Role of Corn Silage in the Sustainability of Dairy Buffalo Systems and New Perspective of Allocation Criterion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Goal and Scope Definition
2.2. Functional Unit (FU)
2.3. System Boundary Definition
2.4. Inventory Analysis
2.5. Allocation Criterion
2.6. Emissions
2.6.1. Enteric Emissions
2.6.2. Methane Emissions from Manure Management
- VS = volatile solid excretion per day on a dry-organic matter basis, kg day−1;
- GE = gross energy intake, MJ day−1;
- DE% = digestibility rate of the feed. Different amounts of feed were also considered for the assessment of the DE, also considering the livestock categories. Different feeding periods were considered: from birth to the 90th day (weaning ration) and up to a year for the calves; 365, 95, and 270 days for the heifers, dry, and lactating cows. Similarly for the GE, the data provided by INRAE were adopted for digestibility;
- (UE × GE) = urinary energy expressed as fraction of GE. Typically, 0.04 GE can be considered urinary energy excretion by most ruminants, and this value was adopted in the current study;
- 18.45 = conversion factor for dietary GE per kg of dry matter (MJ kg−1).
2.6.3. N2O Emissions from Manure Management
- NE= is nitrogen excretion, g/day;
- BW = is body weight, kg;
- CP = is crude protein content of diet (g/kg);
- NI = is nitrogen intake, g/day;
- ADG = is the average daily gain, kg, assumed as 720 and 500 g/day respectively for young animals (YA) and heifers (HF).
2.6.4. NH3 and NOx Emissions from Manure Management
2.6.5. Emissions from Diesel Fuel and Electricity
2.6.6. Emissions from Crop, Soil Residues, and Synthetic Fertilizers
2.7. Software and Impact Assessment
2.8. Statistical Analysis
- t is Student’s t;
- μ1,2 are the means of values observed;
- s2 is the standard error;
- n1,2 are the observation numbers, n1 = n2 = 5
- Ya
- sub > a,b,c,d,e are dependents variables, i.e., LCA impact categories;
- Ya
- μ is the overall mean;
- Ya
- CS is the effect of the ith inclusion of the corn silage in the diets (system);
- Ya
- is the effect of the jth inclusion of the allocation criterion;
- Ya
- CS * A is the effect of the interaction of the ith inclusion in the diets with jth inclusion of the allocation;
- Ya
- εijk is the error term
3. Results and Discussion
3.1. Milk Production Traits
3.2. LCA Impact Categories in Relation to Culled Cows Allocation (CCA)
3.2.1. No Culled Cows Allocation
3.2.2. Culled Cows Allocation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Item | Unit | NCS1 | NCS2 | NCS3 | NCS4 | NCS5 | NCS SYSTEM § | CS1 | CS2 | CS3 | CS4 | CS5 | CS SYSTEM § |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LBN yield | kg/year | 254,405 | 511,000 | 235,790 | 357,600 | 146,000 | - | 370,400 | 481,800 | 401,500 | 438,000 | 474,850 | - |
Milk income | EUR/kg | 1.60 | 1.45 | 1.55 | 1.55 | 1.50 | 1.53 | 1.55 | 1.60 | 1.65 | 1.50 | 1.60 | 1.58 |
Total milk income | EUR | 407,048 | 740,950 | 365,475 | 540,039 | 219,000 | - | 746,790 | 592,640 | 662,475 | 657,000 | 753,360 | - |
Wheat yield | kg/year | - | - | - | 180,000 | 75,000 | - | - | - | - | 450,000 | 332,000 | - |
Wheat income | EUR/kg | - | - | - | 0.31 | 0.33 | 0.32 | - | - | - | 0.30 | 0.27 | 0.28 |
Total wheat income | EUR | - | - | - | 55,800 | 24,750 | - | - | - | - | 135,000 | 89,775 | - |
Culled cows | head/year | 8 | 100 | 5 | 10 | 5 | - | 20 | 25 | 15 | 16 | 16 | - |
Culled cows income | EUR/head | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 |
Total culled cows income | EUR | 2400 | 30,000 | 1500 | 3000 | 1500 | - | 6000 | 7500 | 4500 | 4800 | 4800 | - |
Milk income | % | 99.4 | 96.1 | 99.6 | 90.2 | 89.3 | 94.9 | 99.0 | 99.0 | 99.3 | 82.5 | 88.8 | 93.7 |
Wheat income | % | - | - | - | 9.3 | 10.1 | 9.7 | - | - | - | 16.9 | 10.6 | 13.7 |
Culled cows income | % | 0.6 | 3.9 | 0.4 | 0.5 | 0.6 | 1.2 | 1.0 | 1.0 | 0.7 | 0.6 | 0.6 | 0.8 |
References
- Masucci, F.; De Rosa, G.; Barone, C.M.A.; Napolitano, F.; Grasso, F.; Uzun, P.; Di Francia, A. Effect of group size and maize silage dietary levels on behaviour, health, carcass and meat quality of Mediterranean buffaloes. Animal 2016, 10, 531–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berlese, M.; Corazzin, M.; Bovolenta, S. Environmental sustainability assessment of buffalo mozzarella cheese production chain: A scenario analysis. J. Clean. Prod. 2019, 238, 117922. [Google Scholar] [CrossRef]
- CLAL. Production of Mozzarella di Bufala Campana PDO. Italy. 2019. Available online: https://www.clal.it/index.php/section=mozzarella_bufala_campana (accessed on 5 April 2021).
- Di Cairano, M.; Pacelli, C.; Bragaglio, A.; Napolitano, F.; Braghieri, A. Sensory Properties and Consumer Liking of Buffalo Stracchino Cheese. J. Buffalo Sci. 2021, 10, 78–84. [Google Scholar] [CrossRef]
- Sabia, E.; Napolitano, F.; Claps, S.; De Rosa, G.; Braghieri, A.; Pacelli, C. Dairy buffalo life cycle assessment as affected by heifer rearing system. J. Clean. Prod. 2018, 192, 647–655. [Google Scholar] [CrossRef]
- Pirlo, G.; Caré, S.; Fantin, V.; Falconi, F.; Buttol, P.; Terzano, G.M.; Masoni, P.; Pacelli, C. Factors affecting life cycle assessment of milk produced on 6 Mediterranean buffalo farms. J. Dairy Sci. 2014, 97, 6583–6593. [Google Scholar] [CrossRef]
- Mu, W.; Van Middelaar, C.E.; Bloemhof, J.M.; Engel, B.; De Boer, I.J.M. Benchmarking the environmental performance of specialized milk production systems: Selection of a set of indicators. Ecol. Indic. 2017, 72, 91–98. [Google Scholar] [CrossRef]
- Romano, E.; De Palo, P.; Tidona, F.; Maggiolino, A.; Bragaglio, A. Dairy buffalo Life Cycle Assessment (LCA) affected by a management choice: The production of wheat crop. Sustainability 2021, 13, 11108. [Google Scholar] [CrossRef]
- Romano, E.; Roma, R.; Tidona, F.; Giraffa, G.; Bragaglio, A. Dairy farms and Life Cycle Assessment (LCA): The allocation criterion useful to estimate undesirable products. Sustainability 2021, 13, 4354. [Google Scholar] [CrossRef]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock—A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013; p. 1.e115. ISBN 978-92-5-107920-1. [Google Scholar]
- Baldini, C.; Bava, L.; Zucali, M.; Guarino, M. Milk production Life Cycle Assessment: A comparison between estimated and measured emission inventory for manure handling. Sci. Total Environ. 2018, 625, 209–219. [Google Scholar] [CrossRef]
- Garg, M.R.; Phondba, B.T.; Sherasia, P.L.; Makkar, H.P.S. Carbon footprint of milk production under smallholder dairying in Anand district of Western India: A cradle-to-farm gate life cycle assessment. Anim. Prod. Sci. 2016, 56, 423–436. [Google Scholar] [CrossRef]
- De Vivo, R.; Zicarelli, L. Influence of carbon fixation on the mitigation of greenhouse gas emissions from livestock activities in Italy and the achievement of carbon neutrality. Transl. Anim. Sci. 2021, 5, txab042. [Google Scholar] [CrossRef] [PubMed]
- Pirlo, G.; Terzano, G.; Pacelli, C.; Abeni, F.; Caré, S. Carbon footprint of milk produced at Italian buffalo farms. Livestock Science 2014, 161, 176–184. [Google Scholar] [CrossRef]
- De Vries, A. Economic trade-offs between genetic improvement and longevity in dairy cattle. J. Dairy Sci. 2017, 100, 4184–4192. [Google Scholar] [CrossRef] [PubMed]
- Amin, A.M.S.; Abo-Ismail, M.K.; Salem, M.M.I. Genetic parameters and genetic trends for reproductive traits in Egyptian buffalo. Anim. Reprod. Sci. 2021, 231, 106800. [Google Scholar] [CrossRef]
- Noya, I.; González-García, S.; Berzosa, J.; Baucells, F.; Feijoo, G.; Moreira, M.T. Environmental and water sustainability of milk production in Northeast Spain. Sci. Total Environ. 2018, 616–617, 1317–1329. [Google Scholar] [CrossRef]
- Guerci, M.; Knudsen Trydeman, M.; Bava, L.; Zucali, M.; Schönbach, P.; Kristensen, T. Parameters affecting the environmental impact of a range of dairy farming systems in Denmark, Germany and Italy. J. Clean. Prod. 2013, 5, 133–141. [Google Scholar] [CrossRef]
- Kiefer, L.R.; Menzel, F.; Bahrs, E. Integration of ecosystem services into the carbon footprint of milk of South German dairy farms. J. Environ. Manag. 2015, 152, 11–18. [Google Scholar] [CrossRef]
- Pirlo, G.; Lolli, S. Environmental impact of milk production from samples of organic and conventional farms in Lombardy (Italy). J. Clean. Prod. 2019, 211, 962–971. [Google Scholar] [CrossRef]
- ISO (International Organization for Standardization) 14040. Environmental Management—Life Cycle Assessment—Principles and Framework; ISO Central Secretariat Chemin de Blandonnet, 8CP 401—1214 Vernier; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- ISO (International Organization for Standardization) 14044. Environmental Management—Life Cycle Assessment—Principles and Framework; ISO Central Secretariat Chemin de Blandonnet, 8CP 401—1214 Vernier; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- Di Palo, R. Produzione di Latte Nella Bufala con Diete Tradizionali e con l’impiego di Acidi Grassi. Ph.D. Thesis, University of Naples, Naples, Italy, 1992. [Google Scholar]
- Bragaglio, A.; Napolitano, F.; Pacelli, C.; Pirlo, G.; Sabia, E.; Serrapica, F.; Serrapica, M.; Braghieri, A. Environmental impacts of Italian beef production: A comparison between different systems. J. Clean. Prod. 2018, 172, 4033–4043. [Google Scholar] [CrossRef]
- FAOSTAT. 2020. Available online: www.faofaostat/en/#data (accessed on 5 April 2022).
- Nguyen, T.L.T.; Hermansen, J.E.; Mogensen, L. Environmental consequences of different beef production systems in the EU. J. Clean. Prod. 2010, 18, 756–766. [Google Scholar] [CrossRef]
- Ardente, F.; Cellura, M. Economic allocation in life cycle assessment. J. Ind. Ecol. 2012, 16, 387–398. [Google Scholar] [CrossRef]
- Thrane, M. LCA of Danish Fish Products. New methods and insights. Int. J. Life Cycle Assess. 2006, 11, 66–74. [Google Scholar] [CrossRef]
- Bragaglio, A.; Braghieri, A.; Pacelli, C.; Napolitano, F. Environmental impacts of beef as corrected for the provision of ecosystem services. Sustainability 2020, 12, 3828. [Google Scholar] [CrossRef]
- Mahath, C.S.; Mophin Kani, K.; Dubey, B. Gate-to-gate environmental impacts of dairy processing products in Thiruvananthapuram. India. Resour. Conserv. Recycl. 2019, 141, 40–53. [Google Scholar] [CrossRef]
- Holly, M.A.; Larson, R.A.; Powell, J.M.; Ruark, M.D.; Aguirre-Villegas, H. Greenhouse gas and ammonia emissions from digested and separated dairy manure during storage and after land application. Agric. Ecosyst. Environ. 2017, 239, 410–419. [Google Scholar] [CrossRef]
- IPCC. Chapter 10: Emissions from Livestock and Manure Management. In Agriculture, Forestry and Other Land Use; Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2019; Volume 4, pp. 1–87. Available online: https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/4_Volume4/19R_V4_Ch10_Livestock.pdf (accessed on 5 April 2022).
- IPCC. Chapter 11: N2O emissions from managed soils, and CO2 emissions from lime and urea application. In Agriculture, Forestry and Other Land Use; Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2019; Volume 4, pp. 1–54. Available online: https://www.ipcc_nggip.iges.or.jp/public/2019rf/pdf/4_Volume4/19R_V4_Ch11_Soils_N2O_CO2.pdf (accessed on 5 April 2022).
- Cóndor, R.D.; Di Cristofaro, E.; De Laurentis, R. Agricoltura: Inventario Nazionale delle Emissioni e Disaggregazione Provinciale; ISPRA Rapporto tecnico 85/2008; Istituto Superiore per la Protezione e la Ricerca Ambientale: Roma, Italia, 2008. [Google Scholar]
- Nennich, T.D.; Harrison, J.H.; Van Wieringen, L.M.; Meyer, D.; Heinrichs, A.J.; Weiss, W.P.; St-Pierre, N.R.; Kincaid, R.L.; Davidson, D.L.; Block, E. Prediction of Manure and Nutrient Excretion from Dairy Cattle. J. Dairy Sci. 2005, 88, 3721–3733. [Google Scholar] [CrossRef] [Green Version]
- Yan, T.; Frost, J.P.; Agnew, R.E.; Binnie, R.C.; Mayne, C.S. Relationships among manure nitrogen output and dietary and animal factors in lactating dairy cows. J. Dairy Sci. 2006, 89, 3981–3991. [Google Scholar] [CrossRef]
- Kaufmann, A.J.; St-Pierre, N.R. The relationship of milk urea nitrogen to urine nitrogen excretion in holstein and jersey cows. J. Dairy Sci. 2001, 84, 2284–2294. [Google Scholar] [CrossRef]
- Patra, A.K.; Pal, K.; Lalhriatpuii, M. Prediction of nitrogen excretion in buffalo production systems using dietary and animal variables. Agric. Syst. 2020, 182, 102845. [Google Scholar] [CrossRef]
- NEMA. Methodology for Estimating Emissions from Agriculture in the Netherlands—Update 2018. Statutory Research Tasks Unit for Nature & the Environment Wageningen, March 2018. Calculations of CH4, NH3, N2O, NOx, PM10, PM2.5 and CO2 with the National Emission Model for Agriculture; Statutory Research Tasks Unit for Nature & the Environment: Wageningen, The Netherlands, 2018. [Google Scholar] [CrossRef] [Green Version]
- EEA. EMEP/EEA—Air Pollutant Emission Inventory Guidebook 2009. Technical Guidance to Prepare National Emission Inventories. 4.D Crop Production and Agricultural Soils. 2009. Available online: http://www.eea.europa.eu/publications/emep-eea-emission-inventory-guidebook-2009/part-b-sectoral-guidance-chapters/4-agriculture/4-d/4-d-crop-production-and-agricultural-soils.pdf/view (accessed on 5 April 2022).
- EEA. EMEP/EEA—Air Pollutant Emission Inventory Guidebook 2016—Update Nov. 2016. 3.D Crop Production and Agricultural Soils. Available online: https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/4-agriculture/3-d-crop-production-and/view (accessed on 5 April 2022).
- ENAMA. Handbook of Fuel Consumption for Agricultural Subsidized Use (Prontuario dei Consumi di Carburante per L’impiego Agevolato in Agricoltura). 2005. Available online: http://www.enama.it/php/pageflip.php_pdf_enama_int_prontuario.pdf&dir/it/pdf/monografie (accessed on 5 April 2022).
- Nemecek, T.; Kagi, T.; Life Cycle Inventories of Swiss and European Agricultural Production Systems. Final Report Ecoinvent V2.0 No.15a. Agroscope Reckenholz-Taenikon Research Station ART, Swiss Centre for Life Cycle Inventories, Zurich and Dübendorf, Switzerland. 2007. Available online: https://db.ecoinvent.org/reports/15_Agriculture.pdf (accessed on 5 April 2022).
- ReCiPe. A Life Cycle Impact Assessment Method which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level, 1st ed. Report I: Characterisation. 2009. Available online: http://www.lcia-recipe.net/ (accessed on 5 April 2022).
- Heijungs, R.; Guinee, J.B.; Huppes, G.; Lankreijer, R.M.; Udo De Haes, H.A.; Wegener-Sleeswijk, A.; Ansems, A.M.M.; Eggels, P.G.; Van Duin, R.; De Goede, H.P. Environmental Life Cycle Assessment of Products: Guide and Backgrounds; Centre of Environmental Science (CML); Leiden University: Leiden, The Netherlands, 1992; Available online: http://hdl.handle.net/1887/8061 (accessed on 5 April 2022).
- Mosnier, A.; Havlik, P.; Valin, H.; Baker, J.; Murray, B.; Feng, S.; Obersteiner, M.; McCarl, B.A.; Rose, S.K.; Schneider, U.A. Alternative U.S. biofuel mandates and global GHG emissions: The role of land use change, crop management and yield growth. Energy Policy 2013, 57, 602–614. [Google Scholar] [CrossRef]
- Frank, S.; Schmid, E.; Havlik, E.; Schneider, U.A.; Böttcher, H.; Balkovič, J.; Obersteiner, M. The dynamic soil organic carbon mitigation potential of European cropland. Glob. Environ. Chang. 2015, 35, 269–278. [Google Scholar] [CrossRef]
- Gerßen-Gondelach, S.J.; Lauwerijssen, R.B.G.; Havlík, P.; Herrero, M.; Valin, H.; Faaij, A.P.C.; Wicke, B. Intensification pathways for beef and dairy cattle production systems: Impacts on GHG emissions, land occupation and land use change. Agric. Ecosyst. Environ. 2017, 240, 135–147. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. A Global Assessment of the Water Footprint of Farm Animal Products. Ecosystems 2012, 15, 401–415. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, M.M.; Hoekstra, A.Y. Water footprint benchmarks for crop production: A first global assessment. Ecol. Indic. 2014, 46, 223–241. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Wien, Österreich, 2021; Available online: https://www.R-project.org/ (accessed on 5 April 2022).
- Ashes, J.R.; Gulati, S.K.; Scott, T.W. Symposium: New approaches to changing milk composition. Potential to Alter the Content and Composition of Milk Fat Through Nutrition. J. Dairy Sci. 1997, 80, 2204–2214. [Google Scholar] [CrossRef]
- Krause, K.M.; Combs, D.K.; Beauchemin, K.A. Effects of Forage Particle Size and Grain Fermentability in Midlactation Cows. I. Ruminal pH and Chewing Activity. J. Dairy Sci. 2002, 85, 1936–1946. [Google Scholar] [CrossRef]
- Krause, K.M.; Combs, D.K.; Beauchemin, K.A. Effects of Forage Particle Size and Grain Fermentability in Midlactation Cows. II. Ruminal pH and Chewing Activity. J. Dairy Sci. 2002, 85, 1947–1957. [Google Scholar] [CrossRef] [Green Version]
- Couvreur, S.; Hurtaud, C.; Marnet, P.G.; Faverdin, P.; Peyraud, J.L. Composition of Milk Fat from Cows Selected for Milk Fat Globule Size and Offered Either Fresh Pasture or a Corn Silage-Based Diet. J. Dairy Sci. 2007, 90, 392–403. [Google Scholar] [CrossRef] [Green Version]
- Tudisco, R.; Morittu, V.M.; Musco, N.; Grossi, M.; Iommelli, P.; D’Aniello, B.; Ferrara, M.; Infascelli, F.; Lombardi, P. Effects of Sorghum Silage in Lactating Buffalo Cow Diet: Biochemical Profile, Milk Yield, and Quality. Agriculture 2021, 11, 57. [Google Scholar] [CrossRef]
- Gislon, G.; Colombini, S.; Borreani, G.; Crovetto, G.M.; Sandrucci, A.; Galassi, G.; Tabacco, E.; Rapetti, L. Milk production, methane emissions, nitrogen, and energy balance of cows fed diets based on different forage systems. J. Dairy Sci. 2020, 103, 8048–8061. [Google Scholar] [CrossRef]
- IDF. A Common Carbon Footprint for Dairy, the IDF Guide to Standard Lifecycle Assessment Methodology for the Dairy Industry. In Bulletin of the International Dairy Federation, 479/20; International Dairy Federation (IDF): Brussels, Belgium, 2015; Available online: https://www.fil-idf.org/wp-content/uploads/2016/09/Bulletin479-2015_A-common-carbon-footprint-approach-for-the-dairy-sector.CAT.pdf (accessed on 5 April 2022).
- Gislon, G.; Ferrero, F.; Bava, L.; Borreani, G.; Dal Prà, A.; Pacchioli, M.T.; Sandrucci, A.; Zucali, M.; Tabacco, E. Forage systems and sustainability of milk production: Feed efficiency, environmental impacts and soil carbon stocks. J. Clean. Prod. 2020, 260, 121012. [Google Scholar] [CrossRef]
- Braghieri, A.; Pacelli, C.; De Rosa, G.; Girolami, A.; De Palo, P.; Napolitano, F. Podolian beef production on pasture and in confinement. Animal 2011, 5, 927–937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelletier, N.; Pirog, R.; Rasmussen, R. Comparative life cycle environmental impacts of three beef production strategies in the Upper Midwestern United States. Agric. Syst. 2010, 103, 380–389. [Google Scholar] [CrossRef]
- Gerbens-Leenes, P.W.; Mekonnen, M.M.; Hoekstra, A.Y. The water footprint of poultry, pork and beef: A comparative study in different countries and production systems. Water Resour. Ind. 2013, 1–2, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Grandl, F.; Furger, M.; Kreuzer, M.; Zehetmeier, M. Impact of longevity on greenhouse gas emissions and profitability of individual dairy cows analysed with different system boundaries. Animal 2019, 13, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Shabalina, T.; Yin, T.; König, S. Influence of common health disorders on the length of productive life and stay ability in German Holstein cows. J. Dairy Sci. 2019, 103, 583–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galeazzi, P.M.; Mercadante, M.E.Z.; Silva, J.A., IIV; De Albuquerque, L.G.; De Camargo, G.M.F.; Tonhati, H. Analysis of culling probability in dairy buffalo using survival models. Animal 2010, 4, 1325–1329. [Google Scholar] [CrossRef] [Green Version]
- Peeva, T.; Ilieva, Y. Longevity of buffalo cows and reasons for their culling. Ital. J. Anim. Sci. 2007, 6, 378–380. [Google Scholar] [CrossRef]
- Minervino, A.H.H.; Zava, M.; Vecchio, D.; Borghese, A. Bubalus bubalis: A Short Story. Front. Vet. Sci. 2020, 7, 570413. [Google Scholar] [CrossRef]
No Corn Silage (NCS) | Corn Silage (CS) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
NCS1 | NCS2 | NCS3 | NCS4 | NCS5 | CS1 | CS2 | CS3 | CS4 | CS5 | |
Geographical place (Province) | Foggia | Foggia | Foggia | Foggia | Matera | Potenza | Potenza | Foggia | Foggia | Foggia |
Crop area | ||||||||||
Total crop area, Ha | 20 | 50 | 70 | 95 | 65 | 65 | 80 | 70 | 225 | 270 |
Hay, Ha | 20 | - | 65 | 10 | 40 | 50 | 40 | 45 * | 50 | 140 |
Barley, Ha | - | 35 | 5 | - | - | - | 10 | - | - | - |
Fava bean Ha | - | 15 | - | - | - | - | - | - | - | - |
Ryegrass silage Ha | - | - | - | 40 | - | - | - | - | - | - |
Corn silage, Ha | - | - | - | - | - | 15 | 30 | 25 | 15 | 15 |
Maize grain, Ha | - | - | - | - | - | - | - | - | 10 | 20 |
Wheat, Ha | - | - | - | 45 | 25 | - | - | - | 150 | 95 |
Herd, heads | ||||||||||
Total n. | 197 | 798 | 280 | 348 | 203 | 303 | 445 | 325 | 479 | 613 |
Lactating cows, n. | 60 | 260 | 65 | 90 | 52 | 120 | 150 | 130 | 160 | 185 |
Dry cows, n. | 25 | 170 | 80 | 80 | 60 | 50 | 80 | 70 | 180 | 185 |
Heifers, n. | 90 | 250 | 57 | 72 | 50 | 80 | 185 | 70 | 100 | 175 |
Young < 365 days, n. | 20 | 100 | 71 | 97 | 35 | 45 | 25 | 50 | 30 | 60 |
Bulls, n. | 2 | 18 | 7 | 9 | 6 | 8 | 6 | 5 | 9 | 8 |
Synthetic fertilizers | ||||||||||
Urea, t y−1 | - | - | 14.0 | 9.5 | 3.7 | 10.0 | 20.0 | 12.0 | 45.0 | 59.5 |
Ammonium nitrate, t y−1 | - | - | - | - | - | - | 7.0 | - | - | - |
Ammonium phosphate, t y−1 | - | - | - | 8.5 | - | - | - | 10.0 | - | - |
Concrete area (shed, services), m2 | 1500 | 7500 | 5400 | 10,000 | 1000 | 4000 | 3500 | 2750 | 6000 | 11,000 |
Milking parlor size, m2 | 200 | 400 | 180 | 200 | 150 | 200 | 400 | 150 | 300 | 300 |
Milk tank, liters | 1400 | 4800 | 1400 | 4600 | 2500 | 6000 | 5000 | 1100 | 4000 | 6000 |
Diesel, liters y−1 | 18,800 | 82,300 | 29,400 | 100,000 | 21,200 | 23,500 | 76,500 | 35,300 | 64,700 | 70,500 |
Electricity, kWh y−1 | 45,700 | 246,000 | 40,000 | 86,000 | 50,000 | 65,000 | 97,000 | 31,200 | 76,000 | 87,600 |
Item | Unit | NCS1 | NCS2 | NCS3 | NCS4 | NCS5 | NCS SYSTEM § | CS1 | CS2 | CS3 | CS4 | CS5 | CS SYSTEM § |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LBN yield | kg/year | 254,405 | 511,000 | 235,790 | 357,600 | 146,000 | - | 370,400 | 481,800 | 401,500 | 438,000 | 474,850 | - |
LBN per lactation * | kg/head | 3137 | 1454 | 2683 | 2939 | 2076 | 2458 ± 689 | 3087 | 2374 | 2285 | 2025 | 1897 | 2334 ± 463 |
Fat | % | 7.38 | 7.34 | 8.10 | 7.71 | 7.54 | 7.61 a ± 0.31 | 7.46 | 7.83 | 8.33 | 8.30 | 8.57 | 8.10 b ± 0.45 |
Protein | % | 4.63 | 4.50 | 4.75 | 4.95 | 4.42 | 4.65 ± 0.21 | 4.25 | 4.48 | 4.60 | 4.65 | 4.68 | 4.53 ± 0.18 |
NCS1 | NCS2 | NCS3 | NCS4 | NCS5 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Category | LC | DC | HF | YA | LC | DC | HF | YA | LC | DC | HF | YA | LC | DC | HF | YA | LC | DC | HF | YA |
Forage kg/head/day | ||||||||||||||||||||
Meadow hay a | 8.0 | 5.5 | 3.5 | 2.0 | - | - | - | - | 9.5 | 2.0 | 5.0 | 2.5 | 1.0 | - | 1.0 | 1.0 | 10.0 | - | 5.0 | 2.8 |
Alfalfa hay | 2.0 ** | - | 1.8 ** | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Ryegrass silage | - | - | - | - | 10.0 ** | - | - | 1.0 ** | - | - | - | - | 15.0 | 5.0 | 10.0 | 3.0 | - | - | - | - |
Horticulture by-products b | - | - | - | - | 20.0 | 25.0 | 20 | - | - | - | - | - | - | - | - | - | - | - | - | - |
Straw | - | 5.5 | - | - | 7.0 | 7.0 | 5.0 | 1.0 | 1.5 | 6.0 | 2.5 | - | 2.5 | 9.0 | 2.5 | 1.0 | - | 7.5 | - | - |
Raw concentrate kg/head/day | ||||||||||||||||||||
Maize flour/grain | 4.0 | - | 1.3 | - | - | - | - | - | 4.5 | - | 2.0 | - | 4.4 | 0.6 | 1.2 | 0.6 | 3.2 | 0.8 | 1.1 | 0.7 |
Barley | 1.5 | - | 0.4 | 1.0 | 4.5 | 2.0 | 1.0 | 1.5 | 2.2 | 2.0 | - | 2.5 | 3.0 | 0.5 | 1.0 | 1.5 | 1.4 | - | - | - |
Soybean meal | 1.1 | - | - | - | - | - | - | - | 1.2 | 0.4 | 0.6 | - | 2.7 | 1.2 | 1.2 | 0.6 | - | - | - | - |
Wheat flour shorts | - | 2.0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Cotton seeds | - | - | - | - | - | - | - | - | - | - | - | - | 1.3 | - | - | - | - | - | - | - |
Fava bean c | - | - | - | - | 4.0 | 1.5 | 2.0 | 2.0 | - | - | - | - | - | - | - | - | - | - | - | - |
Market concentrate g/head/day | ||||||||||||||||||||
Soybean seeds (dehulled/flaked) | 240 | - | 480 | 400 | - | - | - | - | 200 | 75 | 100 | 300 | - | - | - | - | 1800 | 400 | 400 | 240 |
Sunflower meal | 480 | - | 440 | 360 | - | - | - | - | 1100 | 400 | 600 | - | - | - | - | - | - | 300 | - | - |
Soybean seeds (roasted) | 310 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1100 | 660 | |
Cotton seeds | 540 | - | - | - | - | - | - | - | 900 | 320 | 490 | - | - | - | - | - | - | - | - | - |
Maize flour | 450 | - | - | - | - | - | - | - | 100 | 40 | 60 | - | - | - | - | - | - | - | - | - |
Fava bean c | 480 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Wheat flour shorts | 280 | - | 480 | 400 | - | - | - | - | 100 | 40 | 60 | 400 | - | - | - | - | - | - | - | - |
Beet pulp | 280 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 100 | 900 | 550 |
Linseeds | 240 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Wheat flour | 220 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Bran | - | - | 440 | 360 | - | - | - | - | - | - | - | - | - | - | - | - | 200 | 900 | 360 | 220 |
Maize germ meal | - | - | 220 | 180 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Maize distillers | - | - | 60 | 50 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Palm oil | 60 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 100 | - | - | - |
Molasses | 50 | - | 60 | 50 | - | - | - | - | - | - | - | - | - | - | - | - | 400 | 50 | 120 | 70 |
Chemical composition (%) | ||||||||||||||||||||
Dry matter (DM) * | 17.8 | 11.7 | 8.2 | 4.4 | 22.4 | 12.9 | 10.3 | 4.6 | 18.9 | 10.2 | 10.0 | 5.4 | 19.2 | 12.3 | 10.0 | 4.5 | 17.1 | 9.8 | 8.9 | 4.5 |
Crude protein (%DM) | 12.45 | 9.65 | 15.50 | 15.00 | 11.65 | 8.50 | 10.10 | 14.05 | 14.90 | 10.90 | 12.35 | 13.20 | 12.90 | 9.50 | 12.80 | 13.40 | 13.30 | 9.90 | 12.00 | 13.80 |
Ether extract (%DM) | 5.80 | 3.50 | 3.45 | 3.70 | 2.85 | 2.60 | 2.70 | 3.15 | 5.20 | 3.75 | 3.95 | 3.70 | 6.00 | 4.20 | 3.90 | 5.10 | 4.30 | 2.75 | 3.00 | 3.45 |
Crude fiber (%DM) | 22.70 | 36.60 | 28.00 | 18.70 | 28.35 | 33.00 | 32.30 | 25.00 | 24.00 | 31.30 | 26.50 | 20.00 | 22.90 | 35.00 | 28.60 | 27.50 | 25.35 | 36.70 | 35.00 | 29.65 |
Ash (%DM) | 7.60 | 7.00 | 8.35 | 8.35 | 4.80 | 4.85 | 4.80 | 4.30 | 7.40 | 7.20 | 6.70 | 3.20 | 4.90 | 4.30 | 4.70 | 4.50 | 5.15 | 3.30 | 3.00 | 4.10 |
CS1 | CS2 | CS3 | CS4 | CS5 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Category | LC | DC | HF | YA | LC | DC | HF | YA | LC | DC | HF | YA | LC | DC | HF | YA | LC | DC | HF | YA |
Forage kg/head/day | ||||||||||||||||||||
Oat hay | - | - | - | - | - | - | - | - | - | - | - | - | 3.0 | - | 1.5 | 2.0 | 3.5 | 8.0 | 10.0 | 3.5 |
Alfalfa hay | - | - | - | - | - | - | - | - | 2.5 | - | - | - | - | - | - | - | - | - | - | - |
Meadow hay a | 10.0 | 7.0 | 5.0 | 3.0 | 3.2 | - | 3.2 | 1.5 | 1.5 | 2.0 | 4.0 | 3.5 | - | - | - | - | - | - | - | - |
Straw | - | 4.0 | 2.0 | 1.0 | - | 7.0 | 2.0 | - | - | 7.0 | 4.0 | - | 1.5 | 8.5 | 2.0 | 1.0 | 2.0 | 3.0 | - | - |
Corn silage | 8.0 | 5.0 | 3.0 | 2.0 | 19.0 | 6.0 | 13.0 | 2.0 | 20.0 | 7.0 | 4.0 | - | 15.0 | - | 3.0 | 1.5 | 15.0 | - | - | - |
Raw concentrate kg/head/day | ||||||||||||||||||||
Maize flour/grain | - | - | - | - | 4.0 | - | - | 0.5 | 3.0 | - | - | - | 6.5 | 2.0 | 4.0 | 1.0 | 4.0 | - | - | - |
Barley | - | - | - | - | 2.0 | 2.0 | - | 1.0 | - | - | - | - | - | - | - | - | - | - | - | - |
Soybean meal | - | - | - | - | - | - | - | - | - | - | - | - | 2.9 | 0.8 | 2.0 | 0.5 | 1.0 | - | - | - |
Bran | 0.8 | - | - | - | ||||||||||||||||
Fava bean c | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 2.0 | - | - | - |
Pea d | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1.0 | - | - | - |
Market concentrate g/head/day | ||||||||||||||||||||
Soybean seeds (dehulled/flaked) | 2600 | - | 800 | 400 | 1650 | 260 | 200 | 150 | 1100 | 390 | 280 | 190 | - | - | - | - | - | - | - | 100 |
Sunflower meal | 2000 | - | 600 | 260 | 450 | 380 | 300 | 220 | 440 | 220 | 110 | 220 | - | - | - | - | - | - | - | 250 |
Soybean seeds (roasted) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 80 | ||
Cotton seeds | 1600 | - | 500 | 220 | 450 | - | - | - | 830 | - | 210 | - | - | - | - | - | - | - | - | - |
Maize flour | 300 | - | 100 | 80 | - | 130 | 100 | - | 170 | 500 | 50 | 560 | - | - | - | - | - | - | - | 400 |
Wheat flour shorts | - | - | - | - | - | 700 | 560 | 80 | 170 | 220 | 50 | 110 | - | - | - | - | - | - | - | 380 |
Beet pulp | - | - | - | - | - | - | - | 350 | - | - | - | 60 | - | - | - | - | - | - | - | - |
Bran | - | - | - | - | 800 | 680 | - | - | 220 | 220 | 60 | 280 | - | - | - | - | - | - | - | 270 |
Maize germ meal | - | - | - | - | - | 130 | - | - | - | - | - | - | - | - | - | - | - | - | - | |
Maize distillers | - | - | - | - | 800 | 130 | - | - | 440 | - | 110 | - | - | - | - | - | - | - | - | - |
Molasses | - | - | - | - | - | 130 | - | - | 280 | - | 70 | 60 | - | - | - | - | - | - | - | 50 |
Chemical composition (%) | ||||||||||||||||||||
Dry matter (DM) * | 18.1 | 11.4 | 8.3 | 5.0 | 18.2 | 12.1 | 10.5 | 4.6 | 17.2 | 11.8 | 9.4 | 4.5 | 17.5 | 10.3 | 9.6 | 4.5 | 17.1 | 9.8 | 8.9 | 4.5 |
Crude protein (%DM) | 14.00 | 9.70 | 12.35 | 14.20 | 14.25 | 9.05 | 11.80 | 14.50 | 14.75 | 9.50 | 10.50 | 13.50 | 14.10 | 8.30 | 14.55 | 12.60 | 13.30 | 9.90 | 12.00 | 13.80 |
Ether extract (%DM) | 3.15 | 2.75 | 2.90 | 3.40 | 4.40 | 3.25 | 3.15 | 4.15 | 4.30 | 2.90 | 3.70 | 3.20 | 5.30 | 3.40 | 5.75 | 5.55 | 4.30 | 2.75 | 3.00 | 3.45 |
Crude fiber (%DM) | 27.60 | 35.90 | 26.65 | 32.20 | 21.40 | 29.85 | 25.20 | 18.95 | 24.60 | 29.60 | 34.50 | 27.20 | 22.30 | 33.50 | 21.60 | 23.00 | 25.35 | 36.70 | 35.00 | 29.65 |
Ash (%DM) | 7.25 | 3.90 | 5.45 | 4.10 | 7.20 | 7.05 | 7.45 | 6.75 | 6.50 | 4.40 | 4.60 | 3.75 | 5.20 | 4.25 | 4.90 | 5.00 | 5.15 | 3.30 | 3.00 | 4.10 |
Environmental Pollutant | Origin | Equations | Emission Factor | Reference |
---|---|---|---|---|
CH4 | enteric | CH4 = (GEI MJ head−1 × Ym%)/55.65 | Ym = 6.5 | IPCC 2019a |
CH4 | Manure storage | CH4 = VS × B0T × 0.67 × MCF/100 × AWMS | B0T = 0.10 MCF solid storage = 4 AWMS solid storage = 63% | IPCC 2019a |
N2O direct | Manure storage | N2O = Nex × AWMS × EF3 × 44/28 | EF3 solid storage = 0.01 | IPCC 2019a |
N2O indirect, volatilization | Manure storage | N2O(G) = Nvolatilization × EF4 × 44/28 | EF4 solid storage = 0.005 | IPCC 2019b |
N2O indirect, leaching | Manure storage | N2O(L) = Nleaching × EF5 × 44/28 | EF5 solid storage = 0.011 | IPCC 2019b |
N2O direct | Nitrogen fertilizers | N2O = FSN × EF1 | EF1 fertilizers = 0.005 | IPCC 2019b |
N2O indirect, volatilization | Nitrogen fertilizers | N2O = FSN × FracGAS × EF1 | EF1 fertilizers = 0.005 FracGAS = 0.15 urea FracGAS = 0.05 ammonium nitrate | IPCC 2019b |
N2O indirect, leaching | Nitrogen fertilizers | N2O = FSN × FracLEACH × EF2 | EF2 fertilizers = 0.11 FracLEACH = 0.24 | IPCC 2019b |
NH3 | Nitrogen fertilizers | NH3 = FSN × EFa,b,c × 17/14 | EFa urea = 0.14 EFb ammonium nitrate = 0.03EFc ammonium phosphate = 0.05 | IPCC 2019b; NEMA 2018 |
NOx | Nitrogen fertilizers | NH3 = FSN × EFd,e,f × 30/14 | EFd urea = 0.01 EFe ammonium nitrate = 0.03EFf ammonium phosphate = 0.007 | IPCC 2019b; NEMA 2018 |
Kg CO2 eq | Diesel | CO2 eq = 1 kg Diesel | 3.17 | ENAMA 2005 |
Kg CO2 eq | Electricity | CO2 eq = kWh | 0.47 | Cóndor 2011 [34] |
Non-Corn Silage | Corn Silage | Significance (p-Value) | |||||
---|---|---|---|---|---|---|---|
Impact Categories | NCCA | CCA | NCCA | CCA | S | A | A × S |
GWP kg CO2 eq | 5.29 ± 0.77 | 5.23 ± 0.66 | 5.00 ± 0.40 | 4.96 ± 0.41 | 0.304 | 0.835 | 0.949 |
AP g SO2 eq | 54.03 ± 14.91 | 53.22 ± 13.81 | 36.37 ± 04.20 | 36.09 ± 04.13 | 0.002 | 0.910 | 0.956 |
EP g PO43−eq | 20.01 ± 10.24 | 19.66 ± 09.65 | 13.15 ± 01.92 | 13.05 ± 01.88 | 0.051 | 0.943 | 0.969 |
ALO m2y−1 | 14.73 ± 5.82 | 14.51 ± 5.55 | 12.25 ± 2.57 | 12.16 ± 2.58 | 0.238 | 0.937 | 0.973 |
WD m3 | 2.06 ± 0.53 | 2.03 ± 0.49 | 1.72 ± 0.27 | 1.70 ± 0.27 | 0.088 | 0.907 | 0.963 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bragaglio, A.; Maggiolino, A.; Romano, E.; De Palo, P. Role of Corn Silage in the Sustainability of Dairy Buffalo Systems and New Perspective of Allocation Criterion. Agriculture 2022, 12, 828. https://doi.org/10.3390/agriculture12060828
Bragaglio A, Maggiolino A, Romano E, De Palo P. Role of Corn Silage in the Sustainability of Dairy Buffalo Systems and New Perspective of Allocation Criterion. Agriculture. 2022; 12(6):828. https://doi.org/10.3390/agriculture12060828
Chicago/Turabian StyleBragaglio, Andrea, Aristide Maggiolino, Elio Romano, and Pasquale De Palo. 2022. "Role of Corn Silage in the Sustainability of Dairy Buffalo Systems and New Perspective of Allocation Criterion" Agriculture 12, no. 6: 828. https://doi.org/10.3390/agriculture12060828
APA StyleBragaglio, A., Maggiolino, A., Romano, E., & De Palo, P. (2022). Role of Corn Silage in the Sustainability of Dairy Buffalo Systems and New Perspective of Allocation Criterion. Agriculture, 12(6), 828. https://doi.org/10.3390/agriculture12060828