This section presents the results and discussions regarding the demographic profile, including the location, farm size, age groups, education level, and cooperative memberships of the farmers surveyed. In the sequence, we show the level of the use of precision and digital technology tools on-farm, making decisions, and the benefits. Moreover, we report and analyze the influence of mass media, social media, and interpersonal meetings on farmers’ adoption of new technology. Finally, the section presents the association between the communication channels and the adoption level of technologies in Brazil’s soybean production.
4.1. Demographic Profile
In total, 461 soybean farmers in Brazil responded to the survey within eight weeks that the survey was open, including 61.6% from the South and 38.4% from the Midwest (
Figure 2). Among the top five soybean-producing states in Brazil, the number of respondents was divided by Rio Grande do Sul (39.6%), Paraná (22%), Goiás (13.8%), Mato Grosso (12.7%), and Mato Grosso do Sul (11.9%). These five states represent 75% of soybean production in Brazil [
23].
Data from the last Brazilian Agricultural Census show there are 235,766 properties that plant soybeans in Brazil, including 95,394 (40.4%) located in the Rio Grande do Sul, 84,499 (35.8%) in Paraná, 7792 (3.3%) in Goiás, 7061 (3%) in Mato Grosso, and 7093 (3%) in Mato Grosso do Sul. Although the Midwestern states represent less than 10% of rural properties, Mato Grosso, Goiás, and Mato Grosso do Sul comprise 46.2% of total acreage and 45.6% of total production in the country [
39]. The larger geographic area and the average size of properties in this region explain these numbers from the Brazilian Agricultural Census. For example, in Mato Grosso, the average size of a soybean farm is 1237 hectares, while in the Rio Grande do Sul, it is just 54 hectares [
40].
While the decision-making capacities of the farmer are the focus, farm characteristics such as farm size also influence the adoption. The larger the farm, the greater the likelihood of adoption [
15,
40]. For example, large commercial farms are more likely to benefit economically from adopting precision agriculture [
41]. Among the respondents in Brazil, 25.4% are farming less than 100 hectares, 25.6% from 101 to 500 hectares, 29.3% from 501 to 2000 hectares, 16.3% from 2001 to 10,000 hectares, and 3.5% more than 10,000 hectares (
Figure 3).
The effect of age on precision agriculture adoption is unclear [
42]. On the one hand, some researchers have reported that younger farmers are more likely to adopt new technologies in agriculture [
43]. However, some authors have reported that older farmers correlate positively with precision agriculture adoption [
44].
According to the theory of acceptance and use of technology (UTAUT) [
25], which reviewed related studies and conducted an empirical study where they synthesized several elements of the eight behavioral intention models used in previous technology acceptance contexts, four moderators affect the usage of technology: sex, age, experience, and voluntariness of use. Among the farmers who participated in the survey, 3.5% are under 25 years old, 39.7% are 25–40 years old, 35.4% are 41–55 years old, 19.7% are 56–70 years old, and 1.7% are more than 70 years old (
Figure 4).
Moreover, a higher education level is reported in the literature to positively impact precision farming adoption [
16,
45]. A high education level provides the knowledge and skills needed to understand the technologies, make farmers want to experiment, and enable them to adopt them [
18]. In our survey, 35.1% of respondents have a postgraduate degree (MBA, master’s, or doctorate), 39.7% have a bachelor’s degree, 7.2% have not completed a bachelor’s degree, 11.9% have a high school diploma, 2.2% have not completed high school, 1.5% have middle school diploma, and 2.4% have not completed middle school (
Figure 5).
Finally, among the respondents, 56% are members of a cooperative that offers technical support, and 44% are not members of any cooperative that provides technical support. A few studies estimate the role of cooperative membership in economic and/or technical efficiency [
46,
47]. Cooperative membership is associated with increased efficiency among farmers in the midwestern region of Brazil [
48]. In another paper regarding Brazil, the authors estimate an agricultural production function and found a positive effect for the share of cooperative memberships on the gross value of production (GVP) in the south, where there are more cooperative members [
49]. In addition, the size of the cooperative can determine the degree of digitization. Cooperatives that have a greater size or volume of resources clearly present a higher level of digitization in electronic commerce and web services offered [
50].
4.2. Technologies Adoption On-Farm, Decisions, and Benefits
The survey asked about the level of the use of precision and digital technology tools on-farm on a 5-point scale (1 = Never use, 2 = Rarely use, 3 = Sometimes use, 4 = Often use, 5 = Always use). Respondents also indicated the level of influence of digital technology and precision tools on-farm on making decisions and on the benefits (1 = Not at all influential, 2 = Slightly influential, 3 = Moderately influential, 4 = Very influential, 5 = Extremely influential).
Table 1 shows the average regarding each question:
Regarding the use of precision and digital technology tools on-farm, guidance/autosteer has the highest adoption rate, according to the survey. This technology was the only one that reached a mean of over 3 points among the tools used on-farm by Brazilian soybean farmers. Autosteer has many benefits, including less operator fatigue, more time focused on the operating equipment, and less waste of applied inputs [
37]. The long-used global navigation satellite system (GNSS) technology has stood out since the beginning of the implementation of precision agriculture, has supported an increasing range of activities, and has generated countless benefits in rural areas [
13].
Satellite/drone imagery and yield monitors make up the next technology group with the highest rates of farmer adoption, with averages close to 3 points. The development of new remote sensors in satellites and drones for agriculture has significantly enhanced the potential in recent years [
51,
52]. Similar to GNSS, yield monitors have been widely available for combines since the early 1990s, the beginning of precision agriculture. Precision agriculture can provide an overwhelming amount of data from yield monitors, soil sampling, machine operations, and inputs applied to various portions of fields [
37].
The next grouping is telematic systems, wired or wireless sensor networks, and electronic records/mapping for traceability, with means of just over 2 points on a 5-point scale. Precision agriculture and information technologies (soil and yield maps and variable rate input applications) allow farmers to optimize their production practices [
26].
With a mean of less than 2 points, the final group comprises spot spray systems and soil EC mapping. These technologies are newer and unproven in their capabilities when compared to the more established ones. One of the challenges in quantifying the economic benefits of precision and digital technology adoption is that farmers lack tools and methods that enable comprehensive analysis [
12].
The perceived ease of use, described as users’ belief that technology will require little effort, is a relevant factor in the process of acceptance and use of innovations [
32]. This has a relationship with complexity or the degree to which an innovation is considered as difficult to understand and use. A higher degree of complexity, such as newer and unproven technologies, renders an equally higher degree of difficulty in understanding and using any given innovation. Complexity thus becomes negatively related to an innovation adoption decision [
17].
In relation to precision and digital tools in making decisions, nitrogen, phosphorus, potassium (NPK) fertilization, and liming applications have the greatest influence among the respondents. One of the benefits of precision agriculture is applying nutrients where they are most profitable based on soil test results and yield data analysis. Agricultural retailers’ willingness and ability to provide variable rate application of various fertilizers has grown over time but follows an adoption path similar to that of GNSS-based soil sampling [
53].
The next grouping comprises the overall hybrid/variety selection, overall crop planting rates, planting date decision, pesticide selection (herbicides, insecticides, or fungicides), and cropping sequence/rotation decisions. These kinds of decisions, with means between 3.49 and 3.12 among the respondents, involve crop management according to field variability and site-specific conditions. Decisions that are better than those that would be made with conventional agricultural practices have the potential to boost the efficient use of resources, reduce input costs, and minimize environmental degradation. At the same time, they improve yield and crop quality [
42].
With means below 2.5, the final group is decisions regarding variable seeding rate and irrigation. It may also be associated with the smaller number of farmers using these technologies in relation to the other groups of technologies evaluated. For example, the center pivot system occupied 1.6 million hectares in Brazil in 2020, according to data from the Brazilian Agricultural Research Corporation (Embrapa). In the same year, soybeans alone occupied 36 million hectares in Brazil, according to data from the National Supply Company (Conab). The future expansion of irrigated agriculture in Brazil will depend on economic incentives, water availability, and water conservation practices.
An abundance of studies evaluating the adoption rates of precision agriculture technologies in Brazil, the United States, Australia, and Europe have been conducted, including several in recent years. Although results among these studies vary, adoption rates have generally increased over the last two decades. On the other hand, adoption has lagged behind what many researchers expected, with overall adoption rates rarely overcoming 50% of farms [
13,
26,
31,
54,
55,
56]. One of the reasons is that farmers are heterogeneous in their perceptions of precision farming technologies’ benefits [
7].
The benefits obtained through the adoption and use of precision and digital technologies for farmers’ production processes was another aspect raised in the survey. Increased crop productivity/yields had the highest level of influence among the respondents, followed by cost reductions and labor efficiencies. All of the eight benefits in this question, including autosteer (less fatigue/stress), time savings (paper filing to digital), purchase of inputs, lower environmental impact, and marketing choices, had means of over three on a 5-point scale.
We know that the use of technology varies from farmer to farmer, but the decision to invest in technology is commonly tied to the potential for increased efficiency and profitability [
12]. It is important to note that farmers are heterogeneous in their perceptions of precision farming technologies, and their perceptions are also affected by the technologies they use [
7]. Even so, our results suggest that farmers have a significant perception of the benefits provided by the use of technologies in soybean production in Brazil, especially regarding the increase in efficiency and profitability.
4.3. Communication Channels to Spread Information
Soybean farmers in Brazil also were asked to report on the level of influence of mass media, social media, and interpersonal meetings on their decision to adopt precision and digital technology on a 5-point scale (1 = Not at all influential, 2 = Slightly influential, 3 = Moderately influential, 4 = Very influential, 5 = Extremely influential).
Table 2 shows the means regarding each question:
In relation to the mass media group, the results show a difference between the channels. For example, websites and blogs had an average of 3.38, and newspapers had a mean of 1.75. The results are in line with the rapid growth of the Internet, the ease with which global communication takes place, and the ability of news and information to spread with surprising speed and intensity [
1]. Meanwhile, newspapers have been trying to make the transition from print to digital for almost two decades in Brazil, but most are struggling with this transformation, as shown by the 1.75 mean rating for newspapers in
Table 2.
This movement from newspaper to the website is also shown in the latest Brazilian Association of Rural Marketing and Agribusiness reports, the most relevant study of Brazil’s farmers’ media habits. From 2013 to 2020, newspapers’ share among communication channels used by Brazilian farmers declined from 42% to 27%. At the same time, the Internet increased almost two-fold, from 39% to 74%. Due to a weakened newspaper industry and reduced resources, an accurate understanding of consumer demand for digital news products is more important than ever [
57].
Still, regarding the mass media group, subscription television had the second-highest level of influence among the respondents in our survey (M = 2.41). The result can be understood by the specialized content offered by this communication channel. Considered a market niche, the agribusiness lost many spaces in open television programming in recent years in Brazil. Therefore, the subscription television with exclusive channels to the farmers earned relevance to farmers.
The next group comprises radio, open television, and magazine, with very similar averages in the survey. It is interesting to note that radio keeps relevant to farmers, despite the proliferation of new media. This can be explained by the radio’s immediacy and by its accessibility. For example, the radio can be accessed in cars, trucks, and Ag machines or cell phones virtually anywhere. In addition, the radio usually brings local news that interests the producer, such as weather forecasts. The radio’s relevance is also shown in the last Brazilian Association of Rural Marketing and Agribusiness study, where 71% of farmers answered that they listen to the radio in 2020, practically the same percentage as in 2013 [
38].
In relation to the social media group, WhatsApp stands out in the survey as the most influential in soybean farmers’ decision making, with a 3.65 average. WhatsApp is a cross-platform online instant messaging service for mobile devices. As of 2021, WhatsApp is the most popular mobile messenger app worldwide with approximately two billion monthly active users, outranking Facebook Messenger at 1.3 billion and WeChat at 1.2 billion users. Following Facebook and YouTube, it is the third most popular social network globally, according to the 2021 Statista Dossier about WhatsApp [
58].
WhatsApp has become the primary and fastest daily communication tool for farms in Brazil. For example, 76% of farmers use WhatsApp to do business, according to a study by the Brazilian Association of Rural Marketing and Agribusiness conducted in 2020 during the pandemic. According to the same study, the use of WhatsApp among farmers grew along with the increase in the number of smartphones used by 94% of farmers in Brazil, compared to just 61% four years ago [
38].
The mobile messaging app enables users to share texts, images, videos, and voice messages and supports video calling. Our survey, for example, was delivered to farmers in Brazil over two months through WhatsApp. The questionnaire link was distributed mainly in farmers’ groups on the platform, which allows up to 256 members in the same group. The app creates alternate communities of mutual interests, enabling farmers to receive relevant information during their workday. The lockdown and social distancing experienced in 2020 and 2021 created a situation where WhatsApp became even more important to farmers in communicating with workers, suppliers, and extension agents.
Still, regarding the social media group, YouTube had the second-highest average among the respondents in our survey, with an average of 3.17. While many social media proved to be ephemeral, YouTube continues to expand rapidly and has become the second most visited website globally [
59]. According to data from Statista, the number of YouTube viewers amounted to 1.86 billion in 2021, up from 1.47 billion in 2017. Visual media can provide a valuable source of information for farmers.
In the Brazilian Association of Rural Marketing and Agribusiness study, YouTube almost tripled its importance from 2017 to 2020, based on usage rates among farmers increasing from 24% to 70% [
38]. Farmers typically use the platform for seeking information related to agricultural innovations, upcoming technologies, and specialized skills. The live streaming service is also popular among producers, especially with younger Internet users.
The next grouping comprises Instagram and Facebook, both with very similar means in the survey. Instagram started as a photo-sharing platform in 2010, growing in popularity to attract a large crowd of followers, which led to its creative use by bloggers and marketers. Today, Instagram has moved from photo sharing to video sharing and live streaming [
60]. Similar to YouTube, Instagram live gained relevance with the pandemic. This scenario led to the surge of live events with guests remotely located, which was unthinkable before COVID-19.
In addition, Instagram is the main platform used by digital influencers and digital media content creators who use their media platforms to influence audience behavior. The wave of influencers in Brazilian agriculture, formed by producers, agronomists, communicators, and other professionals, began to gain strength in the last five years. Therefore, there is still no data to measure the real impact on companies investing in influencers as marketing tools. Instagram appeals more to the younger generation than other social media platforms, making it more popular among the youth than Facebook, which remains widespread among older generations [
60].
The final group that had the lowest means within the social media group was LinkedIn and Messenger. LinkedIn is a social networking site for business professionals. Perhaps because of that, it has a lower mean in comparison to other channels. With an estimated 645 million self-reported users, according to data from Statista 2021, LinkedIn is becoming more relevant for the business as marketers are increasingly using the platform for marketing purposes. By placing sponsored posts or other advertising formats on LinkedIn, marketers can successfully target expert audiences, such as farmers.
In relation to the interpersonal meeting group, there was a slight variation in survey results. All of the eight channels in this question, including field days, conferences, forums and seminars, extension agents, retailers, peer groups, and conversations with neighbors, had means of over 3 on a 5-point scale. The two channels with the highest means were field days and conferences, forums, and seminars. These kinds of events typically provide educational opportunities for producers seeking knowledge in crop production, farm management, land use, and other issues. Besides that, these are opportunities to share information and experiences between farmers and other agents of the agroindustry chain.
The second group was extension agents and conversations with neighbors. Connections and visits with farms by specialists, for example, help in the dissemination of innovative technologies. Agricultural extension services can affect technology acceptance because of the delivery of consultancy and education services [
61,
62]. With respect to influence from neighbors, a typical model assumes that farmers learn by observing others’ experimentation [
63]. Farmer-to-farmer knowledge sharing is an important source of information. However, social learning breaks down if unobserved or imperfectly observed; individual characteristics are important determinants of neighbors’ outcomes [
64].
Despite being the last group, peer groups (formal or informal) and retailers have a mean of over 3 points. Peer groups are vital as they facilitate the sharing of local knowledge that is context-sensitive and makes intuitive, practical sense. The relative impact of the peer group may be explained by increased levels of homophily, which generates trust in innovations [
28]. Economists increasingly appreciate the critical role that social networks play in mediating the diffusion of agricultural innovations. However, this literature remains underdeveloped.
4.4. Relationship between the Adoption of Technologies and Communication Channels
Spearman’s correlation test was applied to measure the strength of the association between the communication channels and the level of adoption of technologies in soybean production in Brazil. The results depict a positive correlation between eight precision and digital technologies and several mass media, social media, and interpersonal meetings. In
Table 3, we chose to discuss just the three communication channels with the highest correlation coefficients.
LinkedIn had the highest positive correlation with seven precision and digital technologies among eight analyzed technologies (
Table 3). This result can be questioned because the social media for business professionals had a low mean (2.03 points) among the farmers that indicated the level of influence in their decision making to adopt new technology on the farm. Indeed, the low mean showed that fewer farmers use this channel, but still, LinkedIn may have the highest association with producers using these technologies. In other words, farmers who responded that LinkedIn influences decision making tend to be the ones with the highest levels of on-farm technology adoption.
In addition, the level of education of respondents may have influenced the results around LinkedIn. Among the farmers surveyed, 34.9% have a graduate degree (MBA, master’s, or doctorate), 40.2% have a bachelor’s degree, and 24.9% have less than a bachelor’s degree. The results of the one-way ANOVA showed a significant difference among the three-level education groups regarding the use of LinkedIn at the 95% confidence level (F = 15.260; df = 2450;
p < 0.001). Among farmers that have a graduate degree, for example, LinkedIn had a mean of 3.38. Meanwhile, among farmers that have a bachelor’s degree, the mean was 1.88, and among farmers with less than a bachelor’s degree, the mean was 1.66 (
Table 4). People with higher levels of education are more likely to be LinkedIn users than those with lower levels of education, according to the Social Media Use in 2021 report conducted by Pew Research Center in the United States.
The only technology that had no positive association with LinkedIn was the guidance/autosteer (ρS = 0.059; p > 0.05). In this case, the three highest correlation were with conversation with neighbors (ρS = 0.209; p < 0.001), conferences, forums, and seminars (ρ = 0.120; p < 0.05), and field days (ρS = 0.096; p < 0.05). The results suggest an association among adopters of this long-used technology, present since the beginning of the implementation of precision agriculture, with interpersonal meetings.
These connections typically prioritize in-person activities based on trust, such as relations with other farmers and learning from specialists who participate in technical events promoted by rural associations or agroindustry. One of the essential determining components of the UTAUT theory, for example, is social influence, the extent to which consumers perceive that important others (e.g., family and friends) believe they should use a particular technology [
65]. This is confirmed through the concept of homophily within the diffusion of innovations.
In second place, behind LinkedIn, Instagram also showed a positive association with the use of wired or wireless sensor networks (ρS = 0.208; p < 0.001), telematic systems (ρS = 0.186; p < 0.001), soil EC mapping (ρS = 0.183; p < 0.001), and electronic records/mapping for traceability (ρS = 0.180; p < 0.001). These technologies are newer and unproven in their capabilities compared to the more established ones, such as guidance/autosteer and yield monitors.
This result suggests an association among adopters of emergent technologies with Instagram, the most popular social media platform among youth. For example, among the farmers who participated in the survey, 43.3% were under 40 years of age or younger. The results of the one-way ANOVA showed a significant difference among the three ages groups regarding the use of Instagram at the 95% confidence level (F = 21.694; df = 2454;
p < 0.001). Among farmers under 41 years of age, for example, Instagram had a mean of 3.02. Meanwhile, among farmers from 41 to 55 years old, the mean was 2.50, and among producers more than 56 years old, the mean was 1.98 (
Table 5). Farmers’ age appears as a significant factor in quantitative or econometric approaches to testing the effects of different variables on the adoption of digital technologies on the farm [
66,
67].
Subscription television was the only mass media listed among the three communication channels with the highest correlation coefficient in relation to precision and digital technologies. It positively associated spot spray systems (ρS = 0.189, p < 0.001) and yield monitors (ρS = 0.145; p < 0.05). The exclusive channels offered by subscription television, some specializing in agriculture, are relevant to farmers since the agribusiness lost many spaces in open television programming in recent years in Brazil.
We also applied Spearman’s correlation to measure the association between communication channels and the use of technologies on-farm in making decisions. Although the results depict a positive correlation between the decision making and mass media, social media, and interpersonal meetings, we did not identify a clear pattern in the associations. Again, we chose to discuss just the three communication channels with the highest correlation coefficients (
Table 6).
For each kind of decision, a different group of communication channels had a positive correlation. For example, regarding nitrogen, phosphorus, potassium (NPK) fertilization and liming applications, conferences, forums and seminars (ρS = 0.284; p < 0.001), peer groups (ρS = 0.247; p < 0.001) and field days (ρS = 0.244; p < 0.001) had the three highest correlation coefficients. In this case, all of them related to interpersonal meetings. The results reinforce the idea that adopters of established decisions regarding precision agriculture tend to prioritize in-person connections.
On the other hand, the overall hybrid/variety selection decision had WhatsApp (ρS = 0.263; p < 0.001) and field days (ρS = 0.263; p < 0.001) with the highest correlation coefficients. Both communication channels had the highest association also with overall crop planting rates and pesticide selection (herbicides, insecticides, or fungicides). The result suggests that in-person activities still have relevance for soybean farmers in Brazil, but social media, such as WhatsApp, has been growing in importance to farmers. The app is used daily in rural areas to send and receive messages among coworkers, retailers, suppliers, associations, extension agents, and other farmers. These connections are essential to help farmers in several kinds of decision making.
Within the mass media group, subscription television showed a positive correlation with four types of decisions: cropping sequence/rotation decisions (ρS = 0.238; p < 0.001), pesticide selection (ρS = 0.234; p < 0.001), planting date decision (ρS = 0.217; p < 0.001), and variable seeding rate (ρS = 0.175; p < 0.001). Moreover, website and blog positively correlated with overall hybrid/variety selection (ρS = 0.238; p < 0.001) and overall crop planting rates (ρS = 0.186; p < 0.001). All these decisions require particular knowledge in precision agriculture, typically spread by specialized channels, such as subscription television and website.
The radio appears for the first time with a positive correlation with planting date decision (ρS = 0.215; p < 0.001) and irrigation decisions (ρS = 0.190; p < 0.001). Although this channel had the third-highest mean among mass media in the survey, it did not prove to be significantly associated with the use of technologies. Perhaps radio is used much more for everyday issues, such as weather and traffic, than for specific topics, such as technology adoption.
We also applied Spearman’s correlation to measure the association between communication channels and the perceived benefits of using technologies on-farm. The results depict a positive correlation between eight perceived benefits and several mass media, social media, and interpersonal meetings. We chose to discuss just the three communication channels with the highest correlation coefficients (
Table 7).
Conferences, forums, and seminars had the highest positive correlation with six perceived benefits of using technologies on-farm, among eight ones analyzed in the study (
Table 7). The educational role played by these events can help to understand the result. Understanding the value of technology is increasingly important in an environment of narrow crop margins when deploying technologies to optimize returns is critical, especially around agricultural commodities, such as soybeans [
12].
In relation to increased crop productivity/yields, for example, conferences, forums, and seminars had a similar positive correlation as field days (ρS = 0.312;
p < 0.001). Regarding cost reductions, conferences (ρS = 0.344;
p < 0.001) and field days (ρS = 0.280;
p < 0.001) also had the highest association in the study. Both channels prioritize the interaction and collaboration between farmers and researchers to promote innovation and knowledge exchange, increasing yields. The increased productivity is one of the most relevant drivers of the significant increase in Brazilian agricultural production and exportable surpluses in the 21st [
68,
69].
Still, regarding conferences, forums, and seminars, the highest association was with labor efficiencies (ρS = 0.351;
p < 0.001) and time savings (ρS = 0.343;
p < 0.001). Brazilian agriculture underwent a quick process of technical and structural change. In recent decades, the trend toward a reduction in the use of labor has been consolidated, and an increase in farm machinery capital sock [
70]. In the case of soybeans, the production organization model and the available technological package have evolved to favor gains in scale and increased the capital-labor ratio, which also contributes to growing per capita income in agriculture, reducing the number of workers.
Conferences, forums, and seminars also had a positive correlation with lower environmental impact (ρS = 0.340;
p < 0.001). Soybean production and its supply chain are highly dependent on inputs such as land, fertilizer, fuel, machines, pesticides, and electricity. In recent decades, the expansion of this crop in Brazil has generated concerns about its environmental impacts [
71]. Currently, the pressure to adopt digital technology on the farm emanating from end-use consumers also is mounting. One motivation for that pressure is the desire for more sustainable cropping systems. It is necessary to produce more food with less natural resources and inputs. Therefore, conferences, forums, and seminars have become increasingly important to exchange knowledge that results in soybean production with less environmental impact.
Among the perceived benefits correlated with communication channels, WhatsApp had the highest association with marketing choices (ρS = 0.311; p < 0.001) and purchase of inputs (ρS = 0.262; p < 0.001). We expected this result due to the increase in this mobile messaging app for these kinds of activities, especially during the pandemic. The lockdown and social distancing created a situation where WhatsApp became even more important to farmers in communicating with suppliers (to buy the agricultural inputs) and with traders and cooperatives (to sell the soybean production). It is important to highlight that, unlike Instagram, the results of the one-way ANOVA test did not show a significant difference among the three age groups in the use of WhatsApp (F = 0.256; df = 2455; p > 0.05). In other words, the behavior regarding the use of WhatsApp does not change according to the age of the interviewed producers.
Among the mass media, website and blog were the channels that showed the highest association with perceived benefits, such as increased crop productivity (ρS = 0.274; p < 0.001), purchase of inputs (ρS = 0.244; p < 0.001), marketing choices (ρS = 0.227; p < 0.001), and time savings (ρS = 0.269; p < 0.001). The result is in line with the answers from respondents that indicated websites and blogs as the most influential mass media in their decision to adopt precision and digital technology on-farm. In this channel, as an example, soybean farmers can find information regarding machinery, seeds, chemicals, management, and innovations in general.