Effects of Selenium-Methionine against Heat Stress in Ca2+-Cytosolic and Germination of Olive Pollen Performance
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Plant Material, Growing Conditions, and Pollen Collection
2.3. In Vitro Thermal Stress of Olive Pollen
2.4. Measurement of Cytosolic Ca2+
2.5. Pollen Germination
2.6. Pollen Morphology
2.7. Statistical Analysis
3. Results
3.1. Scanning Electron Microscopy Analysis of Olive Pollen
3.2. Ca2+-Cytosolic ([Ca2+]c) Changes in Olive Pollen in Heat Stress
3.3. Ca2+-Entry in Olive Pollen in Heat Stress
3.4. Germination of Olive Pollen Subjected to Heat Stress
3.5. Time-Course of High Temperature on Pollen Germination
4. Discussion
4.1. Morphological Investigations in Olive Pollen Grains
4.2. Fluctuations of Ca2+-Cytosolic in Olive Pollen under Heat Stress Conditions
4.3. Effects of Se-Met in Ca2+-Cytosolic during Heat and Oxidative Stress
4.4. Effects of Se-Met on Olive Pollen Germination Subjected to Heat Stress
4.5. Effect of Se-Met on Pollen Germination in Time-Course Experiment of Heat Stress
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Del Buono, D. Can Biostimulants Be Used to Mitigate the Effect of Anthropogenic Climate Change on Agriculture? It Is Time to Respond. Sci. Total Environ. 2021, 751, 141763. [Google Scholar] [CrossRef] [PubMed]
- Mittler, R. Abiotic Stress, the Field Environment and Stress Combination. Trends Plant Sci. 2006, 11, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, E.A.; Ort, D.R. How Do We Improve Crop Production in a Warming World? Plant Physiol. 2010, 154, 526–530. [Google Scholar] [CrossRef] [PubMed]
- Parrotta, L.; Faleri, C.; Cresti, M.; Cai, G. Heat Stress Affects the Cytoskeleton and the Delivery of Sucrose Synthase in Tobacco Pollen Tubes. Planta 2016, 243, 43–63. [Google Scholar] [CrossRef] [PubMed]
- Carpenedo, S.; Raseira, M.D.C.B.; Franzon, R.C.; Byrne, D.H.; Da Silva, J.B. Stigmatic receptivity of peach flowers submitted to heat stress. Acta Sci. Agron. 2019, 42, e42450. [Google Scholar] [CrossRef]
- Field, C.B.; Barros, V.; Stocker, T.F.; Dahe, Q.; Dokken, J.D.; Ebi, K.L.; Mastrandrea, M.D.; Mach, K.J.; Plattner, G.K.; Allen, S.K.; et al. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012; p. 582. ISBN 9781107025066. [Google Scholar]
- Del Buono, D.; Regni, L.; Del Pino, A.M.; Bartucca, M.L.; Palmerini, C.A.; Proietti, P. Effects of Megafol on the Olive Cultivar ‘Arbequina’ Grown Under Severe Saline Stress in Terms of Physiological Traits, Oxidative Stress, Antioxidant Defenses, and Cytosolic Ca2+. Front. Plant Sci. 2021, 11, 603576. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Roychowdhury, R.; Fujita, M. Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar] [CrossRef]
- Paupière, M.J.; van Heusden, A.W.; Bovy, A.G. The Metabolic Basis of Pollen Thermo-Tolerance: Perspectives for Breeding. Metabolites 2014, 4, 889–920. [Google Scholar] [CrossRef]
- Steinhorst, L.; Kudla, J. Calcium—A Central Regulator of Pollen Germination and Tube Growth. Biochim. Biophys. Acta Mol. Cell Res. 2013, 1833, 1573–1581. [Google Scholar] [CrossRef]
- Michard, E.; Alves, F.; Feijó, J.A. The Role of Ion Fluxes in Polarized Cell Growth and Morphogenesis: The Pollen Tube as an Experimental Paradigm. Int. J. Dev. Biol. 2009, 53, 1609–1622. [Google Scholar] [CrossRef]
- Lazzaro, M.D.; Cardenas, L.; Bhatt, A.P.; Justus, C.D.; Phillips, M.S.; Holdaway-Clarke, T.L.; Hepler, P.K. Calcium Gradients in Conifer Pollen Tubes; Dynamic Properties Differ from Those Seen in Angiosperms. J. Exp. Bot. 2005, 56, 2619–2628. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, S.; Gu, Y.; Zhang, S.; Publicove, S.J.; Franklin-Tong, V.E. Self-Incompatibility in Papaver rhoeas Activates Nonspecific Cation Conductance Permeable to Ca2+ and K+. Plant Physiol. 2011, 155, 963–973. [Google Scholar] [CrossRef] [PubMed]
- Zinn, K.E.; Tunc-Ozdemir, M.; Harper, J.F. Temperature Stress and Plant Sexual Reproduction: Uncovering the Weakest Links. J. Exp. Bot. 2010, 61, 1959–1968. [Google Scholar] [CrossRef] [PubMed]
- Snider, J.L.; Oosterhuis, D.M.; Skulman, B.W.; Kawakami, E.M. Heat Stress-Induced Limitations to Reproductive Success in Gossypium hirsutum. Physiol. Plant. 2009, 137, 125–138. [Google Scholar] [CrossRef]
- Carafoli, E. Intracellular Calcium Homeostasis. Annu. Rev. Biochem. 1987, 56, 395–433. [Google Scholar] [CrossRef]
- Görlach, A.; Bertram, K.; Hudecova, S.; Krizanova, O. Calcium and ROS: A Mutual Interplay. Redox Biol. 2015, 6, 260–271. [Google Scholar] [CrossRef]
- Campanoni, P.; Blatt, M.R. Membrane Trafficking and Polar Growth in Root Hairs and Pollen Tubes. J. Exp. Bot. 2007, 58, 65–74. [Google Scholar] [CrossRef]
- Cheung, A.Y.; Wu, H.M. Structural and Signaling Networks for the Polar Cell Growth Machinery in Pollen Tubes. Annu. Rev. Plant Biol. 2008, 59, 547–572. [Google Scholar] [CrossRef]
- Yan, Y.; Wei, C.-L.; Zhang, W.-R.; Cheng, H.-P.; Liu, J. Cross-Talk between Calcium and Reactive Oxygen Species Signaling. Acta Pharmacol. Sin. 2006, 27, 821–826. [Google Scholar] [CrossRef]
- Clapham, D.E. Calcium Signaling. Cell 2007, 131, 1047–1058. [Google Scholar] [CrossRef]
- Brini, M.; Calì, T.; Ottolini, D.; Carafoli, E. Intracellular Calcium Homeostasis and Signaling. Met. Ions Life Sci. 2013, 12, 119–168. [Google Scholar] [CrossRef] [PubMed]
- Orrenius, S.; Gogvadze, V.; Zhivotovsky, B. Calcium and Mitochondria in the Regulation of Cell Death. Biochem. Biophys. Res. Commun. 2015, 460, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Brito, C.; Dinis, L.-T.; Moutinho-Pereira, J.; Correia, C.M. Drought Stress Effects and Olive Tree Acclimation under a Changing Climate. Plants 2019, 8, 232. [Google Scholar] [CrossRef] [PubMed]
- Ben-Ari, G.; Biton, I.; Many, Y.; Namdar, D.; Samach, A. Elevated Temperatures Negatively Affect Olive Productive Cycle and Oil Quality. Agronomy 2021, 11, 1492. [Google Scholar] [CrossRef]
- Selak, G.V.; Perica, S.; Goreta Ban, S.; Poljak, M. The Effect of Temperature and Genotype on Pollen Performance in Olive (Olea europaea L.). Sci. Hortic. 2013, 156, 38–46. [Google Scholar] [CrossRef]
- Del Pino, A.M.; Regni, L.; D’Amato, R.; Tedeschini, E.; Businelli, D.; Proietti, P.; Palmerini, C.A. Selenium-Enriched Pollen Grains of Olea europaea L.: Ca2+ Signaling and Germination Under Oxidative Stress. Front. Plant Sci. 2019, 10, 1611. [Google Scholar] [CrossRef]
- Del Pino, A.M.; Regni, L.; D’amato, R.; Di Michele, A.; Proietti, P.; Palmerini, C.A. Persistence of the Effects of Se-Fertilization in Olive Trees over Time, Monitored with the Cytosolic Ca2+ and with the Germination of Pollen. Plants 2021, 10, 2290. [Google Scholar] [CrossRef]
- Regni, L.; Micheli, M.; Del Pino, A.M.; Palmerini, C.A.; D’Amato, R.; Facchin, S.L.; Famiani, F.; Peruzzi, A.; Mairech, H.; Proietti, P. The First Evidence of the Beneficial Effects of Se-Supplementation on In Vitro Cultivated Olive Tree Explants. Plants 2021, 10, 1630. [Google Scholar] [CrossRef]
- Hartikainen, H.; Xue, T. The Promotive Effect of Selenium on Plant Growth as Triggered by Ultraviolet Irradiation. J. Environ. Qual. 1999, 28, 1372–1375. [Google Scholar] [CrossRef]
- Terry, N.; Zayed, A.M.; De Souza, M.P.; Tarun, A.S. Selenium in Higher Plants. Annu. Rev. Plant Biol. 2000, 51, 401–432. [Google Scholar] [CrossRef]
- Kuznetsov, V.V.; Kholodova, V.P.; Kuznetsov, V.V.; Yagodin, B.A. Selenium Regulates Water Relations of Plants under Drought. Dokl. Akad. Nauk 2003, 390, 713–716. [Google Scholar]
- Proietti, P.; Nasini, L.; Del Buono, D.; D’Amato, R.; Tedeschini, E.; Businelli, D. Selenium Protects Olive (Olea europaea L.) from Drought Stress. Sci. Hortic. 2013, 164, 165–171. [Google Scholar] [CrossRef]
- Regni, L.; Palmerini, C.A.; Del Pino, A.M.; Businelli, D.; D’Amato, R.; Mairech, H.; Marmottini, F.; Micheli, M.; Pacheco, P.H.; Proietti, P. Effects of Selenium Supplementation on Olive under Salt Stress Conditions. Sci. Hortic. 2021, 278, 109866. [Google Scholar] [CrossRef]
- D’Amato, R.; Proietti, P.; Nasini, L.; Del Buono, D.; Tedeschini, E.; Businelli, D. Increase in the Selenium Content of Extra Virgin Olive Oil: Quantitative and Qualitative Implications. Grasas Aceites 2014, 65, e025. [Google Scholar] [CrossRef]
- D’Amato, R.; Proietti, P.; Onofri, A.; Regni, L.; Esposto, S.; Servili, M.; Businelli, D.; Selvaggini, R. Biofortification (Se): Does It Increase the Content of Phenolic Compounds in Virgin Olive Oil (VOO)? PLoS ONE 2017, 12, e0176580. [Google Scholar] [CrossRef] [PubMed]
- Tedeschini, E.; Proietti, P.; Timorato, V.; D’Amato, R.; Nasini, L.; Dei Buono, D.; Businelli, D.; Frenguelli, G. Selenium as Stressor and Antioxidant Affects Pollen Performance in Olea europaea. Flora Morphol. Distrib. Funct. Ecol. Plants 2015, 215, 16–22. [Google Scholar] [CrossRef]
- Grynkiewicz, G.; Poenie, M.; Tsien, R.Y. A New Generation of Ca2+ Indicators with Greatly Improved Fluorescence Properties. J. Biol. Chem. 1985, 260, 3440–3450. [Google Scholar] [CrossRef]
- Rejón, J.D.; Zienkiewicz, A.; Rodríguez-García, M.I.; Castro, A.J. Profiling and Functional Classification of Esterases in Olive (Olea europaea) Pollen during Germination. Ann. Bot. 2012, 110, 1035–1045. [Google Scholar] [CrossRef]
- Martins, E.S.; Davide, L.M.C.; Miranda, G.J.; Barizon, J.O.; Souza Junior, F.A.; de Carvalho, R.P.; Gonçalves, M.C. In Vitro Pollen Viability of Maize Cultivars at Different Times of Collection. Cienc. Rural 2017, 47, e20151077. [Google Scholar] [CrossRef][Green Version]
- Khaleghi, E.; Karamnezhad, F.; Moallemi, N. Study of Pollen Morphology and Salinity Effect on the Pollen Grains of Four Olive (Olea europaea) Cultivars. S. Afr. J. Bot. 2019, 127, 51–57. [Google Scholar] [CrossRef]
- Hinojosa, L.; Matanguihan, J.B.; Murphy, K.M. Effect of High Temperature on Pollen Morphology, Plant Growth and Seed Yield in Quinoa (Chenopodium quinoa Willd.). J. Agron. Crop Sci. 2019, 205, 33–45. [Google Scholar] [CrossRef]
- Hecquet, C.M.; Ahmmed, G.U.; Vogel, S.M.; Malik, A.B. Role of TRPM2 Channel in Mediating H2O2-Induced Ca2+ Entry and Endothelial Hyperpermeability. Circ. Res. 2008, 102, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Bokszczanin, K.L.; Fragkostefanakis, S. Perspectives on Deciphering Mechanisms Underlying Plant Heat Stress Response and Thermotolerance. Front. Plant Sci. 2013, 4, 315. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.-L.; Zheng, X.-L.; Zhou, C.-Y.; Kanwar, M.K.; Zhou, J. Functions of Redox Signaling in Pollen Development and Stress Response. Antioxidants 2022, 11, 287. [Google Scholar] [CrossRef] [PubMed]
- Demidchik, V. Mechanisms of Oxidative Stress in Plants: From Classical Chemistry to Cell Biology. Environ. Exp. Bot. 2015, 109, 212–228. [Google Scholar] [CrossRef]
- Chu, Y.-C.; Chang, J.-C. Heat Stress Leads to Poor Fruiting Mainly Due to Inferior Pollen Viability and Reduces Shoot Photosystem II Efficiency in “Da Hong” Pitaya. Agronomy 2022, 12, 225. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Pino, A.M.; Regni, L.; Di Michele, A.; Gentile, A.; Del Buono, D.; Proietti, P.; Palmerini, C.A. Effects of Selenium-Methionine against Heat Stress in Ca2+-Cytosolic and Germination of Olive Pollen Performance. Agriculture 2022, 12, 826. https://doi.org/10.3390/agriculture12060826
Del Pino AM, Regni L, Di Michele A, Gentile A, Del Buono D, Proietti P, Palmerini CA. Effects of Selenium-Methionine against Heat Stress in Ca2+-Cytosolic and Germination of Olive Pollen Performance. Agriculture. 2022; 12(6):826. https://doi.org/10.3390/agriculture12060826
Chicago/Turabian StyleDel Pino, Alberto Marco, Luca Regni, Alessandro Di Michele, Alessandra Gentile, Daniele Del Buono, Primo Proietti, and Carlo Alberto Palmerini. 2022. "Effects of Selenium-Methionine against Heat Stress in Ca2+-Cytosolic and Germination of Olive Pollen Performance" Agriculture 12, no. 6: 826. https://doi.org/10.3390/agriculture12060826
APA StyleDel Pino, A. M., Regni, L., Di Michele, A., Gentile, A., Del Buono, D., Proietti, P., & Palmerini, C. A. (2022). Effects of Selenium-Methionine against Heat Stress in Ca2+-Cytosolic and Germination of Olive Pollen Performance. Agriculture, 12(6), 826. https://doi.org/10.3390/agriculture12060826