrossRef] [Green Version]
- Dubey, J.K.; Katna, S.; Shandil, D.; Devi, N.; Singh, G.; Singh, G.; Singh, S.; Kaushik, E.; Sharma, A. Dissipation kinetics and dietary risk assessment of spiromesifen on major summer vegetables using good agricultural practices. Biomed. Chromatogr. 2021, 35, e5085. [Google Scholar] [CrossRef]
- SANTE/12682/2019, Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticides Residues Analysis in Food and Feed. Available online: https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_guidelines_wrkdoc_2019-12682.pdf (accessed on 20 August 2022).
- Abdallah, O.I.; Ahmed, N.S. Development of a Vortex-Assisted Dispersive Liquid-Liquid Microextraction (VA-DLLME) and LC-MS/MS Procedure for Simultaneous Determination of Fipronil and its Metabolite Fipronil Sulfone in Tomato Fruits. Food Anal. Methods 2019, 12, 2314–2325. [Google Scholar] [CrossRef]
- Abdallah, O.I.; El-Hamid, R.M.A.; Raheem, E.H.A. Clothianidin residues in green bean, pepper and watermelon crops and dietary exposure evaluation based on dispersive liquid-liquid microextraction and LC–MS/MS. J. Consum. Prot. Food Saf. 2019, 14, 293–300. [Google Scholar] [CrossRef]
- Hoskins, W. Mathematical treatment of the rate of loss of pesticide residues. FAO Plant Prot. Bull. 1961, 9, 214–215. [Google Scholar]
- Hingmire, S.; Oulkar, D.P.; Utture, S.C.; Shabeer, T.A.; Banerjee, K. Residue analysis of fipronil and difenoconazole in okra by liquid chromatography tandem mass spectrometry and their food safety evaluation. Food Chem. 2015, 176, 145–151. [Google Scholar] [CrossRef]
- Abdallah, O.; Soliman, H.; El-Hefny, D.; El-Hamid, R.A.; Malhat, F. Dissipation profile of sulfoxaflor on squash under Egyptian field conditions: A prelude to risk assessment. Int. J. Environ. Anal. Chem. 2021, 101, 1–15. [Google Scholar] [CrossRef]
- Adam, A.; Osama, S.; Muhammad, K.I. Nutrition and Food Consumption Patterns in the Kingdom of Saudi Arabia. Pak. J. Nutr. 2014, 13, 181–190. [Google Scholar] [CrossRef] [Green Version]
- WHO. GEMS/Food Regional Diets (Regional per Capita Consumption of Raw and Semi processed Agricultural Commodities). 2003. Available online: http://www.who.int/foodsafety/publications/chem/regional_diets/en (accessed on 20 October 2022).
- Abdallah, O.; El Agamy, M.; Abdelraheem, E.; Malhat, F. Buprofezin dissipation and safety assessment in open field cabbage and cauliflower using GC/ITMS employing an analyte protectant. Biomed. Chromatogr. 2019, 33, e4492. [Google Scholar] [CrossRef]
- Hlihor, R.M.; Pogăcean, M.O.; Simion, I.M.; Cozma, P.; Apostol, L.C.; Gavrilescu, M. Assessment of human health risk of twelve pesticides applied in double dose in an apple orchard. Ann. Acad. Rom. Sci. Ser. Phys. Chem. 2016, 1, 25–35. [Google Scholar]
- Zimmer, D. Introduction to quantitative liquid chromatography-tandem mass spectrometry (LC-MS-MS). Chromatographia 2003, 57, S325–S332. [Google Scholar] [CrossRef]
- Kaczyński, P. Clean-up and matrix effect in LC-MS/MS analysis of food of plant origin for high polar herbicides. Food Chem. 2017, 230, 524–531. [Google Scholar] [CrossRef]
- Domínguez, A.M.; Placencia, F.; Cereceda, F.; Fadic, X.; Quiroz, W. Analysis of tomato matrix effect in pesticide residue quantification through QuEChERS and single quadrupole GC/MS. Chil. J. Agric. Res. 2014, 74, 148–156. [Google Scholar] [CrossRef] [Green Version]
- Lehotay, S.J.; Son, K.A.; Kwon, H.; Koesukwiwat, U.; Fu, W.; Mastovska, K.; Hoh, E.; Leepipatpiboon, N. Comparison of QuEChERS sample preparation methods for the analysis of pesticide residues in fruits and vegetables. J. Chromatogr. A 2010, 1217, 2548–2560. [Google Scholar] [CrossRef] [PubMed]
- Fantke, P.; Juraske, R. Variability of Pesticide Dissipation Half-Lives in Plants. Environ. Sci. Technol. 2013, 47, 3548–3562. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, H.A.; Arief MM, H.; Nasr, I.N.; Mohammed, I.H. Residues and half-lives of abamectin, diniconazole and methomyl on and in strawberry under the normal field conditions. J. Appl. Sci. Res. 2010, 6, 932–936. [Google Scholar]
- Vinothkumar, B.; Shibani, P.V.; Kaviya, R.; Kowshika, J. Dissipation pattern of spiromesifen in/on brinjal fruits. Int. J. Chem. Stud. 2018, 6, 2485–2488. [Google Scholar]
- Sharma, K.K.; Dubey, J.K.; Kumar, A.; Gupta, P.; Singh, B.; Sharma, I.D.; Nath, A. Persistence and Safety Evaluation of Spiromesifen on Apple (Maius domestica L.) in India: A Multilocation Study. Pestic. Res. J. 2005, 17, 77–81. [Google Scholar]
- Siddamallaiah, L.; Mohapatra, S.; Buddidathi, R.; Hebbar, S.S. Dissipation of spiromesifen and spiromesifen-enol on tomato fruit, tomato leaf, and soil under field and controlled environmental conditions. Environ. Sci. Pollut. Res. 2017, 24, 23559–23570. [Google Scholar] [CrossRef]
- Holland, J.; Sinclair, P. Environmental fate of pesticides and the consequences for residues in food and drinking water. In Pesticide Residues in Food and Drinking Water: Human Exposure and Risks; Hamilton, D., Crossley, S., Eds.; Willey: New York, NY, USA, 2003; pp. 27–62. [Google Scholar]
- Katagi, T. Photodegradation of Pesticides on Plant and Soil Surfaces. Rev. Environ. Contam. Toxicol. 2004, 182, 1–78. [Google Scholar] [CrossRef]
- Jacobsen, R.E.; Fantke, P.; Trapp, S. Analysing half-lives for pesticide dissipation in plants. SAR QSAR Environ. Res. 2015, 26, 325–342. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Li, L.; Li, W.; Wu, Y.; Zhou, Z.; Liu, F. Dissipation and residue of dimethomorph in pepper and soil under field conditions. Ecotoxicol. Environ. Saf. 2011, 74, 1331–1335. [Google Scholar] [CrossRef]
Compound | Precursor Ion (m/z) | Ionization Mode | Production (m/z) | Collision Energy (v) | RF Lens (v) | tR (min) |
---|---|---|---|---|---|---|
Abamectin | 890.4 | [M + NH4]+ | 305.4 | 26 | 75 | 10.39 |
567.3 | 14 | 75 | ||||
Hexythiazox | 353.2 | [M + H]+ | 228 | 15 | 61 | 9.75 |
168.1 | 25 | 61 | ||||
Spiromesifen | 371.2 | [M + H]+ | 273.1 | 10 | 63 | 9.89 |
255.2 | 24 | 63 |
Analyte | Linear Range (µg/kg) | R2 | Residual (%) | LOD (µg/kg) | LOQ (µg/kg) | ME (%) | Precision | |||
---|---|---|---|---|---|---|---|---|---|---|
Inra-Day (n = 6) | Inter-Days (n = 18) | |||||||||
RSDr (%) | R (%) | RSDR (%) | R (%) | |||||||
Abamectin | 10–200 | 0.9992 | 12.4 | 2.2 | 20 | −4.6 | 8.4 | 88.6 | 14.8 | 85.7 |
Hexythiazox | 1–100 | 0.9993 | 8.90 | 0.19 | 5 | −3.4 | 11.7 | 92.4 | 15.7 | 95.3 |
Spiromesifen | 5–100 | 0.9991 | 10.3 | 1.3 | 5 | −2.2 | 6.7 | 95.8 | 10.3 | 97.2 |
Analyte | Recovery ± RSD (%), (n = 6) | |||
---|---|---|---|---|
0.02 mg/kg | 0.10 mg/kg | 1 mg/kg | 2 mg/kg | |
Abamectin | 88.6 ± 11.3 | 92.3 ± 9.6 | 94.8 ± 5.4 | 91.3 ± 6.9 |
Hexythiazox | 94.5 ± 10.7 | 96.7 ± 7.6 | 93.3 ± 9.1 | 98.4 ± 6.3 |
Spiromesifen | 93.1 ± 12.4 | 96.2 ± 8.6 | 98.7 ± 5.2 | 95.1 ± 10.2 |
Abamectin | Hexythiazox | Spiromesifen | ||||
---|---|---|---|---|---|---|
Dosage (g a.i./ha) | Dosage (g a.i./ha) | Dosage (g a.i./ha) | ||||
9 | 18 | 50 | 100 | 96 | 192 | |
Intercept (C0) | 0.247 | 0.327 | 0.401 | 0.711 | 1.612 | 3.021 |
K (day−1) | 0.287 | 0.407 | 0.254 | 0.301 | 0.533 | 0.472 |
r2 | 0.988 | 0.985 | 0.983 | 0.979 | 0.998 | 0.991 |
t1/2 (days) | 02.42 | 02.11 | 02.73 | 02.30 | 01.31 | 01.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Algethami, J.S.; Alhamami, M.A.M.; Ramadan, M.F.; Abdallah, O.I. Residues of the Acaricides Abamectin, Hexythiazox, and Spiromesifen in Eggplant (Solanum melongena L.) Fruits Grown under Field Conditions in Najran, Saudi Arabia. Agriculture 2023, 13, 116. https://doi.org/10.3390/agriculture13010116
Algethami JS, Alhamami MAM, Ramadan MF, Abdallah OI. Residues of the Acaricides Abamectin, Hexythiazox, and Spiromesifen in Eggplant (Solanum melongena L.) Fruits Grown under Field Conditions in Najran, Saudi Arabia. Agriculture. 2023; 13(1):116. https://doi.org/10.3390/agriculture13010116
Chicago/Turabian StyleAlgethami, Jari S., Mohsen A. M. Alhamami, Mohamed F. Ramadan, and Osama I. Abdallah. 2023. "Residues of the Acaricides Abamectin, Hexythiazox, and Spiromesifen in Eggplant (Solanum melongena L.) Fruits Grown under Field Conditions in Najran, Saudi Arabia" Agriculture 13, no. 1: 116. https://doi.org/10.3390/agriculture13010116
APA StyleAlgethami, J. S., Alhamami, M. A. M., Ramadan, M. F., & Abdallah, O. I. (2023). Residues of the Acaricides Abamectin, Hexythiazox, and Spiromesifen in Eggplant (Solanum melongena L.) Fruits Grown under Field Conditions in Najran, Saudi Arabia. Agriculture, 13(1), 116. https://doi.org/10.3390/agriculture13010116