Residual Biomass Recovery in the Wine Sector: Creation of Value Chains for Vine Pruning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Characterization of the Area under Study
2.2. Sampling and Material Preparation
2.3. Laboratorial Characterization
2.4. Further Analysis
3. Results and Discussion
3.1. Characterization of Vine Pruning Samples
3.1.1. Laboratorial Results
3.1.2. Statistical Analysis of the Laboratorial Results
3.1.3. Fuel Comparative Analysis
3.2. Combustibility and Energy Recovery
- There is a prospect of valuing waste resulting from agricultural production—in this case, wine production—where the disposal of waste is carried out in line with the reduction in the carbon footprint, associated, for example, with the burning of leftovers, through the reduction in greenhouse gas emissions without using the energy;
- There is value creation resulting from the commercialization of waste, now transformed into fuel;
- There is a contribution to the preservation of forest resources as a result of the substitution of firewood of forest origin for others of residual origin;
- There is an effective contribution to improvements in the economic and social conditions of rural populations as a result of the creation of a new direct value chain established between producers and final consumers, with obvious advantages for both;
- Finally, there is a compelling valuation of endogenous resources with the application of a circular bioeconomy model, intending to increase the sustainability of the agricultural sector and promote rural development.
3.3. Residual Biomass Production Capacity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jhariya, M.K.; Meena, R.S.; Banerjee, A. Ecological intensification of natural resources towards sustainable productive system. In Ecological Intensification of Natural Resources for Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–28. [Google Scholar]
- Tripathi, N.; Hills, C.D.; Singh, R.S.; Singh, J.S. Offsetting anthropogenic carbon emissions from biomass waste and mineralised carbon dioxide. Sci. Rep. 2020, 10, 958. [Google Scholar] [CrossRef] [PubMed]
- Hills, C.D.; Tripathi, N.; Singh, R.S.; Carey, P.J.; Lowry, F. Valorisation of agricultural biomass-ash with CO2. Sci. Rep. 2020, 10, 13801. [Google Scholar] [CrossRef] [PubMed]
- Devi, S.; Gupta, C.; Jat, S.L.; Parmar, M. Crop residue recycling for economic and environmental sustainability: The case of India. Open Agric. 2017, 2, 486–494. [Google Scholar] [CrossRef]
- Tripathi, N.; Hills, C.D.; Singh, R.S.; Atkinson, C.J. Biomass waste utilisation in low-carbon products: Harnessing a major potential resource. NPJ Clim. Atmos. Sci. 2019, 2, 35. [Google Scholar] [CrossRef] [Green Version]
- Sharma, B.; Vaish, B.; Singh, U.K.; Singh, P.; Singh, R.P. Recycling of organic wastes in agriculture: An environmental perspective. Int. J. Environ. Res. 2019, 13, 409–429. [Google Scholar] [CrossRef]
- Piñeiro, V.; Arias, J.; Dürr, J.; Elverdin, P.; Ibáñez, A.M.; Kinengyere, A.; Opazo, C.M.; Owoo, N.; Page, J.R.; Prager, S.D. A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes. Nat. Sustain. 2020, 3, 809–820. [Google Scholar] [CrossRef]
- Bizikova, L.; Nkonya, E.; Minah, M.; Hanisch, M.; Turaga, R.M.R.; Speranza, C.I.; Karthikeyan, M.; Tang, L.; Ghezzi-Kopel, K.; Kelly, J. A scoping review of the contributions of farmers’ organizations to smallholder agriculture. Nat. Food 2020, 1, 620–630. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Sarsaiya, S.; Patel, A.; Juneja, A.; Singh, R.P.; Yan, B.; Awasthi, S.K.; Jain, A.; Liu, T.; Duan, Y. Refining biomass residues for sustainable energy and bio-products: An assessment of technology, its importance, and strategic applications in circular bio-economy. Renew. Sustain. Energy Rev. 2020, 127, 109876. [Google Scholar] [CrossRef]
- De Almeida, S.T.; Borsato, M. Assessing the efficiency of End of Life technology in waste treatment—A bibliometric literature review. Resour. Conserv. Recycl. 2019, 140, 189–208. [Google Scholar] [CrossRef]
- Tsui, T.-H.; Wong, J.W. A critical review: Emerging bioeconomy and waste-to-energy technologies for sustainable municipal solid waste management. Waste Dispos. Sustain. Energy 2019, 1, 151–167. [Google Scholar] [CrossRef] [Green Version]
- Demirbas, A. Waste management, waste resource facilities and waste conversion processes. Energy Convers. Manag. 2011, 52, 1280–1287. [Google Scholar] [CrossRef]
- Nishio, N.; Nakashimada, Y. Recent development of anaerobic digestion processes for energy recovery from wastes. J. Biosci. Bioeng. 2007, 103, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Najafi, E.; Castro, E.; Karimi, K. Biorefining for olive wastes management and efficient bioenergy production. Energy Convers. Manag. 2021, 244, 114467. [Google Scholar] [CrossRef]
- Momayez, F.; Karimi, K.; Taherzadeh, M.J. Energy recovery from industrial crop wastes by dry anaerobic digestion: A review. Ind. Crops Prod. 2019, 129, 673–687. [Google Scholar] [CrossRef]
- Siwal, S.S.; Zhang, Q.; Devi, N.; Saini, A.K.; Saini, V.; Pareek, B.; Gaidukovs, S.; Thakur, V.K. Recovery processes of sustainable energy using different biomass and wastes. Renew. Sustain. Energy Rev. 2021, 150, 111483. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Sarsaiya, S.; Wainaina, S.; Rajendran, K.; Awasthi, S.K.; Liu, T.; Duan, Y.; Jain, A.; Sindhu, R.; Binod, P. Techno-economics and life-cycle assessment of biological and thermochemical treatment of bio-waste. Renew. Sustain. Energy Rev. 2021, 144, 110837. [Google Scholar] [CrossRef]
- Akhtar, A.; Krepl, V.; Ivanova, T. A combined overview of combustion, pyrolysis, and gasification of biomass. Energy Fuels 2018, 32, 7294–7318. [Google Scholar] [CrossRef]
- Kershaw, A.; Bush, M.; Hope, G.; Weiss, K.; Goldammer, J.; Sanford, R. Centre for Palynology and Palaeoecology Department of Geography and Environmental Science. Sediment Rec. Biomass Burn. Glob. Chang. 2013, 51, 413. [Google Scholar]
- Pausas, J.G.; Keeley, J.E. A burning story: The role of fire in the history of life. BioScience 2009, 59, 593–601. [Google Scholar] [CrossRef] [Green Version]
- Yargicoglu, E.N.; Sadasivam, B.Y.; Reddy, K.R.; Spokas, K. Physical and chemical characterization of waste wood derived biochars. Waste Manag. 2015, 36, 256–268. [Google Scholar] [CrossRef]
- Laurent, C.; Oger, B.; Taylor, J.A.; Scholasch, T.; Metay, A.; Tisseyre, B. A review of the issues, methods and perspectives for yield estimation, prediction and forecasting in viticulture. Eur. J. Agron. 2021, 130, 126339. [Google Scholar] [CrossRef]
- de Souza, L.L.P.; Hamedani, S.R.; Lora, E.E.S.; Palacio, J.C.E.; Comodi, G.; Villarini, M.; Colantoni, A. Theoretical and technical assessment of agroforestry residue potential for electricity generation in Brazil towards 2050. Energy Rep. 2021, 7, 2574–2587. [Google Scholar] [CrossRef]
- Nunes, L.J.; Loureiro, L.M.; Sá, L.C.; Matias, J.C.; Ferraz, A.I.; Rodrigues, A.C. Energy Recovery of Agricultural Residues: Incorporation of Vine Pruning in the Production of Biomass Pellets with ENplus® Certification. Recycling 2021, 6, 28. [Google Scholar] [CrossRef]
- Moreira, M.M.; Barroso, M.F.; Porto, J.V.; Ramalhosa, M.J.; Švarc-Gajić, J.; Estevinho, L.; Morais, S.; Delerue-Matos, C. Potential of Portuguese vine shoot wastes as natural resources of bioactive compounds. Sci. Total Environ. 2018, 634, 831–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romaní, A.; Michelin, M.; Domingues, L.; Teixeira, J.A. Valorization of wastes from agrofood and pulp and paper industries within the biorefinery concept: Southwestern Europe scenario. In Waste Biorefinery; Elsevier: Amsterdam, The Netherlands, 2018; pp. 487–504. [Google Scholar]
- Brito, P.S.; Oliveira, A.S.; Rodrigues, L.F. Energy valorization of solid vines pruning by thermal gasification in a pilot plant. Waste Biomass Valorization 2014, 5, 181–187. [Google Scholar] [CrossRef]
- Silvestri, S.; Cristoforetti, A.; Mescalchin, E.; Spinelli, R. Recovery of pruining waste for energy use: Agronomic, economic and ecological aspects. In Proceedings of the Mitteleuropäische Biomassekonferenz 2011= Central European Biomass Conference, Graz, Austria, 26–29 January 2011; p. 31. [Google Scholar]
- Shankar Tumuluru, J.; Sokhansanj, S.; Hess, J.R.; Wright, C.T.; Boardman, R.D. A review on biomass torrefaction process and product properties for energy applications. Ind. Biotechnol. 2011, 7, 384–401. [Google Scholar] [CrossRef] [Green Version]
- Dávila, I.; Robles, E.; Egüés, I.; Labidi, J.; Gullón, P. The biorefinery concept for the industrial valorization of grape processing by-products. In Handbook of Grape Processing By-Products; Elsevier: Amsterdam, The Netherlands, 2017; pp. 29–53. [Google Scholar]
- Gullón, P.; Gullón, B.; Dávila, I.; Labidi, J.; Gonzalez-Garcia, S. Comparative environmental Life Cycle Assessment of integral revalorization of vine shoots from a biorefinery perspective. Sci. Total Environ. 2018, 624, 225–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zacharof, M.-P. Grape winery waste as feedstock for bioconversions: Applying the biorefinery concept. Waste Biomass Valorization 2017, 8, 1011–1025. [Google Scholar] [CrossRef] [Green Version]
- Fermoso, F.G.; Serrano, A.; Alonso-Farinas, B.; Fernandez-Bolanos, J.; Borja, R.; Rodriguez-Gutierrez, G. Valuable compound extraction, anaerobic digestion, and composting: A leading biorefinery approach for agricultural wastes. J. Agric. Food Chem. 2018, 66, 8451–8468. [Google Scholar] [CrossRef]
- Nunes, L.J.; Rodrigues, A.M.; Matias, J.C.; Ferraz, A.I.; Rodrigues, A.C. Production of biochar from vine pruning: Waste recovery in the wine industry. Agriculture 2021, 11, 489. [Google Scholar] [CrossRef]
- Biagini, E.; Barontini, F.; Tognotti, L. Gasification of agricultural residues in a demonstrative plant: Vine pruning and rice husks. Bioresour. Technol. 2015, 194, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Allesina, G.; Pedrazzi, S.; Puglia, M.; Morselli, N.; Allegretti, F.; Tartarini, P. Gasification and wine industry: Report on the use vine pruning as fuel in small-scale gasifiers. In Proceedings of the European Biomass Conference and Exhibition, Copenhagen, Denmark, 14–18 May 2018; pp. 722–725. [Google Scholar]
- Calcan, S.I.; Pârvulescu, O.C.; Ion, V.A.; Răducanu, C.E.; Bădulescu, L.; Dobre, T.; Egri, D.; Moț, A.; Popa, V.; Crăciun, M.E. Valorization of Vine Prunings by Slow Pyrolysis in a Fixed-Bed Reactor. Processes 2022, 10, 37. [Google Scholar] [CrossRef]
- Sapir, A. Globalization and the reform of European social models. JCMS J. Common Mark. Stud. 2006, 44, 369–390. [Google Scholar] [CrossRef]
- Pattara, C.; Raggi, A.; Cichelli, A. Life cycle assessment and carbon footprint in the wine supply-chain. Environ. Manag. 2012, 49, 1247–1258. [Google Scholar] [CrossRef]
- Brandão, A.S.; Santos, J.M. Rural regions as key locations for the Circular Bioeconomy: Insights from the northern interior of Portugal. Bioresour. Technol. Rep. 2022, 17, 100955. [Google Scholar] [CrossRef]
- Chen, T.-C.; Lin, C.-F. Greenhouse gases emissions from waste management practices using Life Cycle Inventory model. J. Hazard. Mater. 2008, 155, 23–31. [Google Scholar] [CrossRef]
- Razeghi, S.M.; Shabanali Fami, H.; Rezaei, R. Factors Affecting Biomass Energy Utilization by Small Holder Farmers in Iran. Int. J. Agric. Manag. Dev. 2020, 10, 45–57. [Google Scholar]
- Vecino, X.; Rodríguez-López, L.; Gudiña, E.J.; Cruz, J.; Moldes, A.; Rodrigues, L. Vineyard pruning waste as an alternative carbon source to produce novel biosurfactants by Lactobacillus paracasei. J. Ind. Eng. Chem. 2017, 55, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Devesa-Rey, R.; Vecino, X.; Varela-Alende, J.; Barral, M.; Cruz, J.; Moldes, A. Valorization of winery waste vs. the costs of not recycling. Waste Manag. 2011, 31, 2327–2335. [Google Scholar] [CrossRef]
- Giorio, C.; Pizzini, S.; Marchiori, E.; Piazza, R.; Grigolato, S.; Zanetti, M.; Cavalli, R.; Simoncin, M.; Soldà, L.; Badocco, D. Sustainability of using vineyard pruning residues as an energy source: Combustion performances and environmental impact. Fuel 2019, 243, 371–380. [Google Scholar] [CrossRef]
- Giampietro, M.; Ulgiati, S.; Pimentel, D. Feasibility of large-scale biofuel production. BioScience 1997, 47, 587–600. [Google Scholar] [CrossRef] [Green Version]
- Demirbaş, A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers. Manag. 2001, 42, 1357–1378. [Google Scholar] [CrossRef]
- Mishenin, Y.; Yarova, I.; Koblianska, I. Ecologically Harmonized Agricultural Management for Global Food Security. In Ecological Intensification of Natural Resources for Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2021; pp. 29–76. [Google Scholar]
- Fraga, H.; Malheiro, A.; Moutinho-Pereira, J.; Santos, J. Climate factors driving wine production in the Portuguese Minho region. Agric. For. Meteorol. 2014, 185, 26–36. [Google Scholar] [CrossRef]
- Nunes, L.J.; Matias, J.C.; Loureiro, L.M.; Sá, L.C.; Silva, H.F.; Rodrigues, A.M.; Causer, T.P.; DeVallance, D.B.; Ciolkosz, D.E. Evaluation of the potential of agricultural waste recovery: Energy densification as a factor for residual biomass logistics optimization. Appl. Sci. 2020, 11, 20. [Google Scholar] [CrossRef]
- Tregambi, C.; Montagnaro, F.; Salatino, P.; Solimene, R. Solar-driven torrefaction of a lignin-rich biomass residue in a directly irradiated fluidized bed reactor. Combust. Sci. Technol. 2019, 191, 1609–1627. [Google Scholar] [CrossRef]
- Rasam, S.; Haghighi, A.M.; Azizi, K.; Soria-Verdugo, A.; Moraveji, M.K. Thermal behavior, thermodynamics and kinetics of co-pyrolysis of binary and ternary mixtures of biomass through thermogravimetric analysis. Fuel 2020, 280, 118665. [Google Scholar] [CrossRef]
- Raitila, J.; Tsupari, E. Feasibility of solar-enhanced drying of woody biomass. BioEnergy Res. 2020, 13, 210–221. [Google Scholar] [CrossRef] [Green Version]
- Manzone, M.; Paravidino, E.; Bonifacino, G.; Balsari, P. Biomass availability and quality produced by vineyard management during a period of 15 years. Renew. Energy 2016, 99, 465–471. [Google Scholar] [CrossRef]
- Nunes, L.J.; Casau, M.; Ferreira Dias, M. Portuguese Wood Pellets Market: Organization, Production and Consumption Analysis. Resources 2021, 10, 130. [Google Scholar] [CrossRef]
Standard | Description |
---|---|
ISO 17225-1: 2014 | Solid biofuels—Fuel specifications and classes—Part 1: General requirements. |
ISO 16948: 2015 | Solid biofuels—Determination of total content of CHNO. |
ISO 16967: 2015 | Solid biofuels—Determination of major elements—Al, Ca, Fe, Mg, P, K, Si, Na and Ti. |
ISO 16968: 2015 | Solid biofuels—Determination of minor elements—Ar, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sb, V and Zn. |
ISO 16994: 2016 | Solid biofuels—Determination of total content of S and Cl. |
ISO 18125: 2017 | Solid biofuels—Determination of calorific value. |
ISO 21404: 2020 (en) | Solid biofuels—Determination of ash melting behavior. |
C (%) | H (%) | N (%) | O (%) | S (%) | Cl (%) | |
---|---|---|---|---|---|---|
Sample 1 | 46.48 | 6.36 | 0.710 | 45.79 | 0.0181 | 0.0001 |
Sample 2 | 45.23 | 6.42 | 0.616 | 46.47 | 0.0184 | 0.0007 |
Sample 3 | 47.12 | 6.05 | 0.280 | 48.42 | 0.0190 | 0.0008 |
Average | 46.27 | 6.28 | 0.54 | 46.89 | 0.0185 | 0.0005 |
Standard deviation | 0.95 | 0.20 | 0.23 | 1.37 | 0.0005 | 0.0003 |
Moisture (%) | Volatiles (%) | Ashes (%) | Fixed Carbon (%) | |
---|---|---|---|---|
Sample 1 | 3.74 | 77.83 | 1.42 | 19.51 |
Sample 2 | 3.77 | 77.84 | 1.41 | 19.46 |
Sample 3 | 3.51 | 77.72 | 1.42 | 19.78 |
Average | 3.67 | 77.80 | 1.42 | 19.58 |
Standard deviation | 0.14 | 0.07 | 0.01 | 0.17 |
HHV (MJ·kg−1) | LHV (MJ·kg−1) | |
---|---|---|
Sample 1 | 18.41 | 17.42 |
Sample 2 | 18.01 | 17.07 |
Sample 3 | 18.95 | 17.78 |
Average | 18.95 | 17.58 |
Standard deviation | 0.006 | 0.000 |
IDT (°C) | ST (°C) | HT (°C) | FT (°C) | |
---|---|---|---|---|
Sample 1 | 888 | 1476 | 1572 | 1581 |
Sample 2 | 858 | 1570 | 1579 | 1588 |
Sample 3 | 901 | 1534 | 1578 | 1583 |
Average | 882 | 1527 | 1576 | 1584 |
Standard deviation | 22 | 47 | 4 | 4 |
Al (mg·kg−1) | Ca (mg·kg−1) | Fe (mg·kg−1) | Mg (mg·kg−1) | P (mg·kg−1) | K (mg·kg−1) | Si (mg·kg−1) | Na (mg·kg−1) | Ti (mg·kg−1) | |
---|---|---|---|---|---|---|---|---|---|
Sample 1 | 74.54 | 6972.46 | 31.15 | 1303.74 | 1101.95 | 8120.49 | 188.82 | 407.25 | 2.71 |
Sample 2 | 53.66 | 7722.37 | 38.57 | 1386.39 | 1077.50 | 8444.39 | 137.45 | 413.72 | 3.48 |
Sample 3 | 53.44 | 7641.21 | 32.29 | 1387.78 | 1107.98 | 8168.23 | 131.67 | 444.39 | 2.83 |
Average | 60.55 | 7445.35 | 34.00 | 1359.30 | 1095.81 | 8244.37 | 152.65 | 421.79 | 3.01 |
Standard deviation | 12.12 | 411.54 | 4.00 | 48.12 | 16.14 | 174.86 | 31.46 | 19.84 | 0.41 |
As (mg·kg−1) | Cd (mg·kg−1) | Co (mg·kg−1) | Cr (mg·kg−1) | Cu (mg·kg−1) | Mn (mg·kg−1) | Ni (mg·kg−1) | Pb (mg·kg−1) | Zn (mg·kg−1) | |
---|---|---|---|---|---|---|---|---|---|
Sample 1 | 0.58 | 0.58 | 0.40 | 0.48 | 23.16 | 39.64 | 0.63 | 0.29 | 14.51 |
Sample 2 | 0.88 | 0.34 | 0.20 | 0.34 | 26.48 | 43.44 | 0.41 | 0.10 | 14.53 |
Sample 3 | 0.73 | 0.39 | 0.32 | 0.04 | 25.15 | 40.95 | 0.13 | 0.09 | 18.40 |
Average | 0.73 | 0.44 | 0.31 | 0.29 | 24.93 | 41.34 | 0.39 | 0.16 | 15.53 |
Standard deviation | 0.15 | 0.13 | 0.10 | 0.22 | 1.67 | 1.93 | 0.25 | 0.11 | 2.02 |
Parameters | Units | A1 | A2 | B | Wood Pellets | Vine Pruning |
---|---|---|---|---|---|---|
Moisture | % | ≤10 | ≤10 | ≤10 | 6.42 | 3.67 * |
Ashes | % | ≤0.7 | ≤1.2 | ≤2 | 0.62 | 1.42 |
LHV | MJ·kg−1 | ≥16.50 | ≥16.50 | ≥16.50 | 17.87 | 17.58 |
N | % | ≤0.3 | ≤0.5 | ≤1.0 | 0.08 | 0.536 |
S | % | ≤0.04 | ≤0.05 | ≤0.05 | 0.0045 | 0.0185 |
Cl | % | ≤0.02 | ≤0.02 | ≤0.03 | 0.02 | 0.0005 |
ST | °C | ≥1200 | ≥1100 | ≥1100 | 1215 | 1570 |
As | mg·kg−1 | ≤1 | ≤1 | ≤1 | 0.94 | 0.73 |
Cd | mg·kg−1 | ≤0.5 | ≤0.5 | ≤0.5 | 0.34 | 0.44 |
Cr | mg·kg−1 | ≤10 | ≤10 | ≤10 | 1.99 | 0.29 |
Cu | mg·kg−1 | ≤10 | ≤10 | ≤10 | 3.55 | 24.93 |
Pb | mg·kg−1 | ≤10 | ≤10 | ≤10 | 0.71 | 0.16 |
Hg | mg·kg−1 | ≤0.1 | ≤0.1 | ≤0.1 | ≤0.01 | ≤0.01 |
Ni | mg·kg−1 | ≤10 | ≤10 | ≤10 | 1.08 | 0.39 |
Zn | mg·kg−1 | ≤100 | ≤100 | ≤100 | 8.08 | 15.53 |
Samples | Weight on Cut (kg) | Weight after Drying 1 Week (kg) | |
---|---|---|---|
Sample 1 | (1) | 2.2 | 2.0 |
(2) | 2.3 | 2.1 | |
(3) | 4.3 | 4.0 | |
Sample 2 | (1) | 2.5 | 2.2 |
(2) | 3.3 | 3.1 | |
(3) | 2.5 | 2.4 | |
Sample 3 | (1) | 2.5 | 2.2 |
(2) | 2.1 | 2.0 | |
(3) | 3.9 | 3.6 | |
Sample 4 | (1) | 1.4 | 1.3 |
(2) | 2.6 | 2.3 | |
(3) | 2.9 | 2.6 | |
Sample 5 | (1) | 2.0 | 1.8 |
(2) | 1.5 | 1.4 | |
(3) | 2.4 | 2.2 | |
Sample 6 | (1) | 3.0 | 2.6 |
(2) | 3.5 | 3.3 | |
(3) | 3.5 | 3.0 | |
Sample 7 | (1) | 2.2 | 2.0 |
(2) | 4.5 | 4.1 | |
(3) | 1.9 | 1.8 | |
Sample 8 | (1) | 2.5 | 2.2 |
(2) | 1.7 | 1.6 | |
(3) | 1.8 | 1.7 | |
Sample 9 | (1) | 4.3 | 4.0 |
(2) | 3.1 | 2.9 | |
(3) | 2.3 | 2.1 | |
Sample 10 | (1) | 4.4 | 4.2 |
(2) | 3.4 | 3.1 | |
(3) | 4.6 | 4.4 |
Vine Planting Densities (Plants·ha−1) | |||||
---|---|---|---|---|---|
952 | 1111 | 1333 | 1666 | 2222 | |
Potential biomass production (kg t·year−1·ha−1) | 2485 ± 847 | 2900 ± 989 | 3479 ± 1186 | 4348 ± 1483 | 5799 ± 1978 |
Estimated revenues (EUR·ha−1) | 224 ± 76 | 261 ± 89 | 313 ± 107 | 391 ± 134 | 522 ± 178 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Florindo, T.; Ferraz, A.I.; Rodrigues, A.C.; Nunes, L.J.R. Residual Biomass Recovery in the Wine Sector: Creation of Value Chains for Vine Pruning. Agriculture 2022, 12, 670. https://doi.org/10.3390/agriculture12050670
Florindo T, Ferraz AI, Rodrigues AC, Nunes LJR. Residual Biomass Recovery in the Wine Sector: Creation of Value Chains for Vine Pruning. Agriculture. 2022; 12(5):670. https://doi.org/10.3390/agriculture12050670
Chicago/Turabian StyleFlorindo, Tiago, Ana I. Ferraz, Ana C. Rodrigues, and Leonel J. R. Nunes. 2022. "Residual Biomass Recovery in the Wine Sector: Creation of Value Chains for Vine Pruning" Agriculture 12, no. 5: 670. https://doi.org/10.3390/agriculture12050670