Environmental Assessment of Underdrain Designs for Granular Media Filters in Drip Irrigation Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Filters
2.2. Approach to Life Cycle Assessment, Functional Unit, and Scope
2.3. Life Cycle Inventory
2.4. Life Cycle Impact Assessment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Irrigation Management Factsheet (I4591E/1/04.15). Available online: https://www.fao.org/land-water/water/water-management/irrigation-management/en/ (accessed on 5 November 2021).
- United Nations Environment Programme/Mediterranean Action Plan; Plan Bleu. State of the Environment and Development in the Mediterranean; Technical Report; United Nations: Nairobi, Kenya, 2020. [Google Scholar]
- MedEEC Network. Risks Associated to Climate and Environmental Changes in the Mediterranean Region, a Preliminary Assessment by the Mediterranean Experts on Climate and Environmental Change (MedECC); Network Science-Policy Interface: Marseille, France, 2019. [Google Scholar]
- Tarjuelo, J.M.; Rodriguez-Diaz, J.A.; Abadía, R.; Camacho, E.; Rocamora, C.; Moreno, M.A. Efficient Water and Energy Use in Irrigation Modernization: Lessons from Spanish Case Studies. Agric. Water Manag. 2015, 162, 67–77. [Google Scholar] [CrossRef]
- MAPAMA. Survey on Crop Areas and Yields. Report about Irrigation in Spain; Spanish Ministry of Agriculture, Food and Environment: Madrid, Spain, 2020.
- INE (Spanish Statistics Institute). Survey on the Use of Water in the Agricultural Sector. Available online: https://www.ine.es/jaxiT3/Tabla.htm?tpx=48823 (accessed on 21 February 2022).
- Pelletier, N.; Audsley, E.; Brodt, S.; Garnett, T.; Henriksson, P.; Kendall, A.; Kramer, K.J.; Murphy, D.; Nemecek, T.; Troell, M. Energy Intensity of Agriculture and Food Systems. Annu. Rev. Environ. Resour. 2011, 36, 223–246. [Google Scholar] [CrossRef]
- Rodríguez-Díaz, J.A.; Pérez-Urrestarazu, L.; Camacho-Poyato, E.; Montesinos, P. The Paradox of Irrigation Scheme Modernization: More Efficient Water Use Linked to Higher Energy Demand|La Paradoja de La Modernización de Zonas Regables: Uso Más Eficiente Del Agua Vinculado Al Aumento de La Demanda Energética. Span. J. Agric. Res. 2011, 9, 1000–1008. [Google Scholar] [CrossRef] [Green Version]
- Bové, J.; Pujol, J.; Arbat, G.; Duran-Ros, M.; Ramírez de Cartagena, F.; Puig-Bargués, J. Environmental Assessment of Underdrain Designs for a Sand Media Filter. Biosyst. Eng. 2018, 167, 126–136. [Google Scholar] [CrossRef]
- Kowalczyk, Z.; Kuboń, M. Assessing the Impact of Water Use in Conventional and Organic Carrot Production in Poland. Sci. Rep. 2022, 12, 3522. [Google Scholar] [CrossRef]
- ISO. ISO 14040:2006—Environmental Management—Life Cycle Assessment—Principles and Framework; ISO (International Standards Organisation): Geneva, Switzerland, 2006. [Google Scholar]
- Notarnicola, B.; Sala, S.; Anton, A.; McLaren, S.J.; Saouter, E.; Sonesson, U. The Role of Life Cycle Assessment in Supporting Sustainable Agri-Food Systems: A Review of the Challenges. J. Clean. Prod. 2017, 140, 399–409. [Google Scholar] [CrossRef]
- Shew, A.M.; Nalley, L.L.; Durand-Morat, A.; Meredith, K.; Parajuli, R.; Thoma, G.; Henry, C.G. Holistically Valuing Public Investments in Agricultural Water Conservation. Agric. Water Manag. 2021, 252, 106900. [Google Scholar] [CrossRef]
- Leon, A.; Minamikawa, K.; Izumi, T.; Chiem, N.H. Estimating Impacts of Alternate Wetting and Drying on Greenhouse Gas Emissions from Early Wet Rice Production in a Full-Dike System in a Giang Province, Vietnam, through Life Cycle Assessment. J. Clean. Prod. 2021, 285, 125309. [Google Scholar] [CrossRef]
- Zoli, M.; Paleari, L.; Confalonieri, R.; Bacenetti, J. Setting-up of Different Water Managements as Mitigation Strategy of the Environmental Impact of Paddy Rice. Sci. Total Environ. 2021, 799, 149365. [Google Scholar] [CrossRef]
- Parada, F.; Gabarrell, X.; Rufí-Salís, M.; Arcas-Pilz, V.; Muñoz, P.; Villalba, G. Optimizing Irrigation in Urban Agriculture for Tomato Crops in Rooftop Greenhouses. Sci. Total Environ. 2021, 794, 148689. [Google Scholar] [CrossRef]
- Martin-Gorriz, B.; Maestre-Valero, J.F.; Gallego-Elvira, B.; Marín-Membrive, P.; Terrero, P.; Martínez-Alvarez, V. Recycling Drainage Effluents Using Reverse Osmosis Powered by Photovoltaic Solar Energy in Hydroponic Tomato Production: Environmental Footprint Analysis. J. Environ. Manag. 2021, 297, 113326. [Google Scholar] [CrossRef]
- Canaj, K.; Mehmeti, A.; Morrone, D.; Toma, P.; Todorović, M. Life Cycle-Based Evaluation of Environmental Impacts and External Costs of Treated Wastewater Reuse for Irrigation: A Case Study in Southern Italy. J. Clean. Prod. 2021, 293, 126142. [Google Scholar] [CrossRef]
- Maeseele, C.; Roux, P. An LCA Framework to Assess Environmental Efficiency of Water Reuse: Application to Contrasted Locations for Wastewater Reuse in Agriculture. J. Clean. Prod. 2021, 316, 128151. [Google Scholar] [CrossRef]
- Kalboussi, N.; Biard, Y.; Pradeleix, L.; Rapaport, A.; Sinfort, C.; Ait-mouheb, N. Life cycle assessment as decision support tool for water reuse in agriculture irrigation. Sci. Total Environ. 2022, 836, 155486. [Google Scholar] [CrossRef]
- Gao, J.; Xu, C.; Luo, N.; Liu, X.; Huang, S.; Wang, P. Mitigating Global Warming Potential While Coordinating Economic Benefits by Optimizing Irrigation Managements in Maize Production. J. Environ. Manag. 2021, 298, 113474. [Google Scholar] [CrossRef]
- Chen, X.; Thorp, K.R.; van Oel, P.R.; Xu, Z.; Zhou, B.; Li, Y. Environmental Impact Assessment of Water-Saving Irrigation Systems across 60 Irrigation Construction Projects in Northern China. J. Clean. Prod. 2020, 245, 118883. [Google Scholar] [CrossRef]
- Maia, R.; Silva, C.; Costa, E. Eco-Efficiency Assessment in the Agricultural Sector: The Monte Novo Irrigation Perimeter, Portugal. J. Clean. Prod. 2016, 138, 217–228. [Google Scholar] [CrossRef] [Green Version]
- Mehmeti, A.; Todorovic, M.; Scardigno, A. Assessing the Eco-Efficiency Improvements of Sinistra Ofanto Irrigation Scheme. J. Clean. Prod. 2016, 138, 208–216. [Google Scholar] [CrossRef]
- Romero-Gámez, M.; Audsley, E.; Suárez-Rey, E.M. Life Cycle Assessment of Cultivating Lettuce and Escarole in Spain. J. Clean. Prod. 2014, 73, 193–203. [Google Scholar] [CrossRef]
- Eranki, P.L.; El-Shikha, D.; Hunsaker, D.J.; Bronson, K.F.; Landis, A.E. A Comparative Life Cycle Assessment of Flood and Drip Irrigation for Guayule Rubber Production Using Experimental Field Data. Ind. Crops Prod. 2017, 99, 97–108. [Google Scholar] [CrossRef]
- Foteinis, S.; Chatzisymeon, E. Life Cycle Assessment of Organic versus Conventional Agriculture. A Case Study of Lettuce Cultivation in Greece. J. Clean. Prod. 2016, 112, 2462–2471. [Google Scholar] [CrossRef]
- Pradeleix, L.; Roux, P.; Bouarfa, S.; Jaouani, B.; Lili-Chabaane, Z.; Bellon-Maurel, V. Environmental Impacts of Contrasted Groundwater Pumping Systems Assessed by Life Cycle Assessment Methodology: Contribution to the Water-Energy Nexus Study. Irrig. Drain. 2015, 64, 124–138. [Google Scholar] [CrossRef]
- Duran-Ros, M.; Puig-Bargués, J.; Arbat, G.; Barragán, J.; Ramírez de Cartagena, F. Effect of Filter, Emitter and Location on Clogging When Using Effluents. Agric. Water Manag. 2009, 96, 67–79. [Google Scholar] [CrossRef]
- Capra, A.; Scicolone, B. Recycling of Poor Quality Urban Wastewater by Drip Irrigation Systems. J. Clean. Prod. 2007, 15, 1529–1534. [Google Scholar] [CrossRef]
- Mesquita, M.; de Deus, F.P.; Testezlaf, R.; Da Rosa, L.M.; Diotto, A.V. Design and Hydrodynamic Performance Testing of a New Pressure Sand Filter Diffuser Plate Using Numerical Simulation. Biosyst. Eng. 2019, 183, 58–69. [Google Scholar] [CrossRef]
- Mesquita, M.; Testezlaf, R.; Ramirez, J.C.S. The Effect of Media Bed Characteristics and Internal Auxiliary Elements on Sand Filter Head Loss. Agric. Water Manag. 2012, 115, 178–185. [Google Scholar] [CrossRef]
- Arbat, G.; Pujol, T.; Puig-Bargués, J.; Duran-Ros, M.; Montoro, L.; Barragán, J.; Ramírez de Cartagena, F. An Experimental and Analytical Study to Analyze Hydraulic Behavior of Nozzle-Type Underdrains in Porous Media Filters. Agric. Water Manag. 2013, 126, 64–74. [Google Scholar] [CrossRef]
- Pujol, T.; Arbat, G.; Bové, J.; Puig-Bargués, J.; Duran-Ros, M.; Velayos, J.; Ramírez de Cartagena, F. Effects of the Underdrain Design on the Pressure Drop in Sand Filters. Biosyst. Eng. 2016, 150, 1–9. [Google Scholar] [CrossRef]
- Arbat, G.; Pujol, T.; Puig-Bargués, J.; Duran-Ros, M.; Barragán, J.; Montoro, L.; Ramírez de Cartagena, F. Using Computational Fluid Dynamics to Predict Head Losses in the Auxiliary Elements of a Microirrigation Sand Filter. Trans. ASABE 2011, 54, 1367–1376. [Google Scholar] [CrossRef]
- Bové, J.; Arbat, G.; Pujol, T.; Duran-Ros, M.; Ramírez de Cartagena, F.; Velayos, J.; Puig-Bargués, J. Reducing Energy Requirements for Sand Filtration in Microirrigation: Improving the Underdrain and Packing. Biosyst. Eng. 2015, 140, 67–78. [Google Scholar] [CrossRef]
- Pujol, T.; Puig-Bargués, J.; Arbat, G.; Vegas, A.; Duran-Ros, M.; Pujol, J.; Ramírez de Cartagena, F. Numerical Study of the Effects of Pod, Wand and Spike Type Underdrain Systems in Pressurised Sand Filters. Biosyst. Eng. 2020, 200, 338–352. [Google Scholar] [CrossRef]
- Bové, J.; Puig-Bargués, J.; Arbat, G.; Duran-Ros, M.; Pujol, T.; Pujol, J.; Ramírez de Cartagena, F. Development of a New Underdrain for Improving the Efficiency of Microirrigation Sand Media Filters. Agric. Water Manag. 2017, 179, 296–305. [Google Scholar] [CrossRef]
- Solé-Torres, C.; Puig-Bargués, J.; Duran-Ros, M.; Arbat, G.; Pujol, J.; Ramírez de Cartagena, F. Effect of Underdrain Design, Media Height and Filtration Velocity on the Performance of Microirrigation Sand Filters Using Reclaimed Effluents. Biosyst. Eng. 2019, 187, 292–304. [Google Scholar] [CrossRef]
- Bové, J.; Arbat, G.; Duran-Ros, M.; Pujol, T.; Velayos, J.; Ramírez de Cartagena, F.; Puig-Bargués, J. Pressure Drop across Sand and Recycled Glass Media Used in Micro Irrigation Filters. Biosyst. Eng. 2015, 137, 55–63. [Google Scholar] [CrossRef]
- Duran-Ros, M.; Puig-Bargués, J.; Arbat, G.; Barragán, J.; Ramírez de Cartagena, F. Definition of a SCADA System for a Microirrigation Network with Effluents. Comput. Electron. Agric. 2008, 64, 338–342. [Google Scholar] [CrossRef]
- Tajrishy, M.A.; Hills, D.J.; Tchobanoglous, G. Pretreatment of Secondary Effluent for Drip Irrigation. J. Irrig. Drain. Eng. 1994, 120, 716–731. [Google Scholar] [CrossRef]
- Elbana, M.; Ramírez de Cartagena, F.; Puig-Bargués, J. Effectiveness of Sand Media Filters for Removing Turbidity and Recovering Dissolved Oxygen from a Reclaimed Effluent Used for Micro-Irrigation. Agric. Water Manag. 2012, 111, 27–33. [Google Scholar] [CrossRef]
- European Recycling Industries’ Confederation. EuRIC—Statistics. Available online: https://www.euric-aisbl.eu/facts-figures/statistics (accessed on 10 July 2021).
- European Parliament. Plastic Waste and Recycling in the EU: Facts and Figures|News|European Parliament. Available online: https://www.europarl.europa.eu/news/en/headlines/society/20181212STO21610/plastic-waste-and-recycling-in-the-eu-facts-and-figures (accessed on 10 July 2021).
- European Tyre & Rubber Manufacturers’ Association. Circular Economy—ETRMA. Available online: https://www.etrma.org/key-topics/circular-economy/ (accessed on 10 July 2021).
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The Ecoinvent Database Version 3 (Part I): Overview and Methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A Harmonised Life Cycle Impact Assessment Method at Midpoint and Endpoint Level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Dekker, E.; Zijp, M.C.; van de Kamp, M.E.; Temme, E.H.M.; van Zelm, R. A Taste of the New ReCiPe for Life Cycle Assessment: Consequences of the Updated Impact Assessment Method on Food Product LCAs. Int. J. Life Cycle Assess. 2020, 25, 2315–2324. [Google Scholar] [CrossRef] [Green Version]
- United Nations Economic Comission for Europe. Life Cycle Assessment of Electricity Generation Options; United Nations Publications: Geneva, Switzerland, 2021. [Google Scholar]
Filter Underdrain Design | |||
---|---|---|---|
Arm Collector | Porous Media | Inserted Domes | |
Filter nominal diameter (mm) | 500 | 500 | 508 |
Filter filtration surface (m2) | 0.1960 | 0.1960 | 0.2026 |
Maximum filtration flow (m3/h) | 23 | 20 | 18 |
Maximum filtration height (m) | 0.40 | 0.70 | 0.69 |
Number of underdrains | 10 | 1 | 12 |
Mean slot width (m) | 2.5 × 10−4 | Not appl. | 4.5 × 10−4 |
Number of slots by underdrain | 140 | Not appl. | 90 |
Underdrain opening area per underdrain unit (m2) | 9.11 × 10−4 | 7.44 × 10−2 | 6.26 × 10−4 |
Underdrain total opening area (m2) | 0.0091 | 0.0744 | 0.0075 |
Underdrain effective area (ratio of underdrain opening area to filter surface area, %) | 4.65 | 37.95 | 3.71 |
Total Electrical Energy Consumption Per Filtered Volume (kWh/m3) | |||||||
---|---|---|---|---|---|---|---|
Scenario | Filter Type | Bed Material | Filtration Velocity (m/h) | Media Bed Height (m) | Filtration Cycles | Average | Standard Deviation |
ARM-1 | Arm collector | Sand | 30 | 0.2 | 64 | 0.118 | 0.003 |
ARM-2 | Arm collector | Sand | 30 | 0.3 | 35 | 0.124 | 0.013 |
ARM-3 | Arm collector | Sand | 60 | 0.2 | 29 | 0.117 | 0.003 |
ARM-4 | Arm collector | Sand | 60 | 0.3 | 84 | 0.131 | 0.011 |
ARM-5 | Arm collector | Glass | 30 | 0.2 | 14 | 0.145 | 0.019 |
ARM-6 | Arm collector | Glass | 30 | 0.3 | 32 | 0.131 | 0.010 |
ARM-7 | Arm collector | Glass | 60 | 0.2 | 29 | 0.127 | 0.011 |
ARM-8 | Arm collector | Glass | 60 | 0.3 | 140 | 0.136 | 0.011 |
POR-1 | Porous media | Sand | 30 | 0.2 | 21 | 0.115 | 0.002 |
POR-2 | Porous media | Sand | 30 | 0.3 | 10 | 0.118 | 0.002 |
POR-3 | Porous media | Sand | 60 | 0.2 | 77 | 0.120 | 0.024 |
POR-4 | Porous media | Sand | 60 | 0.3 | 75 | 0.126 | 0.016 |
POR-5 | Porous media | Glass | 30 | 0.2 | 17 | 0.125 | 0.016 |
POR-6 | Porous media | Glass | 30 | 0.3 | 27 | 0.119 | 0.014 |
POR-7 | Porous media | Glass | 60 | 0.2 | 30 | 0.125 | 0.027 |
POR-8 | Porous media | Glass | 60 | 0.3 | 70 | 0.129 | 0.027 |
DOM-1 | Inserted domes | Sand | 30 | 0.2 | 55 | 0.121 | 0.010 |
DOM-2 | Inserted domes | Sand | 30 | 0.3 | 36 | 0.122 | 0.004 |
DOM-3 | Inserted domes | Sand | 60 | 0.2 | 42 | 0.115 | 0.006 |
DOM-4 | Inserted domes | Sand | 60 | 0.3 | 111 | 0.126 | 0.008 |
DOM-5 | Inserted domes | Glass | 30 | 0.2 | 21 | 0.124 | 0.007 |
DOM-6 | Inserted domes | Glass | 30 | 0.3 | 18 | 0.121 | 0.009 |
DOM-7 | Inserted domes | Glass | 60 | 0.2 | 35 | 0.119 | 0.012 |
DOM-8 | Inserted domes | Glass | 60 | 0.3 | 78 | 0.124 | 0.009 |
Material | |||
---|---|---|---|
Steel * | Polypropylene ** | NBR *** | |
Recycling | 90% | 30% | 47% |
Waste | 10% | 31% | 9% |
Energy recovering | 0% | 39% | 44% |
Arm Collector | |||||||||
Impact Category | Units | ARM-1 | ARM-2 | ARM-3 | ARM-4 | ARM-5 | ARM-6 | ARM-7 | ARM-8 |
Global warming | kg CO2 eq | 3689 | 3840 | 3658 | 4040 | 4386 | 4035 | 3911 | 4163 |
Stratospheric ozone depletion | kg CFC11 eq | 0.00198 | 0.00206 | 0.00196 | 0.00217 | 0.00236 | 0.00217 | 0.00210 | 0.00224 |
Ionizing radiation | kBq Co-60 eq | 2144 | 2240 | 2124 | 2367 | 2587 | 2364 | 2285 | 2445 |
Ozone formation (human health) | kg NOx eq | 11.9 | 12.4 | 11.8 | 13.0 | 14.2 | 13.0 | 12.6 | 13.4 |
Fine particulate matter formation | kg PM2.5 eq | 8.89 | 9.25 | 8.82 | 9.73 | 10.56 | 9.72 | 9.42 | 10.03 |
Ozone formation (terrestrial ecosystems) | kg NOx eq | 11.9 | 12.5 | 11.8 | 13.1 | 14.3 | 13.1 | 12.7 | 13.5 |
Terrestrial acidification | kg SO2 eq | 22.2 | 23.1 | 22.0 | 24.3 | 26.5 | 24.3 | 23.5 | 25.1 |
Freshwater eutrophication | kg P eq | 1.62 | 1.69 | 1.61 | 1.77 | 1.92 | 1.77 | 1.72 | 1.82 |
Marine eutrophication | kg N eq | 0.159 | 0.165 | 0.158 | 0.173 | 0.186 | 0.173 | 0.168 | 0.178 |
Terrestrial ecotoxicity | kg 1,4-DCB | 16,997 | 17,510 | 16,892 | 18,187 | 19,361 | 18,171 | 17,749 | 18,606 |
Freshwater ecotoxicity | kg 1,4-DCB | 496 | 515 | 492 | 540 | 584 | 540 | 524 | 556 |
Marine ecotoxicity | kg 1,4-DCB | 619 | 643 | 615 | 675 | 729 | 674 | 654 | 694 |
Human carcinogenic toxicity | kg 1,4-DCB | 288 | 296 | 287 | 306 | 324 | 306 | 300 | 313 |
Human non-carcinogenic toxicity | kg 1,4-DCB | 5411 | 5608 | 5371 | 5867 | 6316 | 5861 | 5699 | 6027 |
Land use | m2a crop eq | 725 | 754 | 719 | 791 | 856 | 790 | 767 | 814 |
Mineral resource scarcity | kg Cu eq | 23.9 | 24.4 | 23.8 | 25.1 | 26.2 | 25.1 | 24.6 | 25.5 |
Fossil resource scarcity | kg oil eq | 986 | 1027 | 978 | 1080 | 1173 | 1079 | 1046 | 1113 |
Porous media | |||||||||
Impact category | Units | POR-1 | POR-2 | POR-3 | POR-4 | POR-5 | POR-6 | POR-7 | POR-8 |
Global warming | kg CO2 eq | 4323 | 4399 | 4395 | 4602 | 4558 | 4384 | 4516 | 4683 |
Stratospheric ozone depletion | kg CFC11 eq | 0.00208 | 0.00212 | 0.00212 | 0.00223 | 0.00221 | 0.00211 | 0.00218 | 0.00227 |
Ionizing radiation | kBq Co-60 eq | 2148 | 2197 | 2194 | 2326 | 2298 | 2187 | 2271 | 2377 |
Ozone formation (human health) | kg NOx eq | 12.5 | 12.8 | 12.7 | 13.4 | 13.3 | 12.7 | 13.1 | 13.7 |
Fine particulate matter formation | kg PM2.5 eq | 9.47 | 9.66 | 9.65 | 10.15 | 10.04 | 9.62 | 9.94 | 10.34 |
Ozone formation (terrestrial ecosystems) | kg NOx eq | 12.6 | 12.9 | 12.8 | 13.5 | 13.4 | 12.8 | 13.2 | 13.8 |
Terrestrial acidification | kg SO2 eq | 23.0 | 23.5 | 23.5 | 24.8 | 24.5 | 23.4 | 24.2 | 25.3 |
Freshwater eutrophication | kg P eq | 1.86 | 1.89 | 1.89 | 1.98 | 1.96 | 1.89 | 1.94 | 2.02 |
Marine eutrophication | kg N eq | 0.147 | 0.150 | 0.150 | 0.158 | 0.156 | 0.149 | 0.154 | 0.161 |
Terrestrial ecotoxicity | kg 1,4-DCB | 75,568 | 75,826 | 75,814 | 76,515 | 76,367 | 75,774 | 76,223 | 76,789 |
Freshwater ecotoxicity | kg 1,4-DCB | 465 | 475 | 474 | 501 | 495 | 473 | 490 | 511 |
Marine ecotoxicity | kg 1,4-DCB | 597 | 609 | 608 | 641 | 634 | 606 | 627 | 654 |
Human carcinogenic toxicity | kg 1,4-DCB | 836 | 840 | 839 | 850 | 848 | 839 | 846 | 854 |
Human non-carcinogenic toxicity | kg 1,4-DCB | 5070 | 5169 | 5164 | 5432 | 5376 | 5149 | 5321 | 5537 |
Land use | m2 a crop eq | 710 | 724 | 724 | 762 | 754 | 721 | 746 | 777 |
Mineral resource scarcity | kg Cu eq | 27.6 | 27.9 | 27.9 | 28.6 | 28.4 | 27.8 | 28.3 | 28.8 |
Fossil resource scarcity | kg oil eq | 1122 | 1142 | 1141 | 1196 | 1185 | 1138 | 1173 | 1218 |
Inserted domes | |||||||||
Impact category | Units | DOM-1 | DOM-2 | DOM-3 | DOM-4 | DOM-5 | DOM-6 | DOM-7 | DOM-8 |
Global warming | kg CO2 eq | 3667 | 3720 | 3531 | 3841 | 3762 | 3695 | 3607 | 3758 |
Stratospheric ozone depletion | kg CFC11 eq | 0.00198 | 0.00200 | 0.00190 | 0.00207 | 0.00203 | 0.00199 | 0.00194 | 0.00203 |
Ionizing radiation | kBq Co-60 eq | 2171 | 2206 | 2085 | 2282 | 2232 | 2190 | 2134 | 2230 |
Ozone formation (human health) | kg NOx eq | 11.9 | 12.0 | 11.4 | 12.4 | 12.2 | 12.0 | 11.7 | 12.2 |
Fine particulate matter formation | kg PM2.5 eq | 8.79 | 8.92 | 8.47 | 9.21 | 9.02 | 8.86 | 8.65 | 9.01 |
Ozone formation (terrestrial ecosystems) | kg NOx eq | 11.9 | 12.1 | 11.5 | 12.5 | 12.3 | 12.0 | 11.7 | 12.3 |
Terrestrial acidification | kg SO2 eq | 22.0 | 22.4 | 21.2 | 23.1 | 22.6 | 22.2 | 21.6 | 22.6 |
Freshwater eutrophication | kg P eq | 1.60 | 1.62 | 1.54 | 1.67 | 1.64 | 1.61 | 1.57 | 1.63 |
Marine eutrophication | kg N eq | 0.154 | 0.156 | 0.149 | 0.161 | 0.158 | 0.155 | 0.152 | 0.158 |
Terrestrial ecotoxicity | kg 1,4-DCB | 14,896 | 15,077 | 14,435 | 15,487 | 15,221 | 14,993 | 14,693 | 15,206 |
Freshwater ecotoxicity | kg 1,4-DCB | 476 | 483 | 459 | 498 | 488 | 480 | 469 | 488 |
Marine ecotoxicity | kg 1,4-DCB | 594 | 603 | 573 | 622 | 609 | 599 | 585 | 609 |
Human carcinogenic toxicity | kg 1,4-DCB | 326 | 329 | 319 | 335 | 331 | 327 | 323 | 331 |
Human non-carcinogenic toxicity | kg 1,4-DCB | 5091 | 5160 | 4915 | 5317 | 5215 | 5128 | 5013 | 5209 |
Land use | m2 a crop eq | 698 | 708 | 672 | 730 | 715 | 703 | 686 | 715 |
Mineral resource scarcity | kg Cu eq | 20.6 | 20.8 | 20.1 | 21.2 | 20.9 | 20.7 | 20.4 | 20.9 |
Fossil resource scarcity | kg oil eq | 985 | 1000 | 949 | 1032 | 1011 | 993 | 969 | 1010 |
Arm Collector | |||||||||
---|---|---|---|---|---|---|---|---|---|
Consumption | Units | ARM-1 | ARM-2 | ARM-3 | ARM-4 | ARM-5 | ARM-6 | ARM-7 | ARM-8 |
Energy | kWh | 9984.9 | 10,440.4 | 9891.6 | 11,039.4 | 12,078.7 | 11,025.0 | 10,650.6 | 11,411.3 |
Sand | kg | 940.8 | 1411.2 | 501.8 | 752.6 | 0.0 | 0.0 | 0.0 | 0.0 |
Glass | kg | 0.0 | 0.0 | 0.0 | 0.0 | 302.9 | 454.3 | 161.5 | 242.3 |
Porous media | |||||||||
Consumption | Units | POR-1 | POR-2 | POR-3 | POR-4 | POR-5 | POR-6 | POR-7 | POR-8 |
Energy | kWh | 9732.4 | 9961.4 | 9949.7 | 10,570.8 | 10,440.4 | 9914.8 | 10,313.3 | 10,813.8 |
Sand | kg | 940.8 | 1411.2 | 501.8 | 752.6 | 0.0 | 0.0 | 0.0 | 0.0 |
Glass | kg | 0.0 | 0.0 | 0.0 | 0.0 | 292.2 | 438.3 | 146.1 | 219.2 |
Inserted domes | |||||||||
Consumption | Units | DOM-1 | DOM-2 | DOM-3 | DOM-4 | DOM-5 | DOM-6 | DOM-7 | DOM-8 |
Energy | kWh | 10,140.4 | 10,300.7 | 9732.4 | 10,664.0 | 10,427.6 | 10,226.1 | 9961.4 | 10,414.8 |
Sand | kg | 907.6 | 1361.5 | 453.8 | 680.7 | 0.0 | 0.0 | 0.0 | 0.0 |
Glass | kg | 0.0 | 0.0 | 0.0 | 0.0 | 302.9 | 454.3 | 161.5 | 242.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pujol, J.; Espinach, F.X.; Duran-Ros, M.; Arbat, G.; Pujol, T.; Ramírez de Cartagena, F.; Puig-Bargués, J. Environmental Assessment of Underdrain Designs for Granular Media Filters in Drip Irrigation Systems. Agriculture 2022, 12, 810. https://doi.org/10.3390/agriculture12060810
Pujol J, Espinach FX, Duran-Ros M, Arbat G, Pujol T, Ramírez de Cartagena F, Puig-Bargués J. Environmental Assessment of Underdrain Designs for Granular Media Filters in Drip Irrigation Systems. Agriculture. 2022; 12(6):810. https://doi.org/10.3390/agriculture12060810
Chicago/Turabian StylePujol, Joan, Francesc X. Espinach, Miquel Duran-Ros, Gerard Arbat, Toni Pujol, Francisco Ramírez de Cartagena, and Jaume Puig-Bargués. 2022. "Environmental Assessment of Underdrain Designs for Granular Media Filters in Drip Irrigation Systems" Agriculture 12, no. 6: 810. https://doi.org/10.3390/agriculture12060810